Volume 6, No. 2, March-April 2015

ISSN No. 0976-5697

& International Journal of Advanced Research in Computer Science

Available Online at www.ijarcs.info

New Ways of Learning OO Concepts through Visualization &Animation Techniques
for Novices

Uma Sharma

Computer Science Department
Atma Ram Sanatan Dharm College, Delhi University, Delhi, India

Abstract: Teaching fundamentals of object oriented programming at introductory level remains to be a serious pedagogical challenge. The fact
remains that object oriented programming subsumes many of the constructs of structured programming in addition to its own special constructs
and abstractions. Researchers abroad have made several studies on the first course in programming and have gathered data related to learning
difficulties of novice vis-a-vis their dropout rate, including any gender biases etc. Animation of program execution can be used to help the
student “put the pieces together”. Visualization is one approach to assisting the learner in finding out what task each piece can be expected to
perform and how the pieces work together to perform the overall task of solving the problem at hand. The main purpose of this study has been to
use the research findings to improve on the future offerings of the course in programming using “Object First" approach. In this paper, we try to
find out different softwares which makes easier for novices to learn OO concepts through animation and visualisation techniques

Key-words:visualization tools, Animation tools, OO conceots, object-first approach,challenges to OO approach

l. INTRODUCTION

Teaching fundamentals of object oriented programming
at introductory level remains to be a serious challenge.
Even the most common concepts are inherently advanced
and it is difficult to form the complete program without
using them.

Object oriented programming require some design
effort before actual programming starts as finding out the
objects and deciding on the job allocation among them
is not a programming task.

Animation of program execution can be used to help the
student “put the pieces together”. Visualization is one
approach to assisting the learner in finding out what task
each piece can be expected to perform and how the pieces
work together to perform the overall task of solving the
problem at hand [1].

Visualization techniques allows students to immediately
see how their animation programs run, enabling them to
easily understand the relationship between the programming
statements and the behaviour of objects in their animation.
By manipulating the objects in their virtual world, students
gain experience with all the programming constructs
typically taught in an introductory programming course [1,
2].

1. OBJECTIVES OF THE STUDY

First year computer science students face a wide variety
of challenges. They have to immerse themselves into a
discipline in which they may not have had any prior formal
education and for which they must essentially learn a new
language, a programming language. For many computer
science courses, a rudimentary background in mathematics
and English is all that is required to enter the degree and
commence study.

The overall complexity of object-oriented design
encountered at the very beginning may hinder the progress

© 2015-19, VARCS All Rights Reserved

of a learner and may undermine his/her enthusiasm to
continue.

Over the last two decades, researchers have developed
and used several visualization tools to overcome the
problems faced by students while learning programming
subjects. We can take advantage of the potential of human
visual system by using Animation/visualization software
systems. These systems are rooted in the conviction that we
can better understand programs when represented
graphically as compared to textual descriptions and
representations [1, 3].

In this paper we will find out different software that can
be used to teach OO concepts through visualization (3D
objects) and animation techniques.

I1l. KEY CHALLENGES OF “OBJECTS-FIRST”
APPROACH

“Objects-first” strategy adds complexity to teaching and
learning introductory programming” [3.4]. Why is this so?

A. In “objects-first” strategy, students have to work
immediately with objects. This means that the
students must dive right into classes and objects, their
encapsulation (public and private data, etc.) and
methods.

B. All this is in addition to mastering the usual concepts
of types, variables, values, and references, as well as
with the often-frustrating details of syntax.

C. Some of the colleges also introduce event-driven
concepts in their introductory courses in
programming. Each of these skills presents with a
different mental challenge.

D. Object-oriented design, although computationally a
natural way of representation is a very abstract
concept to new learners. They often fail to identify
objects and relationships given a design problem.

E. Programs have a dynamic nature, but most learning
materials have a static format (e.g. textbooks) which

38

Uma Sharma, International Journal of Advanced Research in Computer Science, 6 (2), March-April,2015,38-42

makes it difficult to explain (and understand) the
program’s dynamic behavior.

