
Volume 6, No. 1, Jan-Feb 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 56

ISSN No. 0976-5697

Developing an Efficient Mechanism of Quality of Service on WINS Node

1
Vishal Singh,

2
Ashish Kumar

1
(Research Scholar),

2
(Asst. Professor)

Dept. Computer Science & Engineering
1
PSIT, Kanpur Nagar India

2
PSITCOE, Kanpur Nagar India

Abstract: On wireless computer networks, ad-hoc mode is a method for wireless devices to directly communicate with each other. To set up an

ad-hoc wireless network, each wireless adapter must be configured for ad-hoc mode versus the alternative infrastructure mode. An ad-hoc

network tends to feature a small group of devices all in very close proximity to each other. Performance suffers as the number of devices grows,

and a large ad-hoc network quickly becomes difficult to manage. Ad-hoc networks cannot bridge to wired LANS or to the Internet without

installing a special-purpose gateway. Apply some modifications on parameters of existing protocols as well as analysis on these parameters by

which can improve Quality of Service.

Keywords: WINS, AODV, IP Header, DSCP, ECN, Trace graph, NS2, OMNET++

I. INTRODUCTION

Wireless integrated network sensors (WINS) provide

distributed network and Internet access to sensors, controls

and processors that are deeply embedded in equipment,

facilities and environment [1].

Ad-hoc On-Demand Distance Vector (AODV) Routing

is a routing protocol for mobile ad-hoc networks and other

wireless ad-hoc network. In AODV, the network is silent

until a connection is needed. It uses an on-demand approach

for finding routes, in which a route is, established only when

it is required by a source node for transmitting data packets.

AODV uses symmetric links between neighboring nodes. It

does not follow paths between nodes when one of the nodes

cannot hear the other one however we may include the use of

such links in future enhancements [2].

Differentiated services or DiffServ is a computer

networking architecture that specifies a simple, scalable and

coarse-grained mechanism for classifying and managing

network traffic and providing quality of service (QoS) on

modern IP networks. DiffServ uses a 6-bit differentiated

services code point (DSCP) in the 8-bit Differentiated

Services Field (DS Field) in the IP header for packet

classification purposes [3]. The DS field and ECN field

replace the outdated IPv4 TOS field. DiffServ-aware routers

implement per-hop-behaviors (PHBs), which define the

packet-forwarding properties associated with a class of

traffic. In practice, most networks use the following

commonly defined Per-Hop Behaviors:

a. Default PHB (Per hop behavior)--which is typically

best-effort traffic.

b. Expedited Forwarding (EF) PHB—dedicated to low-

loss, low-latency traffic.

c. Assured Forwarding (AF) PHB—gives assurance of

delivery under prescribed conditions.

d. Class Selector PHBs—which maintain backward

compatibility with the IP Precedence field [3].

Trace graph is a great application that comes handy to

ns2 users. It eliminates the need to configure and run Perl /

awk scripts over the trace file. Trace file analysis simplified.

Trace graph is third party software helps in plotting the

graphs for ns2 and other networking simulation software [4].

In 1996-97, ns version 2 (ns-2) was initiated based on a

refactoring by Steve McCanne. NS-2 is a discrete event

simulator targeted at networking research. NS-2 provides

substantial support for simulation of TCP, routing, and

multicast protocols over wired and wireless networks [5].

In this paper, we have describe network simulation tools that

helps to define results easily and research scholar focus on

their research, introduces more efficient mechanism of

Quality of Service. There are many parameters available in

protocol header format but some parameters are unused

which are no need to send every time in protocol header

format. Here we have done operations on unused parameters

of protocols.

II. WINS

Wireless Integrated Network Sensors (WINS) form a

new distributed information technology of combination of

sensor, and processing systems. WINS nodes are

autonomous, self-organized, wireless sensing and control

networks. WINS nodes include micro sensors, signal

processing, computation and low power wireless networking.

WINS enable distributed measurements for applications

ranging from aerospace system condition monitoring to

distribute environmental science monitoring. WINS require a

Microwatt of power. But it is very cheaper when compared

to other security systems such as RADAR. It is used for short

distance. It produces a less amount of delay. Hence it is

reasonable faster. On a global scale, WINS will allow

monitoring of land, water, and air resources for

environmental monitoring [1].

The opportunities for WINS depend on the development

of low cost, sensor network architecture. This requires sensor

information be conveyed to the user at low bit rate with low

power transceivers. Continuous sensor signal processing

must be provided to enable constant monitoring of events in

an environment. In contrast to conventional wireless

networks, the WINS network must support large numbers of

Vishal Singh et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,56-63

© 2015-19, IJARCS All Rights Reserved 57

sensors in a local area with short range and low average bit

rate communication [1].

