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Abstract:  Microscopy cell image analysis is a fundamental tool for biological research. This analysis is used in studies of different aspects of 

cell cultures. Visual inspection of individual cells is very time consuming, insufficient to detect or describe delicate changes in cellular 

morphology. The main challenges in segmenting nuclei in histometry are due to the fact that the specimen is a 2-D section of a 3-D tissue 

sample. The 2-D sectioning can result in partially imaged nuclei, sectioning of nuclei at odd angles, and damage due to the sectioning process. 

Furthermore, sections have finite thickness resulting in aggregating or overlapping nuclei in planar images. Hence a set of image objects that 

differ considerably from the ideal of round blob-like shapes occur. Their sizes and shapes in images can be irregular. The classic methodology 

for cell detection is image segmentation, which is a fundamental and difficult problem in computer vision. Image segmentation is a fundamental 

and difficult problem in computer vision. The difficulty in automatic segmentation of images of cells is often uneven due to auto fluorescence 

from the tissue and fluorescence from out-of-focus objects. This unevenness makes the separation of foreground and background a non-trivial 

task. The intensity variations within the nuclei further complicate the segmentation as the nuclei may be split into more than one object, leading 

to over-segmentation. Due to the  cell nuclei are often clustered, make it difficult to separate the individual nuclei. Hence an automatic 

segmentation of cell nuclei is an essential step in image histometry and cytometry. This paper presents a robust method to segment clustered 

overlapping or aggregating nuclei cells using priori information of shape markers and marking function in a watershed-like algorithm. The shape 

markers are extracted using adaptive H-minima transform and prior information about the usual shape of normal/pathological nuclei cells. A new 

marking function based on outer distance transform, to avoid jagged boundaries of segmented objects is created. Thus the right sets of markers 

and a marking function are used to accurately separate clustered nuclei.  

 

Keywords: Active contours, aggregating/overlapping nuclei, adaptive H-minima, markers, marking function, watershed segmentation. 

 

I. INTRODUCTION 

Visual inspection of individual cells is often insufficient 

to detect or describe delicate   important changes in cellular 

morphology. The primary step in quantitative analysis of 

cell cultures is usually the identification or segmentation of 

individual cells or cell nuclei. Currently, this is mostly 

performed manually or using semiautomatic tools available 

in microscopic image analysis software. However, manual 

segmentation of nuclei in microscopic images could be very 

labor-intensive, time consuming and even infeasible.  

Segmentation tools are mostly based on classical 

techniques such as correlation matching, threshold, or 

morphological operations. Correlation matching fails for 

cells that change shape in noisy environment. Segmentation 

methods based on global threshold fail for images that 

exhibit strong intensity gradients and or noise. 

Preprocessing with smoothing filters and adaptive 

thresholding helps but could lead to merging touching cells 

or nuclei. Watershed transforms are used to prevent such 

merging but it usually lead to over segmentation unless 

markers are manually chosen. Due to manual intervention, 

the benefits of automation such as speed, reproducibility, 

and objectivity are lost. Hence, the development of more 

reliable and automated image analysis techniques for 

cellular imaging remains an important goal in computational 

molecular biology. In recent years, many image analysis 

approaches have been adopted for cell and nuclei 

segmentation from microscopic images. Image segmentation 

is a fundamental and difficult problem in computer vision.  

 

The difficulty in automatic segmentation of images of 

cells is often uneven due to auto fluorescence from the 

tissue and fluorescence from out-of-focus objects. This 

unevenness makes the separation of foreground and 

background a non-trivial task. The intensity variations 

within the nuclei further complicate the segmentation as the 

nuclei may be split into more than one object, leading to 

over-segmentation. Due to the cell nuclei are often 

clustered, make it difficult to separate the individual nuclei. 

Hence an automatic segmentation of cell nuclei is an 

essential step in image histometry and cytometry. 