IV.VISUALIZATION TOOLS USED TO LEARN OO
CONCEPTS

A. BLUEJ:

The aim of BlueJ is to provide an easy-to-use teaching
environment for the Java language that facilitates the
teaching of Java to first year students. BlueJ emphasizes on
visualization and interaction techniques to create a highly
interactive environment that encourages experimentation
and exploration [5].

a. BlueJ supports:

a) fully integrated environment

b) graphical class structure display

c) graphical and textual editing

d) built-in editor, compiler, virtual machine, debugger,
etc

e) easy-to-use interface, ideal for beginners

f) interactive object creation

g) interactive object calls

h) interactive testing

i) incremental application development

Source: internet (http://www.bluej.org)

600 But proglel
Project Edit Tools View Help

Class Edit Tools Options Wew Class
1 p =]
4 =)
Compile) ("Undo) () (Coy Y (] =2 =l |
4 = {
] > () |- Databaa |
" | B—
* A cless reprmsenting students for ¢ sinple Cunose —
. i
* Bosttor Michoel Kollisg | (b
* bursion 1.0, Jaruary 1990 >| tme |
"
class Stugest extends Person SR
\
{ / \
peivate Steing SI0; student 10 nsdf
Vew)
" ¥ ’_!L‘{
* (recte o student with defoult satting |
" sl i ql'm""' mheried fam Ctject »
ablic Stk b~~~ nhevied from Peeson B
(
per{ e nome)”, 0OR); b void \ethoom(Rrng
10 w 10)' | e Sireg 108ving0)
} *
Joe
* (reote 0 student with glven rome, yoor
.

Figure 1.1: BlueJ Interface

B. JELIOT 3:

Jeliot 3 visualizes the execution flow of a Java program
by showing the current state of the program (e.g., methods,
variables, and objects) and animations of expression
evaluations and loops. Jeliot 3 evolved from a previous
version called Jeliot 2000 [6]. The new version was
developed in order to achieve two new goals:

a. To provide support for object-oriented programs
b. And to improve software modularity.

Currently, Jeliot 3 animates a larger subset of the Java
language than Jeliot 2000, with features like values and
variables of primitive data types (e.g. int, boolean, char),
strings, primitive type 1-dimensional arrays, expressions
including operations and assignments, control structures,
error reporting and /O operations. Furthermore, it also

© 2015-19, JARCS All Rights Reserved

animates object-oriented programming (e.g. inheritance and
method calls).
Source: internet (http://cs.joensuu.fi/~jeliot/index.php)

3 Jeliot3.3.0 - Square. java

Dl 100 Control Andmation Help
B e e Gt | g |
16 } e — —
B i s Mathod Area "Expression Evaluation Area
18 super (4] 3 EXEE@
o dtias [square getarea
20 heigtheh:
21 ' Square this|y
22 public int gethrea()(
23 return vidth*heigeh; M
24)
25 }
26
27 pwblic class Squate extends RL‘Ctﬂfﬂ 74
28 int 1de
29 Squaze () ¢
30 ides0; Instance and Array Area
31)
32 Squaze (35t 21
33 super (3,2) ; ﬁ
34 sidesa; Oblect of the ciass Souzre
35) GConstant Area
37 public class NyClass {
38 public static void main{) { CONST ANTS
39 Squaze square;
40 squere = new Squere(3): __E
aL int area; lint heigth|
2 stes = square.gethrea();
.
4)
45
’W’
26 > ‘ I ‘ =
Jel.lOT s ‘@

Figure 1.2: The user interface of Jeliot 3.

C. KAREL ++:

Karel, a robot world simulation, was used in the early
1980°s to introduce structured programming concepts,
similar to Pascal. Karel++ is an object-oriented descendant
of the original Karel. Karel++ introduces the art of Object-
Oriented Programming in a gentle approach. Karel J. Robot
has been developed recently to be a Java-based sibling of
Karel++. This tool supports three different programming
languages, C++, Java, and LISP. Karel's descendants tend to
require that students write new classes to extend a basic
robot class. They also include features such as data types,
variables, concurrency, and recursion [6,7].