III. NS2 SIMULATOR

NS (version 2) is an object-oriented, discrete event

driven network simulator developed at UC Berkely written in

C++ and OTcl (Object- oriented Tcl script language). It

implements many network protocols such as FTP, Telnet,

Web, CBR, and VBR, router queue management mechanism

such as Drop Tail, RED and CBQ, routing. Network

Simulator also implements multicasting and some of the

MAC layer protocols for LAN simulations. To simulate any

network scenario, NS-2 users need to write a simulation

script, and invoke the NS2 interpreter. NS2 will simply store

the results in form of trace files. One popular approach is to

produce two types of trace file, i.e. network animation

(NAM) trace file and normal trace file. NAM trace file is

used for network animation purposes. While for trace file

processing, a program can be coded using the user’s own

favorite software and graph plotters like GNU plot and

xgraph can be used to view the results [4].

Figure 1: NS2 Simulation Process Flow

IV. TRACEGRAPH

Trace Graph provides a simple visual display of the

program’s trace which allows changes in execution to be

easily distinguished. Trace Graph is a free network trace files

analyzer developed for network simulator ns-2 trace

processing and Trace Graph can support any trace format if

converted to its own or ns-2 trace format [4]. Trace graph

when opened, it opens three windows: (a) First window to

select the trace file (.tr) that was created by NS2 (depending

on the size of the trace file, the processing time also varies).

(b) Second window is the main window in which you can see

the graphs for various performance characteristics, like

throughput, End to End Delay, and Jitter, etc in 2D and 3D

facility. Even it can plot the histograms. (c) Third window is

nothing but Simulation Information Windows, that you can

see the packet loss, packet delivery, end to end delay,

Simulation processing times, Simulation Round Trip Times.

Trace graph runs under Windows, Linux, UNIX, MAC OS

systems. NS2 trace file formats: wired, satellite, wireless (old

and new trace), new trace and wired-wireless [4].

Figure 5: First Window

Figure 6: Second Window

Figure 7: Third Window

V. OMNET++

OMNET++ is an extensible, component-based C++

simulation library and framework, primarily for building

network simulators. Domain-specific functionality such as

Vishal Singh et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,56-63

© 2015-19, IJARCS All Rights Reserved 58

support for sensor networks, wireless ad-hoc networks,

Internet protocols, performance evaluation, etc. There are

extensions for real-time simulation, network emulation,

alternative programming languages (Java, C#), database

integration, SystemC integration, and several other functions.

OMNET++ is free for academic, and it is a widely used

platform in the global scientific community. Commercial

users must get a license from omnest.com. OMNET++ runs

on Windows, Linux, Mac OS X, and other Unix-like

systems. The OMNET++ IDE runs on Windows, Linux, or

Mac OS X [6].

INET Framework is an open-source communication

network simulation package for the OMNET++ simulation

environment. The INET framework contains models for

several wired and wireless networking protocols, and many

others [6].

Figure 2: Ad-hoc Simulation in OMNET++

Figure 3: Sockets Simulation in OMNET++

Figure 4: AODV Simulation in OMNET++

VI. AODV ROUTING PROTOCOL

Ad hoc on demand distance vector protocol is reactive

routing protocol. It constructs route on demand and aims to

reduce routing load [7]. AODV deals with route table

management. Route table information must be kept for

short-lived routes, such as are created to temporarily store

reverse paths towards nodes originating RREQs. AODV the

following fields with each route table entry [7]:

a. Destination IP Address

b. Destination Sequence Number

c. Valid Destination Sequence Number flag

d. Other state and routing flags (e.g., valid, invalid,

repairable, being repaired)

e. Network Interface

f. Hop Count (number of hops needed to reach

destination)

g. Next Hop

h. List of Precursors

i. Lifetime (expiration or deletion time of the route)

The AODV routing protocol is designed for mobile ad

hoc networks with populations of tens to thousands of

mobile nodes. AODV can handle low, moderate, and

relatively high mobility rates, as well as a variety of data

traffic levels. AODV is designed for use in networks

where the nodes can all trust each other, either by use of

preconfigured keys, or because it is known that there are no

malicious intruder nodes. AODV has been designed to

reduce the dissemination of control traffic and eliminate

overhead on data traffic, in order to improve scalability and

performance [7].

A. Route Request (RREQ) Message Format:

Table: 1

0 8 13 24 32
Type J| R|G| D| U Reserved Hop Count

RREQ ID

Destination IP Address

Destination Sequence Number

Originator ID Address

Originator Sequence Number

Vishal Singh et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,56-63

© 2015-19, IJARCS All Rights Reserved 59

The format of the Route Request message is illustrated

above, and contains the following fields:

 Type: 1

J: Join flag; reserved for multicast.