The manuscript is organized as follows. Section II 

describes the related work. Section III explains briefly the 

proposed method in detail. Section IV deals with results and 

in Section IV, conclusions and future work are presented 

II. RELATED WORK 

When there is a high contrast between cells and 

background, the detection task can be solved by image 

thresholding [1], [2], applied independently to all channels 

and then merged using spatial dependencies. However, this 

approach is not able to discriminate touching cells, as the 

spatial relations are not embedded in basic thresholding 

techniques. Segmentation methods based on global 

thresholding fail for images that exhibit strong intensity 

gradients and/or noise. Preprocessing with smoothing filters 

and adaptative thresholding helps, but touching cells or 

nuclei will be merged. The J-SEGmentation (JSEG) 

algorithm [3] first quantizes the input image into a few 

colors and filters them individually to determine the 
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smoothness of the local areas. The use of color quantization 

caused a major problem when regions of varying shades, 

due to illumination, appeared in the image. When the 

boundaries are fuzzy the traditional edge-based active 

contour methods [4],[5], render poor results on fluorescence 

microscopy images.  In traditional deformable models, 

which consist in finding the boundaries of the object of 

interest by evolving contours or surfaces guided by internal 

and external forces [6], it is difficult to design a strategy 

with generalization ability to work for all images.  The 

image energy terms are computed using intensity variances 

inside and outside the contour the model of active contours 

without edges [7] and this region-based approach provides 

strong robustness to noise and allows segmentation of cells 

with blurred edges. The methods used for cell or nuclei 

segmentation are unable to handle the edges of overlapping 

nuclei with minimal or no edge information include 

watershed algorithm [8], [9], multiscale analysis [10], 

dynamic programming-based methods [11], [12], graph-cut 

methods [13], and Markov random fields [14].  A nuclear 

segmentation algorithm based on Gaussian Markov random 

fields suffers from under segmentation and high false 

positives [14]. The gradient flow tracking method [15], find 

difficult in processing images composed of textured blob 

cells. Watershed transforms can prevent merging, but 

usually lead to over segmentation unless the markers are 

manually chosen. It makes use of some external knowledge 

on the collection of images under study, in the sense that it 

requires and initial marking step. One has to use the 

knowledge available on the problem-shape of the desired 

objects, noise present on the image, darkness of the 

background, etc.-to design a robust algorithm for extracting 

markers of the different regions to be segmented. By marker 

of a region, we mean a connected set of pixels (or even one 

single pixel) included in this region. The most critical aspect 

of nuclear segmentation algorithms is the process of 

detecting a set of points in the image, usually one per cell 

nucleus and close to its center, that are variously referred to 

as “markers” or “seeds.” These points are used by 

subsequent algorithms to delineate the spatial extent of each 

cell nucleus. The accuracy of the segmentation depends 

mainly on the accuracy and reliability of the initial markers. 

A lot of approaches have been used to detect seed 

points. The early work in this field [16], [17] relied upon the 

peaks of the Euclidean distance map, which is often used in 

conjunction with the watershed algorithm [18] due to its 

computational efficiency and ready availability. But it has 

the disadvantage of detecting too many seeds, leading to 

over-segmentation. Another technique is to detect local 

maxima points in the gray-scale image using the h-maxima 

transform [19], [20]. This method was found to be overly 

sensitive to image texture, and resulted in over seeding. The 

classical watershed algorithm directly uses region minima or 

ultimate eroded points (UEPs) as   seed   points [21], but 

over segmentation is likely to happen. There are two 

proposals to handle this problem: region merging and 

marker-controlled watershed. Region merging approaches 

could be based on shape or sizes of cells or nuclei [9], [22], 

[23]. A marker-controlled watershed algorithm replaces 

region minima or UEP with predefined markers, each 

representing an object [24]. The proposed method in [25] 

successfully extracts cell makers, and thereby segments cells 

but is limited for objects with descending intensity and 

having round shape. A marker extraction method based on 

condition erosion was proposed in [26] but the results were 

sensitive to the sizes of erosion structures and the thresholds 

of condition erosions. The marker detection algorithm in 

[27] combines the photometric and shape information in a 

framework of pattern classification that decides whether 

markers should be merged. The watershed transform [21] 

has proven to be a powerful and fast technique for both 

contour detection and region-based segmentation. It is 

simple and intuitive and can be parallelized, to produce an 

entire partition of the image. It has been applied to 

biological images [34], [35] and has given good results, 

especially on blurred grey level images. However, it has 

some drawbacks of over segmentation, sub-segmentation, 

and sensitivity to noise. This transform can be further 

improved, by the introduction of prior information [33].  

However, the marking function used for watershed 

flooding was not mentioned and no graphic segmentation 

results are given to indicate the accuracy of watershed lines. 