Source: internet
(http /Ipclc.pace.edu/~bergin/karel.html)

% File Edit Control Place World View . [E ESH

First.wol
001 ooz o0z 004 o005 006 o0¥ 008 000 010
oos
oos
oo
ooz
ooz
oot] —
INone
| !
SLl————————— First.kpp
% Beain Program +
/% Class and Method Declarations */
S Begin Task +7
task
7% peciarations v
wr_Fobot Karal <1, 2, East, 03
oA Stotememts
Earel .mowet »;
Karel pickBesperd3;
Karel mowed »;
Karel | turnleftes;
Harsl mowschs
Karel mousd
Karel putBeeper‘(»:
Earal moue
Karel torn0fFos;
¥
sS4 End Task o+
% Erd Proaram *s
Current Source File: First.kpp
Source Line Number: =

Figure 1.3: Karel++ World in Action

D. JPie:

JPie is an interactive programming environment
designed to make the power of Java software development
accessible to a wider audience. In JPie, you don't describe
programs in "code,” but instead you directly manipulate
their functional components. JPie transparently exposes the
Java programming model and provides access to compiled

39

Uma Sharma, International Journal of Advanced Research in Computer Science, 6 (2), March-April,2015,38-42

classes in the underlying language, enabling development of
sophisticated object-oriented applications and establishing a
pathway for programmers who want to transition into more
traditional textual programming. JPie's functionality is
provided within a user-friendly environment that streamlines
the software development process. For example, JPie's
integrated graphical user interface builder supports property
connections and automatic event handling [6.7].

Source: internet (http://jpie.cse.wustle.edu/)

@ Peison o 3|

File Edit Data View Events Constructors Methods Behavors Instances Help

v

varlabies 1\ Methots

_ame %) ; Somare 9V
" bithday) S

| catvame A

description

méthods
TgetName %

sethame)
Jag

" gelBithday)

 sofpinhday 2|
Jae 7 -

" isOkderThan

parameters locals | throws

=

we %

Figure 1.4: JPie Interface of Class Person

E. Green Foot:

Greenfoot is a software tool designed to let beginners get
experience with object-oriented programming. It supports
development of graphical applications in the Java™
programming Language. Greenfoot provides a painless, fun,
and engaging entry point for novice programmers but also
supports the full power of the Java programming language
for more advanced programmers. Greenfoot is fun and
engaging because it makes it relatively easy for novice
programmers to create 2D games, animations, and
simulations [8].

Source: internet (http://www.greenfoot.org)

JRT=

Scenario Edit Controls Help

B Scenario Information |
myWorld

VAN
MyWorld

Actor classes

AN ’
¥ MyActor

&

> Act | Il Pause | Q) Reset

Compile all

Figure 1.5: The Greenfoot IDE in Run mode

© 2015-19, JARCS All Rights Reserved

F. jGRASP:

JGRASP (Graphical Representations of Algorithms,
Structures, and Processes) is a software visualization tool
that can perform a number of functions related to code
development. It can be used to create, edit, compile and run
Ada 95, C, C++ and Java programs. jGRASP is a
lightweight development environment, created specifically
to provide automatic generation of software visualizations to
improve the comprehensibility of software. JGRASP is
implemented in Java, and runs on all platforms with a Java
Virtual Machine (Java version 1.5 or higher). jGRASP
produces Control Structure Diagrams (CSDs) for Java, C,
C++, Objective-C, Ada; and UML class diagrams for Java
[9].

