
Volume 6, No. 1, Jan-Feb 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 109

ISSN No. 0976-5697

Parsing Techniques and Conflict in LR parsers

Anjali Kedawat
Computer Science and Engineering

Amity University Rajasthan Jaipur,India

Abstract: Basically there are two types of parsers exists:Top down and Bottom Up parsers .Both have their advantages and disadvantages.LR

bottom up parser have two type of conflicts :shift/reduce and reduce/reduce.Shift/reduce conflict was removed manually in LALR parser but

reduce/reduce conflict still not be solved completely. Automatic generator providing the approach of using first production rule among those

which causes reduce/reduce conflict but this approach is not efficient for all grammars.The basic idea to remove this conflict for all types of

grammar is to see the last terminal symbol and first terminal symbol of string and according to it use production.

Keywords: conflict, lookahead, parsing, techniques

I. INTRODUCTION

Parsing is the process of determining how a string of

terminals can be generated by a grammar

a. Parse tree generation

b. Parsers make a single left-to-right scan over the input

tokens, look ahead of one terminal at a time, and

construct the parse tree.

A. Parsers:

Top down parser Bottom Up parser

II. PARSING TECHNIQUES

A. Top-down parsers (LL(1), recursive descent):

a. Start at the root of the parse tree and grow toward

leaves

b. Pick a production & try to match the input

c. Bad “pick” ! may need to backtrack

d. Some grammars are backtrack-free (predictive

parsing)

B. Bottom-up parsers (LR(1), operator precedence)[2]:

a. Start at the leaves and grow toward root

b. As input is consumed, encode possibilities in an

internal state

c. Start in a state valid for legal first tokens

d. Bottom-up parsers handle a large class of grammars

III. BOTTOM-UP PARSER

In Bottom-up parsing we start with the sentence and try

to apply the production rules in reverse, in order to finish up

with the start symbol of the grammar. This corresponds to

starting at the leaves of the parse tree, and working back to

the root. Bottom-up parsing is also known as shift-reduce

parsing

A. LR Parser[3]:

LR parsing is a bottom up syntax analysis technique

that can be applied to a largeclass of context free grammars.

L is for left –to –right scanning of the input and R for

constructing rightmost derivation in reverse.

a. Conflicts in SLR Parsers:

a) shift/reduce and reduce/reduce conflicts[4]:

(a). If a state does not know whether it will make a shift

operation or reduction for a terminal, we say that

there is a shift/reduce conflict.

(b). If a state does not know whether it will make a

reduction operation using the production rule i or j for

a terminal, we say that there is a reduce/reduce

conflict.

(c). If the SLR parsing table of a grammar G has a

conflict, we say that that grammar is not SLR

grammar.

Example:[1]

S L=R

S R

 L *R

 L->id

R .L

I0:S’ .S

S .L=R

S .R

L .*R

L .id

R .L

I1: S’ S.

I2: S L.=R(causes shift/reduce conflict)

 R->.L

I3: S R.

I4: L *.R

 R .L

 L .*R

 L->.id

I5: L id

I6: S L=.R

 R .L

 L .*R

 L->.id

I7: L *R.

I8: R L.

I9: S L=R.

Anjali Kedawat, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,109-110

© 2015-19, IJARCS All Rights Reserved 110

In these conflicts shift/reduce is removed by LALR

Parsers but reduce/reduce problem not completely solved

manually.

b. Reduce/reduce conflict resolution:

An approach to remove this conflict by seeing the first

or last symbol of the i/p string ,rather than seeing first

production rule like in Lark[5] and HYACC[6] ,which to be

parsed and see which production rule (only those production

rule which causes conflict) can generate these symbols. Our

approach require less time in comparison to other

approaches because in other approaches we use first

production rule for removing conflict and if not getting

success to parse the whole i/p string we use another

production rule (production rule are those which causes

reduce/reduce conflict) while in our approach we only need

to see the last or first terminal symbol of input string and

according to which we use production rule.

IV. REFERENCES

[1] Fraser C., Hanson D., “ A Retargetable C Compiler: Design

and Implementation”,2nd edition,1995 Addison-Wesley

Publishing Company.

[2] Bergmann S. “Compiler Design: Theory, Tools, and

Examples”,4th edition,199, WCB Publishers.

[3] Aho A, Ullman J. , “The Theory of Parsing, Translation,

and Compiling.”,3rd edition,2009, Prentice-Hall.

[4] A.A Puntambekar, “Compiler Construction”,2nd

edition,2009 Technical Publication..

[5] Dr. Josef Grosch. “Cocktail A Tool Box for Compiler

Construction Lark - An LALR(2) Parser Generator With

Backtracking “,CoCoLab – Datenverarbeitung Achern

Germany,Document no. 32,2005.

[6] http://hyacc.sourceforge.net, January 27, 2011.