Our goal is to develop a fully automatic method for 

segmentation of nuclei in tissues from 2-D microscopy 

images. We specially address the issue of segmentation of 

aggregating or overlapping nuclei or the phase of cell 

division. The initial segmentation is based on active 

contours. In order to detect and separate clustered nuclei in a 

more robust and precise way, in this paper, we enhance the 

shape markers and a new marking function is used in a 

watershed-like segmentation. 

An automated technique to segment cell nuclei in 

fluorescence microscopy images, which is capable of 

accurately separating clustered nuclei proposed [31].  One of 

the main factors, which make it hard to accurately segment 

the nuclei, is the existence of clustered nuclei in the cell 

images [31]–[33]. The watershed algorithm is one of the 

most widely used segmentation techniques for nuclei 

extraction [32]. An adaptive H-minima transform is also 

proposed to accurately find shape markers, avoiding over 

segmentation. The shape markers convey not only the 

number and location of nuclei but also represent shapes of 

the nuclei. A new marking function based on outer distance 

transform on the initial segmentation is introduced in place 

of traditional inner distance transform. The new algorithm 

produces smooth or straight boundaries unlike other 

watershed-based methods that usually produce jagged 

boundaries. This method generates smoother watershed 

lines, and thus obtains higher accuracy in nuclei separation 

than the earlier methods. But the method is based on the 

presumption that there exists one-to-one correspondence 

between shape markers and objects. Therefore, when the 

size and the shape of nuclei vary a lot in one cluster, the 

algorithm could fail to detect the correct number of nuclei.  

III. PROPOSED METHOD 

A. Watershed- An introduction 

Watershed segmentation can be understood by 

interpreting the intensity image as a landscape. A hole is 

drilled in every minima of the landscape, and the landscape 

is submerged in water. Water will then start to fill the 

minima, creating catchment basins. As the water rises, water 

from neighbouring catchment basins will meet. At every 

point where two catchment basins meet, a dam, or 

watershed, is built. These watersheds are the segmentation 
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of the image. Watershed segmentation can be implemented 

with sorted pixel lists (Vincent & Soille, 1991). This implies 

that the segmentation can be performed very rapidly. In the 

method described by Vincent & Soille (1991), pixels/ voxels 

that are located at an equal distance from two catchment 

basins become part of the watershed lines. This means that 

we sometimes get thick watershed lines, leading to 

pixels/voxels that are not part of any catchment basin. In our 

implementation of the watershed algorithm, we keep track 

of the pixels/voxels that are ambiguous, i.e. located at an 

equal distance from two or more catchment basins, and let 

water flow around them. As a last step of the watershed, the 

most common neighbouring label is assigned to the 

ambiguous pixels/voxels, and every pixel/voxel is thereby 

made part of a catchment basin. This is necessary for the 

subsequent merging step described below. In our seeded 

version of the watershed segmentation, water will rise from 

pixels marked as seeds, as well as from non seeded regional 

minima found in the image. Separating dams, or watersheds, 

are built only between catchment basins associated with 

different seeds. As soon as the water level of a seeded 

catchment basin reaches the weakest point of the border 

towards a non-seeded regional minimum, it will be flooded.  

The water will continue to rise until each seeded 

catchment basin in the gradient magnitude image meets 

another seeded catchment basin   A popular region growing 

method, which has proved to be very useful in many areas 

of image segmentation and analysis, is the so-called 

watershed algorithm. Watershed segmentation has then been 

refined and used in very many situations (for an overview 

see Meyer & Beucher, 1990; Vincent, 1993). The main 

difference between the watershed method and ordinary 

region growing is that the watershed method works per 

intensity layer instead of per neighbor layer. If the intensity 

of the image is interpreted as elevation in a landscape, the 

watershed algorithm will split the image into regions similar 

to the drainage regions of this landscape. The watershed 

borders will be built at the crests in the image. In a gradient 

magnitude image, water will start to rise from minima 

representing areas of low gradient, i.e. the interior of the 

objects and the background, and the watershed borders will 

be built at the maxima of the gradient magnitude. However, 

if watershed segmentation is applied directly to the gradient 

magnitude image, it will almost always result in over-

segmentation, owing to the intensity variations within both 

objects and background. Instead of letting water rise from 

every minimum in the image, water can be allowed to rise 

only from places marked as seeds. Seeded watersheds have 

previously been described (e.g. Meyer & Beucher, 1990; 

Beucher, 1992; Vincent, 1993).Fully automatic foreground 

seeding is tricky, and using   morphological filtering, one 

often ends up with more than one seed per object, or objects 

containing no seed at all. More than one seed per foreground 

object will in many methods (i.e. Meyer & Beucher, 1990) 

result in background seeds passing through foreground 

components, leading to incorrect segmentation results. Cell 

nuclei are usually convex and do not show narrow waists.  

