
Volume 6, No. 2, March-April 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 38

New Ways of Learning OO Concepts through Visualization &Animation Techniques

for Novices

Uma Sharma

Computer Science Department

Atma Ram Sanatan Dharm College, Delhi University, Delhi, India

Abstract: Teaching fundamentals of object oriented programming at introductory level remains to be a serious pedagogical challenge. The fact

remains that object oriented programming subsumes many of the constructs of structured programming in addition to its own special constructs

and abstractions. Researchers abroad have made several studies on the first course in programming and have gathered data related to learning

difficulties of novice vis-à-vis their dropout rate, including any gender biases etc. Animation of program execution can be used to help the

student “put the pieces together”. Visualization is one approach to assisting the learner in finding out what task each piece can be expected to

perform and how the pieces work together to perform the overall task of solving the problem at hand. The main purpose of this study has been to

use the research findings to improve on the future offerings of the course in programming using “Object First" approach. In this paper, we try to

find out different softwares which makes easier for novices to learn OO concepts through animation and visualisation techniques

Key-words:visualization tools, Animation tools, OO conceots, object-first approach,challenges to OO approach

I. INTRODUCTION

Teaching fundamentals of object oriented programming

at introductory level remains to be a serious challenge.

Even the most common concepts are inherently advanced

and it is difficult to form the complete program without

using them.

Object oriented programming require some design

effort before actual programming starts as finding out the

objects and deciding on the job allocation among them

is not a programming task.

Animation of program execution can be used to help the

student “put the pieces together”. Visualization is one

approach to assisting the learner in finding out what task

each piece can be expected to perform and how the pieces

work together to perform the overall task of solving the

problem at hand [1].

Visualization techniques allows students to immediately

see how their animation programs run, enabling them to

easily understand the relationship between the programming

statements and the behaviour of objects in their animation.

By manipulating the objects in their virtual world, students

gain experience with all the programming constructs

typically taught in an introductory programming course [1,

2].

II. OBJECTIVES OF THE STUDY

First year computer science students face a wide variety

of challenges. They have to immerse themselves into a

discipline in which they may not have had any prior formal

education and for which they must essentially learn a new

language, a programming language. For many computer

science courses, a rudimentary background in mathematics

and English is all that is required to enter the degree and

commence study.

The overall complexity of object-oriented design

encountered at the very beginning may hinder the progress

of a learner and may undermine his/her enthusiasm to

continue.

Over the last two decades, researchers have developed

and used several visualization tools to overcome the

problems faced by students while learning programming

subjects. We can take advantage of the potential of human

visual system by using Animation/visualization software

systems. These systems are rooted in the conviction that we

can better understand programs when represented

graphically as compared to textual descriptions and

representations [1, 3].

In this paper we will find out different software that can

be used to teach OO concepts through visualization (3D

objects) and animation techniques.

III. KEY CHALLENGES OF “OBJECTS-FIRST”

APPROACH

“Objects-first” strategy adds complexity to teaching and

learning introductory programming” [3.4]. Why is this so?

A. In “objects-first” strategy, students have to work

immediately with objects. This means that the

students must dive right into classes and objects, their

encapsulation (public and private data, etc.) and

methods.

B. All this is in addition to mastering the usual concepts

of types, variables, values, and references, as well as

with the often-frustrating details of syntax.

C. Some of the colleges also introduce event-driven

concepts in their introductory courses in

programming. Each of these skills presents with a

different mental challenge.

D. Object-oriented design, although computationally a

natural way of representation is a very abstract

concept to new learners. They often fail to identify

objects and relationships given a design problem.

E. Programs have a dynamic nature, but most learning

materials have a static format (e.g. textbooks) which

Uma Sharma, International Journal of Advanced Research in Computer Science, 6 (2), March-April,2015,38-42

© 2015-19, IJARCS All Rights Reserved 39

makes it difficult to explain (and understand) the

program’s dynamic behavior.

IV.VISUALIZATION TOOLS USED TO LEARN OO

CONCEPTS

A. BLUEJ:

The aim of BlueJ is to provide an easy-to-use teaching

environment for the Java language that facilitates the

teaching of Java to first year students. BlueJ emphasizes on

visualization and interaction techniques to create a highly

interactive environment that encourages experimentation

and exploration [5].

a. BlueJ supports:

a) fully integrated environment

b) graphical class structure display

c) graphical and textual editing

d) built-in editor, compiler, virtual machine, debugger,

etc

e) easy-to-use interface, ideal for beginners

f) interactive object creation

g) interactive object calls

h) interactive testing

i) incremental application development

 Source: internet (http://www.bluej.org)

Figure 1.1: BlueJ Interface

B. JELIOT 3:

Jeliot 3 visualizes the execution flow of a Java program

by showing the current state of the program (e.g., methods,

variables, and objects) and animations of expression

evaluations and loops. Jeliot 3 evolved from a previous

version called Jeliot 2000 [6]. The new version was

developed in order to achieve two new goals:

a. To provide support for object-oriented programs

b. And to improve software modularity.