Source: internet (http:// www.jgrasp.org)

[R e propst: [defu] | 20
Fle Project Messages Seftings Window Tools UML Hob
=1 —
c:lln:qm:m: un.dsullnns v.: Ewmtﬁﬂ]i T e B
t-”_'*i.,m_ B E Ve il Compls on 26
IFies ¥ SoriByName ¥ m
s — | 3B0DmsE 0BG +20Ed XDOw
[misatar
sl Syelass Persen £
ﬂmllsnr: !
vy P —
L] SEAS . hat gen;
IjMMMJ-SH » prote Stxing 1d;
Lo e g FeeceBase nawe, car sex]
Ijk:mm '
Mzt g
Euraiﬁ imm;me nawe, char K, dteing id)
™) schiakiat &
] sl SEAS Hime s |
s ;
AHEERS ua sexi|
ChhesSersiin E}g
Chemsensi
steamg 1]
I
<$ ratun id;
?"uu seud(ineing i)
| .V
i —
o | Pt Fod | o | DT s e coiett i
Carpils Messaes | SR Mssanes | Rl | ‘
- JRAST EErT Javec Hi\prATEiss) teeTperam. 40 |
o
I | - j0ASD: operabion couplite. r
oy | 4
)]
\ 4
o [T Eltwcongees

Figure 1.6: jGRASP Interface

G. JEROO:

Jeroo is an educational tool designed for novice
programming students. It is an integrated development
environment and micro world that was inspired by Karel the
Robot and its descendants. It was designed to help students
learn to instantiate and use objects, to learn to design and
write methods, and to learn about control structures. The
Jeroo tool has four major components: (1) the user interface,
(2) the Jeroo programming language, (3) editors, and (4) a
runtime module [10].

Jeroo supports three language styles:

a. A Java/C++/C# style that is a subset of the common
features of those languages

b. A VB.NET style that is a true subset of VB.NET

c. A Python style that is a true subset of Python
coordinate system

40

http://www.greenfoot.org/doc/javadoc/

Uma Sharma, International Journal of Advanced Research in Computer Science, 6 (2), March-April,2015,38-42

Source: internet (http://www.jeroo.org)

£ Jeroo's World -- Source File: none Island File: none

Run Speed Island File

:j main method | Jeroo methods ‘

=]
Source Code Panes

el
Island View

Language-style Selector
Current Language Style |Java/C++C# H Cursor Location offthe island

== B =]
Jeroo Status Area

Figure 1.7: The User Interface of Jeroo

H. Alice:

Alice is a 3D Interactive Graphics Programming
Environment built by the Stage 3 Research Group at
Carnegie Mellon University under the direction of Randy
Pausch. Alice can be free downloaded from
http://www.alice.org/jalice. ~ Originally designed for
Windows, Alice now has an Open-GL rendering option
suitable for any platform [11,12].

A goal of the Alice project is to make it easy for
novices to develop interesting 3D environments and to
explore the new medium of interactive 3D graphics.

a. Alice offers a full scripting and prototyping
environment for 3D object behavior in a virtual world.
3D models of objects (e.g., animals and vehicles)
populate a virtual world, providing an object-oriented
flavor. By writing simple scripts, users can control
object appearance and behavior.

b. It is not necessary to type lines of code at all. Using
the smart editor, students can drag and drop the
instructions that make up their programs. During script
execution, objects respond to user input via mouse and
keyboard. Each action is animated smoothly over a
specified duration. This replaces the traditional
animation methodology, where the animator prepares
many frames and then uses a frame animator to view a
succession of frames in rapid sequence.

c. Programming 3D animations allows students to
immediately see how their program code executes.
The visual feedback allows the student to connect
individual lines of code to the animation action. This
leads to an understanding of the actual functioning of
different programming language constructs.

Cursor Location Panel

L]

A. Alice comes in two different flavors:

a. The main program, Alice, was created for high schools
and college age students by Carnegie Mellon
University.

b. A doctoral student at Carnegie Mellon University
designed Storytelling Alice, for middle schools
(particularly girls).

© 2015-19, NJARCS All Rights Reserved

The focus of the Alice project is to provide the best
possible first exposure to programming for students ranging
from middle school to college students [11].

B. Five Areas of ALICE Interface:

There are five basic areas of ALICE interface:

a. World Window: Shows the world you are building.

b. Object Tree: Contains of the objects in the world

c. Details Area: Provides more information about the
world or an object in the world

d. Editor Area: Allows you to make objects in your
world do new things like move and spin.

e. Events Area: Allows you to tell ALICE when to
make objects do certain things.