The shape of the cell nuclei itself can therefore be used 

for a priori modeling, or as an object-specific feature, in the 

search for a suitable segmentation method discriminating 

between single nuclei and clusters of nuclei. The method 

begins with an initial segmentation of nuclei, using active 

contours without edges. Then, an enhanced marker-

controlled watershed algorithm with a new marking function 

capable of accurately separating clustered nuclei is applied. 

The flow chart of the proposed method is as shown in Fig 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                          

 

 

 
 Figure 1 

B. Object Segmentation 

For the segmentation of nuclei from background, the 

model of active contours without edges was adopted [7]. In 

traditional edge-based active contours, image energy is 

taken as the integral of locally computed features along the 

contour. In contrast, region-based methods compute image 

energy from surface integrals over the entire image. More 

specifically, image energy is defined using intensity 

variances inside and outside of the contour. However, 

watershed usually yields over segmentation since regional 

minima or ultimate eroded points are employed for 

segmenting nuclei directly. This is because it is difficult to 

have one-to-one correspondence between regional minima 

and nuclei. In addition, it becomes worse when the nuclei 

are clustered. To handle the over segmentation problem, 

region merging and marker-controlled watershed techniques 

have been reported in the literature [31], [32]. The region 

merging techniques are highly sensitive to the sizes of 

nuclei. The marker-controlled watershed schemes formulate 

the segmentation as a marker extraction problem. In the 

marker-controlled watershed methods, nuclei should be 

initially represented by the markers appropriately [31], [32]. 

Thus, the step for elimination of spurious markers that 

result in over segmentation of nuclei needs to be employed 

in the marker-controlled watershed. Meanwhile, 

mathematical morphology has been involved to obtain the 

markers accurately [32]. In [32], a maker detection 

technique based on condition erosion has been introduced. 

However, the segmentation results tend to rely on 

incorporated morphological structuring elements and 

erosion thresholds. 

The H-minima or H-maxima transform is a powerful 

mathematical tool to suppress undesired minima or maxima 

[31], Cheng and Rajapakse [31] proposed a marker-

controlled watershed technique using the H minima 
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transform. Therefore, region-based models are robust to 

noise and allow segmentation of objects with blurred edges.  

The active contours are implicitly represented by a 

single level set function and changes in objects appear 

automatically as the level set function evolves. This enables 

automatic detection of an arbitrary number of objects from 

an arbitrary initial front. We chose to initialize the level set 

function as a small circle at the center of the image. The 

energy function of the active contour is based on a reduced 

form of the Mumford–Shah function for image segmentation 
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RΩ ⊂  is the 2-D domain of image g 

and ( , )x y ∈Ω .φ  is a level set function defined on Ω , 

whose zero-level set {( , ) ( , ) 0}x y x yφ∈Ω =  defines 

the segmentation such that φ  > 0 inside the segmented 

objects and φ  < 0 outside. Iµ  and 0µ  are respectively, the 

mean intensity of pixels inside and outside the zero level set. 

H and δ  are the Heaviside and Dirac functions. Iλ  , 0λ  , 

and α  are fixed positive parameters. 

The minimization of image energy is accomplished by 

letting the level set function evolve as a function of an 

abstract time t, starting from an initialization 

2 2

0 0( ( ) ( ) ) ( )I Ig g
t

φ φ
α λ µ λ µ δ φ

φ

∂ ∇
= ∇ − − + −

∂ ∇
 

Here ( / | |)φφ∇ ∇ ∇  is the (mean) curvature of the 

level set, generating a regulating force that smoothens the 

contours. The other two forces on the right-hand side move 

the contour toward the actual boundary of objects. After 

nuclei are segmented by active contours, the segmentation 

was refined by a series of morphological operations. First, 

the holes within segmented nuclei are filled as they could 

affect the result of subsequent distance transforms and cause 

incorrect separation of clusters. Thereafter, tiny objects 

unlikely to be the fragments of real nuclei are discarded by 

performing morphological opening with a disc structuring 

element. 

