
Volume 6, No. 2, March-April 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 14

HASCII Encryption Algorithm

Akshat Gandhi
Computer Science Department,

K.J.Somaiya College of Engineering,

Mumbai, Maharashtra, India

Hemang Tailor
Computer Science Department,

K.J.Somaiya College of Engineering,

Mumbai, Maharashtra, India

Chintan Doshi
Computer Science Department,

K.J.Somaiya College of Engineering,

Mumbai, Maharashtra, India

Sahil Ajmera
Computer Science Department,

K.J.Somaiya College of Engineering,

Mumbai, Maharashtra, India

Abstract: In this paper we propose a new encryption algorithm, which is called as HASCII Algorithm. This encryption algorithm is simple and

fast. It provides security and limits the added time cost for encryption and decryption to as to not degrade the performance of a database system

which at last also degrades the performance of the whole system. Encryption in database systems is an important topic for research, as secure

and efficient algorithms are needed that provide the ability to query over encrypted database and allow optimized encryption and decryption of

data. Clearly, there is a compromise between the degree of security provided by encryption and the efficient querying of the database, because

the operations of encryption and decryption greatly degrade query performance. Results of a set of experiments validate the functionality and

usability of the proposed algorithm.

Keywords: Encryption, Database Security, Decryption, passwords, 2‟s Complement, ASCII

I. INTRODUCTION

Database security concerns the use of a broad range of
information security controls to protect databases (potentially
including the data, the database applications or stored
functions, the database systems, the database servers and the
associated network links) against compromises of their
confidentiality, integrity and availability. It involves various
types or categories of controls, such as technical,
procedural/administrative and physical.

Databases can be treasure troves of sensitive information.
They can contain customers' personal data, confidential
competitive information, and intellectual property. Lost or
stolen data, especially customer data, can result in brand
damage, competitive disadvantage, and serious fines—even
lawsuits. Many of today‟s privacy mandates require protecting
data at rest, and the database is an obvious place where data
accumulates and is potentially accessible to range of business
systems and users. Organizations can choose to encrypt data at
the application level, the database level, or the storage level.
Encryption at the lowest of these levels, the storage level—on
the disk or tape—guards against risk in the case where storage
media are lost, but it does little to protect against malicious
insiders or systems infected by malware . Application-level
encryption on the other hand represents the other extreme by
providing the highest degree of control, but it may not always
be a viable approach. Because of these tradeoffs, many
organizations are increasingly turning to database encryption as
offering the best of both worlds when it comes to protecting
data at rest—the protection goes further than storage level
encryption and also avoids widespread changes in the
application layer. [1]

As corporate networks become more and more open to the
outside to accommodate suppliers, customers and partners,

network perimeter security is no longer sufficient to protect
data. Industry experts have long recommended a “defense in
depth” approach by adding layers of security around the data.
With the network being regarded as inherently insecure,
encrypting the data it is the best option, often cited as the “last
line of defense”. In terms of database security, encryption
secures the actual data within the database and protects
backups. That means data remains protected even in the event
of a data breach. [2]

Encryption mechanism can prevent users from obtaining
data in an unauthorized manner. Encryption mechanism can
verify the authentic origin of a data item. Encryption
mechanism also prevents from leaking information in a
database when storage mediums, such as disks, CD-ROM, and
tapes, are lost. When data is stored in the form of cipher, we
have to decrypt all the encrypted data before querying them.
For this purpose, we put forward the innovative encryption
algorithm, known as “HASCII Algorithm”. Our new
encryption algorithm is efficient and reliable. It has
accomplished security requirements and is fast enough for most
widely used software. This encryption algorithm limits the
added time cost for encryption and decryption and at the same
time improves the performance of the query over encrypted
database. We also provide a thorough description of the
proposed encryption algorithm and its processes.[3]

II. ALGORITHM

. HASCII Algorithm is specially designed for storing
passwords in encrypted format. In this encryption algorithm we
require username and password for encrypting password. To
Increase confusion Username is appended into password in a
specific manner so that attacker can‟t get to password easily
Figure-1 shows how Encryption and Decryption takes place in
the HASCII Algorithm.[4]

Hemang Tailor et al, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,14-18

© 2015-19, IJARCS All Rights Reserved 15

A. Encryption :

Figure-2 Shows steps followed in encryption. Steps are

explained below.