Currently, Jeliot 3 animates a larger subset of the Java

language than Jeliot 2000, with features like values and

variables of primitive data types (e.g. int, boolean, char),

strings, primitive type 1-dimensional arrays, expressions

including operations and assignments, control structures,

error reporting and I/O operations. Furthermore, it also

animates object-oriented programming (e.g. inheritance and

method calls).

Source: internet (http://cs.joensuu.fi/~jeliot/index.php)

Figure 1.2: The user interface of Jeliot 3.

C. KAREL ++:

Karel, a robot world simulation, was used in the early

1980’s to introduce structured programming concepts,

similar to Pascal. Karel++ is an object-oriented descendant

of the original Karel. Karel++ introduces the art of Object-

Oriented Programming in a gentle approach. Karel J. Robot

has been developed recently to be a Java-based sibling of

Karel++. This tool supports three different programming

languages, C++, Java, and LISP. Karel's descendants tend to

require that students write new classes to extend a basic

robot class. They also include features such as data types,

variables, concurrency, and recursion [6,7].

Source: internet

(http://pclc.pace.edu/~bergin/karel.html)

Figure 1.3: Karel++ World in Action

D. JPie:

JPie is an interactive programming environment

designed to make the power of Java software development

accessible to a wider audience. In JPie, you don't describe

programs in "code," but instead you directly manipulate

their functional components. JPie transparently exposes the

Java programming model and provides access to compiled

Uma Sharma, International Journal of Advanced Research in Computer Science, 6 (2), March-April,2015,38-42

© 2015-19, IJARCS All Rights Reserved 40

classes in the underlying language, enabling development of

sophisticated object-oriented applications and establishing a

pathway for programmers who want to transition into more

traditional textual programming. JPie's functionality is

provided within a user-friendly environment that streamlines

the software development process. For example, JPie's

integrated graphical user interface builder supports property

connections and automatic event handling [6.7].

Source: internet (http://jpie.cse.wustle.edu/)

Figure 1.4: JPie Interface of Class Person

E. Green Foot:

Greenfoot is a software tool designed to let beginners get

experience with object-oriented programming. It supports

development of graphical applications in the Java™

programming Language. Greenfoot provides a painless, fun,

and engaging entry point for novice programmers but also

supports the full power of the Java programming language

for more advanced programmers. Greenfoot is fun and

engaging because it makes it relatively easy for novice

programmers to create 2D games, animations, and

simulations [8].

Source: internet (http://www.greenfoot.org)

Figure 1.5: The Greenfoot IDE in Run mode

F. jGRASP:

jGRASP (Graphical Representations of Algorithms,

Structures, and Processes) is a software visualization tool

that can perform a number of functions related to code

development. It can be used to create, edit, compile and run

Ada 95, C, C++ and Java programs. jGRASP is a

lightweight development environment, created specifically

to provide automatic generation of software visualizations to

improve the comprehensibility of software. jGRASP is

implemented in Java, and runs on all platforms with a Java

Virtual Machine (Java version 1.5 or higher). jGRASP

produces Control Structure Diagrams (CSDs) for Java, C,

C++, Objective-C, Ada; and UML class diagrams for Java

[9].

Source: internet (http:// www.jgrasp.org)

Figure 1.6: jGRASP Interface

G. JEROO:

Jeroo is an educational tool designed for novice

programming students. It is an integrated development

environment and micro world that was inspired by Karel the

Robot and its descendants. It was designed to help students

learn to instantiate and use objects, to learn to design and

write methods, and to learn about control structures. The

Jeroo tool has four major components: (1) the user interface,

(2) the Jeroo programming language, (3) editors, and (4) a

runtime module [10].

Jeroo supports three language styles:

a. A Java/C++/C# style that is a subset of the common

features of those languages

b. A VB.NET style that is a true subset of VB.NET

c. A Python style that is a true subset of Python

coordinate system

http://www.greenfoot.org/doc/javadoc/

Uma Sharma, International Journal of Advanced Research in Computer Science, 6 (2), March-April,2015,38-42

© 2015-19, IJARCS All Rights Reserved 41

Source: internet (http://www.jeroo.org)

Figure 1.7: The User Interface of Jeroo

H. Alice:

Alice is a 3D Interactive Graphics Programming

Environment built by the Stage 3 Research Group at

Carnegie Mellon University under the direction of Randy

Pausch. Alice can be free downloaded from

http://www.alice.org/jalice. Originally designed for

Windows, Alice now has an Open-GL rendering option

suitable for any platform [11,12].

A goal of the Alice project is to make it easy for

novices to develop interesting 3D environments and to

explore the new medium of interactive 3D graphics.

a. Alice offers a full scripting and prototyping

environment for 3D object behavior in a virtual world.