[a] Shape Markers 

The watershed segmentation algorithm uses a relief 

function f, usually the gradient of the intensity, giving the 

altitudes of a topographic surface from its regional minima. 

The watershed line is generally a set of points equidistant to 

the regional minima of the relief function measured by a 

topographic distance and often used in segmentation objects 

in images [15]. Marker-controlled watersheds flood from the 

markers that can be regarded as the first estimation of the 

image partitioning [18]. We use the initial segmentation of 

nuclei obtained by active contours to generate markers by 

using an inner distance transform. The inner distance 

transform converts the binary image, consisting of 

foreground and background pixels, into a distance map 

measured using Euclidean distance, where every foreground 

pixel has a value corresponding to the minimum distance 

from the background. The regional minima of the inverse of 

the inner distance map are regarded as markers. H-minima 

transform is often used to prevent over segmentation. It 

suppresses all minima, less than a particular depth h of the 

relief function [22]. In other words, the intensity of the 

transformed image is controlled by a minima suppression 

parameter h, lower values of which could lead to over 

segmentation while higher values may fail to separate 

touching objects. In this way, H-minima transform 

suppresses undesired minima. We presume that there exists 

one-to-one correspondence between the markers and the 

objects. To accurately find the value of h, an adaptive H-

minima transform is introduced to extract the correct 

number of markers and minimize any over- and under 

segmentation of nuclei. In the adaptive H-minima transform, 

the depth threshold is increased until before a merger of the 

regions begins. Let H-minima transform on inverse inner 

distance map gI of the image at threshold h be 
,( )IH g h , S 

be the set of all connected regions resulted from initial 

segmentation, and ( )j
N h  be the number of minima within 

connected region j S∈ after applying the transform. The 

adaptive H-minima transform algorithm learns h adaptively 

as 
ad ph as follows:  

begin: Adaptive H-minima Transform 

1;
adp

h =  

Find  ,( )
I adp

H g h=  

for connected region j S∈  do 

;
adp

h h=  

if  ( ) 1j

adp
N h >  then 

repeat 

1h h= + ; 

Find ,( )
I

H g h  

until ( ) ( )j j

adp
N h N h<  

adp
h h= − ∇  

else 

adph h= ; 

end if 

Find ( , )
I adp

H g h=  

end for 

The regional minima obtained after ( , )
I adp

H g h=  

correspond to the shape markers for objects. The shape 

markers demonstrate not only the number and location but 

also characterize the shape of nuclei, and help in generating 

the marking function. The adaptive H-minima transform 

finds the depth threshold before minima start to merge or 

disappear. By properly selecting gap parameter �, undesired 

regional minima are removed, and thus the number of nuclei 

contained in each object is accurately determined. The value 

of � depends on the profile of the distance function, and 

therefore on the shapes and size of the clusters. The resulted 

shape markers provide information of the number, location, 
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and shape of nuclei, and are used as the set of minima to 

impose onto the marking function.  

[b] Enhanced Shape Markers 

Overlapping/aggregating nuclei have intersecting 

contours in points of high concavity. To select those 

involved in the segmentation process among the all set of 

concavity points, prior information about normal or 

abnormal nuclei has to be used [36]. For example, normal 

nuclei have a slightly elongated but regular shape with a 

quite small area, while abnormal nuclei might be much 

bigger and/or lobulated. In fact, points of significant 

concavity that are extracted can correspond to aggregating 

or overlapping nuclei areas, but also to lobulated areas of 

abnormal nuclei. For this purpose, two templates of high 

biological plausibility have been established: 

- overlapping template, 

- aggregating template. 

The overlapping template shown in Fig 2 is based on 

the hypothesis that if two nuclei overlap, the connected 

component has to be enough elongated to contain two 

nuclei. [AB] is the potential segment of separation that 

connects two significant concavity points. All the points C, 

D, E, F, G, and H of the template have to be inside the 

connected component. At the moment, the distances CD, 

EF=GH are evaluated by observing a high number of nuclei. 