Figure 1. Encryption and Decryption in HASCII algorithm

Figure 2. Encryption in HASCII algorithm

 Accept username and password from the user

 Generate a String with a Combination of username
and password.

o Accept username
o Append Password to the Username only

till length equal to that of the username.
o If length of the appended password is less

than that of the username, make it equal
by inserting blank spaces.

o If all characters of the password are not
appended, repeat 1,2 and 3 else repeat 1

 From the String Generated in Step 2 take a
character.

 Find out ASCII Value of that Character.

 Take 2‟s complement.

 Divide that ASCII Value with 28.

 Add 97 and convert that integer value to a
Character according to ASCII.

 Form pair of quotient and generated character.

 Append generated pair to String.

 Repeat from Step 3 to Step 8 till all characters are
read.

 Exit, as encrypted password is obtained and stored
in the database.

Figure 3. String Formation in HASCII algorithm

B. Decryption :

Figure-4 Shows decryption algorithm and steps followed is

explained below.

 Accept encrypted password from the database.

 Accept a pair of characters i.e. quotient and
remainder which are not yet read.

 Multiply quotient with 28 and add remainder.

 Calculate 2‟s complement and convert that integer
value to Character according to ASCII.

Hemang Tailor et al, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,14-18

© 2015-19, IJARCS All Rights Reserved 16

 Repeat from Step 2 to Step 4 till all pairs of
quotient and remainder are accepted or read. And a
String is obtained

 As the username is known, accept those characters
from the string excluding username and blank
spaces from left to right.

 Exit as password is decrypted.

Figure 4. Decryption in HASCII algorithm

III. EXAMPLE

Let Username Ram and Password HasciiAlgo in the

following way it‟s encrypted.

A. Encryption :

 Username: Ram

Password: HasciiAlgo

 String Formation

o Username Length: 3

o Password Length:10

o String:RamHasRamciiRamAlgRamo##Ram

o # indicated blank spaces

 First Character is R

 ASCII Value of R:82

 2‟s Complement:175

 Division by 28

o Quotient: 6

o Remainder: 7

 Add 97 i.e. Remainder 104

 Equivalent Character: „h‟

 Generated Pair: 6h

 Repeat above process till last character.

 Encrypted Password:6h5u5i6r5u5c6h5u5i5s5m5m6

h5u5i6y5j5o6h5u5i5g8b8b6h5u5i

B. Decryption :

 Username: Ram

 Encrypted Password:6h5u5i6r5u5c6h5u5i5s5m

5m6h5u5i6y5j5o6h5u5i5g8b8b6h5u5i

 Take First Pair that is 6h

 ASCII Value of h:104

 Subtract 97 i.e. 7

 Now multiply 28 i.e. (6*28) + 7 = 175

 Get 2‟s Complement i.e. 82

 Convert to Character using ASCII that is „R‟.

 Repeat above process till last pair

 Remove Username and blank spaces.

 Decrypted Password: HasciiAlgo

IV. IMPLEMENTATION

The following implementation is done in C#.
using System;
using System.Collections.Generic;
using System.Linq;
public class HASCIIAlgo
{
 private String pass, user;
 private String encrypt, decrypt;
 public HASCIIAlgo(String u, String p)
 {
 pass = p;
 user = u;
 }
 public HASCIIAlgo(String u, String e, int n)
 {
 user = u;
 encrypt = e;
 }
// Construction of String-Encryption
private void Form()
 {
 String s = "";
 char[] c = pass.ToCharArray();
 int i = 0;
 for (; i < c.Length; i++)
 {
 if ((i % user.Length) == 0)
 {
 s = s + user;
 }
 s = s + c[i];
 }
 while ((i % user.Length) != 0)
 {
 s = s + " ";

Hemang Tailor et al, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,14-18

© 2015-19, IJARCS All Rights Reserved 17

 i++;
 }
 s = s + user;
 encrypt = s;
 }
//Encryption Algorithm
 private void Encrypt()
 {
 Form();
 String s="";
 char[] c = encrypt.ToCharArray();
 for (int i = 0; i < c.Length; i++)
 {
 int temp = (int)c[i];
 temp = 257 - temp;
 int q = temp / 28;
 int r = temp % 28;
 r = r + 97;
 s = s + q;
 char x = (char)r;
 s = s + x;
 }
 encrypt = s;
 }
//Decryption Algorithm
private void Decrypt()
 {
 char[] c = encrypt.ToCharArray();
 String s = "";
 for (int i = 0; i < c.Length; i++)
 {
 int q = (int)c[i];
 q = q - 48;
 i++;
 int r = (int)c[i];
 r = r - 97;
 int temp = (q * 28) + r;
 temp = 257 - temp;
 char c1 = (char)temp;
 s = s + c1;
 }
 decrypt = s;
 Construct();
 }