3D models of objects (e.g., animals and vehicles)

populate a virtual world, providing an object-oriented

flavor. By writing simple scripts, users can control

object appearance and behavior.

b. It is not necessary to type lines of code at all. Using

the smart editor, students can drag and drop the

instructions that make up their programs. During script

execution, objects respond to user input via mouse and

keyboard. Each action is animated smoothly over a

specified duration. This replaces the traditional

animation methodology, where the animator prepares

many frames and then uses a frame animator to view a

succession of frames in rapid sequence.

c. Programming 3D animations allows students to

immediately see how their program code executes.

The visual feedback allows the student to connect

individual lines of code to the animation action. This

leads to an understanding of the actual functioning of

different programming language constructs.

A. Alice comes in two different flavors:

a. The main program, Alice, was created for high schools

and college age students by Carnegie Mellon

University.

b. A doctoral student at Carnegie Mellon University

designed Storytelling Alice, for middle schools

(particularly girls).

The focus of the Alice project is to provide the best

possible first exposure to programming for students ranging

from middle school to college students [11].

B. Five Areas of ALICE Interface:

There are five basic areas of ALICE interface:

a. World Window: Shows the world you are building.

b. Object Tree: Contains of the objects in the world

c. Details Area: Provides more information about the

world or an object in the world

d. Editor Area: Allows you to make objects in your

world do new things like move and spin.

e. Events Area: Allows you to tell ALICE when to

make objects do certain things.

Source: Alice Software

Figure 1.8: The ALICE World Interface

Example: Program created in Alice [12]

Bubble sort program created in Alice

Source: Alice Software [12] (Alice Interface:

Bubble_sort.a2w)

Figure 1.8.1: Alice interface of Bubble Sort program

Source: Alice Software [12] (Alice in Play Mode:

Bubble_sort.a2w)

Uma Sharma, International Journal of Advanced Research in Computer Science, 6 (2), March-April,2015,38-42

© 2015-19, IJARCS All Rights Reserved 42

Fig1.8.2: Sorting process starts

V. CONCLUSIONS

We can use animated program visualization to support

innovative instructional methods for teaching beginners

about objects, their behavior and state. Students can able to

watch what went wrong in their programs and easily debug

and correct them.

The concepts of behavior and state as they apply to

objects, present particular challenges to the instructor of

introductory courses. The technology of animated program

visualization offers a way to keep the focus on objects while

teaching about behavior and state.

VI. REFERENCES

[1] Pausch, R. Cooper, S.,& Dann . Teaching Objects-first in

Introductory Computer Science. ACM SIGCSE Bulletin

35(1), pp.191-195. March 2003

[2] Dann, W., Cooper, S. & Pausch, “Making the connection:

Programming with animated small worlds”. Proceedings of

the 5th Annual Conference on Innovation and Technology

in Computer Science Education, Helsinki, Finland, pp.11-

13, July 2000.

[3] Cooper, S., Dann, W., & Pausch, “Alice: A 3-D tool for

introductory programming concepts.” In Proceedings of the

5th Annual CCSC Northeastern Conference 2000, Ramapo,

NJ, pp.28-29, April 2000.

[4] Cooper, Stephen, Wanda Dann, and Randy Pausch (2000)

“Developing Algorithmic Thinking with Alice.”

Proceedings of ISECON 2000, v 17, pp. 506-539.

[5] Kolling, M., Quig, B., Patterson, A., and Rosenberg, J.

“The BlueJ system and its pedagogy”. Journal of Computer

Science Education, vol.13(4):pp.249–268, 2003.

[6] Moskel, Barbara, Deborah Lurie, and Stephen Cooper.

“Evaluating the Effectiveness of a New Instructional

Approach.” Proceedings of the 35th SIGCSE technical

symposium on Computer Sci-ence Education, pp 75-79,

June 2000.

[7] Jayaraman, B. and Baltus, “Visualizing program

execution.” Vl. ’96: Proceedings of the 1996 IEEE

Symposium on Visual Languages, Washington, DC, USA.

IEEE Computer Society, pp. 30, 1996

[8] Kolling, M. “The Greenfoot Programming Envrion- ment”.

ACM Transactions on Computing Education,

vol.10(4),2010.

[9] Davy, J.D., Audin, K., Barkham, M. and Joyner, C. (2000)

“Student well-being in a computing department.”

Proceedings of the 5th Annual Conference on Innovation

and Technology in Computer Science Education, Helsinki,

Finland, pp.136-139.

[10] B. Dorn and D. Sanders. “Using Jeroo to introduce object-

oriented programming, FIE '03: Proceedings of the 33rd

annual Frontiers in Education Conference, volume 1, pp.

T4C 22-27, 2003.

[11] Pausch, R. (head), Burnette, T, Capeheart, A.C., Conway,

M., Cosgrove, D. DeLine, R., Durbin,J., Gossweiler,R.,

Koga,S., & White, J. “Alice: Rapid prototyping system for

virtual reality”, IEEE Computer Graphics and

Applications, vol.15(3),pp. 8-11, June 1995

[12] Wanda Dann, Stephen Cooper, and Randy Pausch,”

Learning to Program with Alice”,

http://www.aliceprogramming.net/ ,Prentice Hall