 

 
Figure 2 

 

The aggregating template shown in Fig 3 illustrates the 

fact that in aggregating areas, there is a narrow passage. The 

distances CD, EA=AF=GB=BH are also evaluated by 

observing a high number of nuclei. The angles are measured 

in function of tangent vectors left and right of concavity 

points A and B. As the template could be too rigid, some 

flexibility is introduced with the following rule: "Only one 

point among the points C, D, E, F, G, and H could be 

outside the connected component". 

If a potential segment of separation [AB] fits the 

overlapping template, the aggregating template, which is 

more restrictive, is then tested. If the aggregating template is 

fitted, the segment [AB] is validated as a line of separation 

between nuclei in contact. 

 

 
Figure 3 

On the contrary, it could be validated as a segment of 

separation between overlapping nuclei. But, in some cases 

of very big and lobulated nucleus, a potential segment of 

separation might fit the overlapping template, though there 

is no overlapping area. Therefore, in order to distinguish 

these two configurations, a study of the grey levels intensity 

along [AB] is performed. In case of overlapping nuclei, the 

grey level intensity is far higher in the area of overlapping 

than the mean intensity of the connected component. In case 

of a big lobulated nucleus, no significant variation of grey 

levels can be observed, and then the potential segment of 

separation is rejected. 

C. Marking Function 

The segmentation by watershed algorithm depends not 

only on the markers but also on the marking function f—the 

topographic surface flooded by water. A good marking 

function should synthesize physical characteristics of the 

objects to segment and have different markers and 

catchment basins characterizing the desired objects. For 

separation of partially overlapping objects in binary images, 

the inverse inner distance map is chosen as the classical 

marking function [21]. In the hill climbing implementation 

of watershed [28], an approximation is necessary to provide 

an ordered queue to pixels of the same gray level. This 

approximation of the marking function often results in 

jagged watershed lines [39], as it uses a chessboard distance 

pattern in place of Euclidean distance to compute the 

distance function across plateaus. A new marking function 

based on outer distance transform, [31] to avoid jagged 

boundaries of segmented objects is created. The outer 

distance transform converts a binary image into a distance 

map where every background pixel has a value 

corresponding to the minimum distance from shape markers. 

As the outer distance transform measures the distance from 

the shape markers, resulting distance map resembles the 

shape of nuclei. 

Given an initial segmentation and shape markers M= 

(M1 ,M2, . . . ,MK ), the new marking function is generated 

as follows. 

[a] Calculate the Euclidean distance transform 
                   ( ) i n f ( , )

i

i
y M

D x D x y
∈

=                                                  

where D(x, y) is the Euclidean distance between points 

x and y, and Di(x) corresponds to the minimum distance 

between x and the shape marker Mi . 

[b] Obtain the marking function by 

         ( ) m i n { ( ) }
i i

i
f x d D x= +  

where di  is the level (value) of the marking function f 

on Mi Since we consider f as a 3-D topographic surface, the 

function value corresponds to the level/height of the surface. 

The Euclidean outer distance map generates the marking 

function from the markers, representing shape 

characteristics of the object. The difference between the new 

marking function (4) based on outer distance and the 

classical relief function used in the watershed algorithm is 

that the topographical distance is replaced with the geodesic 

distance. For connected convex shapes, the geodesic 

distance is equivalent to Euclidean distance. If the relief 

function f is itself a distance function (i.e., | �f | = 1), the 

topographical distance reduces to the geodesic distance and 

the watershed becomes identical with the geodesic skeleton 

by zone influence [30]. 
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IV. CONCLUSION AND FUTURE WORK 

An algorithm based on nuclei size, the distance to 

nuclei centers, etc., may distinguish them from holes inside 

nuclei. A prior biological knowledge of the cells based on 

the watershed transform that can deal with aggregating or 

overlapping nuclei is introduced into the segmentation 

process. Prior information about nuclei is used to improve 

the selection of the best markers from which the flooding 

will start. As the method is fully automated unlike earlier 

techniques [10], [11], it is suited for high throughput and 

spatiotemporal analysis of cell. 

The future of this paper could integrate more 

information such as texture of intensities Future works will 

be devoted to the introduction of a formal learning step in 

order to obtain optimal aggregating/ overlapping templates 

based on biological knowledge extracted as rules or image 

samples. This would increase the fidelity in global 

applicability of the method.  
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