Source: Alice Software

1. World Window

Figure 1.8: The ALICE World Interface

Example: Program created in Alice [12]

Bubble sort program created in Alice

Source: Alice Software [12] (Alice Interface:
Bubble_sort.a2w)

Events |create new event

 Whenthe warkd starts, da - workdmy first method {

@ world.my first method

et netod] public void my_first method () {

create new method ‘weorkd.bub bleSort{);

)
dolnOrdes doTogethes i loop while ~forAlinOrder forAlTogether wail(duration & print| text , object |

Figure 1.8.1: Alice interface of Bubble Sort program

Source: Alice Software [12] (Alice in Play Mode:
Bubble_sort.a2w)

41

Uma Sharma, International Journal of Advanced Research in Computer Science, 6 (2), March-April,2015,38-42

&) World Running

Take Picture

Fig1.8.2: Sorting process starts
V. CONCLUSIONS

We can use animated program visualization to support
innovative instructional methods for teaching beginners
about objects, their behavior and state. Students can able to
watch what went wrong in their programs and easily debug
and correct them.

The concepts of behavior and state as they apply to
objects, present particular challenges to the instructor of
introductory courses. The technology of animated program
visualization offers a way to keep the focus on objects while
teaching about behavior and state.

VI. REFERENCES

[1] Pausch, R. Cooper, S.,& Dann . Teaching Objects-first in
Introductory Computer Science. ACM SIGCSE Bulletin
35(1), pp.191-195. March 2003

[2] Dann, W., Cooper, S. & Pausch, “Making the connection:
Programming with animated small worlds”. Proceedings of
the 5th Annual Conference on Innovation and Technology
in Computer Science Education, Helsinki, Finland, pp.11-
13, July 2000.

© 2015-19, NJARCS All Rights Reserved

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

(12]

Cooper, S., Dann, W., & Pausch, “Alice: A 3-D tool for
introductory programming concepts.” In Proceedings of the
5th Annual CCSC Northeastern Conference 2000, Ramapo,
NJ, pp.28-29, April 2000.

Cooper, Stephen, Wanda Dann, and Randy Pausch (2000)
“Developing Algorithmic ~ Thinking with Alice.”
Proceedings of ISECON 2000, v 17, pp. 506-539.

Kolling, M., Quig, B., Patterson, A., and Rosenberg, J.
“The BlueJ system and its pedagogy”. Journal of Computer
Science Education, vol.13(4):pp.249-268, 2003.

Moskel, Barbara, Deborah Lurie, and Stephen Cooper.
“Evaluating the Effectiveness of a New Instructional
Approach.” Proceedings of the 35th SIGCSE technical
symposium on Computer Sci-ence Education, pp 75-79,
June 2000.

Jayaraman, B. and Baltus, “Visualizing program
execution.” V1. ’96: Proceedings of the 1996 IEEE
Symposium on Visual Languages, Washington, DC, USA.
IEEE Computer Society, pp. 30, 1996

Kolling, M. “The Greenfoot Programming Envrion- ment”.
ACM Transactions on Computing Education,
vol.10(4),2010.

Davy, J.D., Audin, K., Barkham, M. and Joyner, C. (2000)
“Student well-being in a computing department.”
Proceedings of the 5th Annual Conference on Innovation
and Technology in Computer Science Education, Helsinki,
Finland, pp.136-139.

B. Dorn and D. Sanders. “Using Jeroo to introduce object-
oriented programming, FIE '03: Proceedings of the 33rd
annual Frontiers in Education Conference, volume 1, pp.
T4C 22-27, 2003.

Pausch, R. (head), Burnette, T, Capeheart, A.C., Conway,
M., Cosgrove, D. DeLine, R., DurbinJ., Gossweiler,R.,
Koga,S., & White, J. “Alice: Rapid prototyping system for
virtual reality”, IEEE Computer Graphics and
Applications, vol.15(3),pp. 8-11, June 1995

Wanda Dann, Stephen Cooper, and Randy Pausch,”
Learning to Program with Alice”,
http://www.aliceprogramming.net/ ,Prentice Hall

42