//Construction of Decrypted password
 private void Construct()
 {
 String s = "";
 char[] c = decrypt.ToCharArray();
 for (int i = 0; i < c.Length; i++)
 {
 if ((i % user.Length) == 0)
 {
 i++;
 while ((i % user.Length) != 0)
 i++;
 }
 if (i >= c.Length)
 break;
 else if (c[i] == ' ')
 continue;
 else if(i<c.Length)
 s = s + c[i];

 }
 decrypt = s;
 }
// Get Encrypted Password
public String Get_Encrypted_Value()
 {
 Encrypt();
 return encrypt;
 }
//Get Decrypted Password
 public String Get_Decrypted_Value()
 {
 Decrypt();
 return decrypt;
 }

}

V. ADVANTAGES AND DISADVANTAGES

A. Advantages :

 The “HASCII” algorithm is fast and simple for

encrypting and decrypting the messages. It provides

maximum security and limits the added time cost for

encryption and decryption.

 It has accomplished security requirements and is fast

enough for most widely used software.

 It has a variable key-length which offers better

security.

 The positions where the key would be used is not

fixed (dynamic). Hence it offers confusion which in-

turn increases the security of the system.

 The encryption algorithm contains simple arithmetic

operations which are easy to realize and implement.

 It reduces the time cost for encryption/decryption

process as compared to algorithms like DES, AES,

blue-fish, etc.

 Even if by some means, the attacker is successful to

intrude into the database, the attacker will not be able

to get any useful information unless and until the

attacker know the key and the process by which the

encryption has taken place.

B. Disadvantages :

 The length of the cipher text is not fixed and it

directly depends on the length of the plain-text and

the key length.

 The cipher text occupies more memory as compared

to the memory required for storing the plain text.

Hence, it increases the memory requirement of the

database.

 The overhead of range queries over encrypted

database is much higher than the overhead of range

queries over plaintext database.

 Also, if the length of the plaintext is less than the

length of the key used, then it results in adding some

escape characters in between, which leads to un-

necessary increase in the size of the cipher text.

 Also, there is a need for in-between processing for

converting the plain text to cipher text or converting

the cipher text to plain text. This causes an increased

overhead for processing. Though the time for

performing this process is much less as compared to

Hemang Tailor et al, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,14-18

© 2015-19, IJARCS All Rights Reserved 18

some other existing algorithms, still it requires a

sufficient amount of time.

 If careful observation is made on the cipher text, then

it can be found that there are some repeating patterns

of text which are nothing but the encryption of the

keys. If the attacker gets to know the algorithm used

then there is a possibility of information prediction.

Although it is a very tough task, still it is not

impossible to break the algorithm.

VI. CONCLUSION

HASCII algorithm takes some intermediate processing time

for encryption and decryption purpose, but it also offers a very

good and efficient security to the data which is needed to be

protected. So, it involves a trade-off between the time

performance and security performance factor.

VII. ACKNOWLEDGMENT

Through this acknowledgement, we express our sincere
gratitude to all those people who have been associated with this
project and helped us with it and made it a worthwhile
experience. Firstly we extend our thanks to the various people
who have shared their Signatures. Our deepest thanks to Ms.

Suchita Patil, the guide of our project for guiding us with
attention and care. Also, we would like to express our gratitude
to Prof. Swati Mali Deshpande and Prof. Pallavi Kulkarni for
helping us. We would also thank our institution and our faculty
members.

VIII. REFERENCES

[1] Bouganim L. and Pucheral P., “Chip-SecuredData Access:
Confidential Data on Untrusted Servers,” in Proceedings
of the 28th International Conference on Very Large Data
Bases, China,pp. 131-142, 2002.

 [2] Chen G., Chen K., and Dong J., “A Database Encryption
Scheme for Enhanced Security and Easy Sharing,” in
Proceedings of the 10th International Conference on
Computer Supported Cooperative Work in Design,
Nanjing pp. 1-6, 2006.

[3] Coppersmith D., “The Data Encryption Standard and Its
Strength Against Attacks,” IBM Journal of Research and
Development, vol. 38, no. 3, pp. 243-250, 1994.

[4] Daemen J. and Rijmen V., “Rijndael: The Advanced
Encryption Standard,” Dr. Dobb's Journal, pp.137-139,
2001.