R: Repair flag; reserved for multicast.

G: Gratuitous RREP flag; indicates whether a

Gratuitous RREP should be unicast to the

node specified in the Destination IP Address field

D: Destination only flag; indicates only the

Destination may respond to this RREQ

U: Unknown sequence number; indicates the destination

sequence number is unknown.

a. Reserved: Sent as 0; ignored on reception.

b. Hop Count: The number of hops from the Originator

IP Address to the node handling the request.

c. RREQ ID: A sequence number uniquely identifying

the particular RREQ when taken in conjunction with

the originating node's IP address.

d. Destination IP Address: The IP address of the

destination for which a route is desired.

e. Destination Sequence Number: The latest sequence

number received in the past by the originator for any

route towards the destination.

f. Originator IP Address: The IP address of the node

which originated the Route Request.

g. Originator Sequence Number: The current sequence

number to be used in the route entry pointing towards

the originator of the route request [7] .

B. Route Reply (RREP) Message Format:

Table:2

Type R| A| Reserved Prefix Sz Hop Count

Destination IP address

Destination Sequence Number

Destination Sequence Number

Originator ID Address

Lifetime

The format of the Route Reply message is illustrated

above, and contains the following fields:

 Type: 2

 R: Repair flag; used for multicast.

 A: Acknowledgment required;

a. Reserved: Sent as 0; ignored on reception.

b. Prefix Size: If nonzero, the 5-bit Prefix Size specifies

that the indicated next hop may be used for any nodes

with the same routing prefix (as defined by the Prefix

Size) as the requested destination [7].

c. Hop Count: The number of hops from the Originator

IP Address to the Destination IP Address. For

multicast route requests this indicates the number of

hops to the multicast tree member sending the RREP.

d. Destination IP Address: The IP address of the

destination for which a route is supplied.

e. Destination Sequence Number: The destination

sequence number associated to the route.

f. Originator IP Address: The IP address of the node

which originated the RREQ for which the route is

supplied.

g. Lifetime: The time in milliseconds for which nodes

receiving the RREP consider the route to be valid [7].

VII. INTERNET HEADER FORMAT

Table:3

0 3 7 15 31
Version IHL Differentiated

Services

Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source IP Address

Destination IP Address

Version: 4 bits, Bit 0 - Reserved [8].

The Version field indicates the format of the internet

header. This document field indicates the format of the

internet header.

a. IHL: 4 bits, Internet Header Length is the length of the

internet header in 32 bit words, and thus points to the

beginning of the data. The minimum value for a

correct header is 5.

b. Type of Service: 8 bits, The Type of Service provides

an indication of the abstract parameters of the quality

of service desired. These parameters are to be used to

guide the selection of the actual service parameters

when transmitting a datagram through a particular

network [8].

Bits 0-2: Precedence.

Bit 3: 0 = Normal Delay, 1 = Low Delay.

Bit 4: 0 = Normal Throughput, 1 = High Throughput.

Bit 5: 0 = Normal Reliability, 1 = High Reliability.

Bits 6-7: Reserved for Future Use.

0 - 2 3 4 5 6 7

Precedence D T R 0 0

Precedence -

111 – Network Control

110 – Internetwork Control

101 – CRITIC/ECP

100 – Flash Override

011 – Flash

010 – Immediate

001 – Priority

000 – Routine

The use of the Delay, Throughput, and Reliability

indications may increase the cost of the service.

Total Length: 16 bits, Total Length is the length of

the datagram, measured in octets, including internet header

and data.

Flags: 3 bits, Various Control Flags.

Bit 0: Reserved, must be zero

Bit 1: (DF) 0 = May Fragment, 1 = Don’t Fragment.

Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.

a. Fragment Offset: 13 bits, the fragment Offset is

measured in units of 8 octets (64 bits) [8].

b. Time to Live: 8 bits, this field indicates the maximum

time the datagram is allowed to remain in the internet

system.

c. Protocol: 8 bits, this field indicates the next level

protocol used in the data portion of the internet

datagram.

d. Header Checksum: 16 bits, this is the 16 bit one’s

complement of the one’s complement sum of all 16 bit

words in the header.

Vishal Singh et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,56-63

© 2015-19, IJARCS All Rights Reserved 60

Source Address: 32 bits

Destination Address: 32 bits [8].

VIII. EXPERIMENTAL ANALISYS

A. Experiment on AODV Protocol :

When we talk about parameters of AODV Routing

Protocol, There are various parameters available and every

parameter has its specific information. But some parameters

are either not required to be sent every time or their value

need to be changed. First one is packet type, no need to send

at request of aodv structure as well as reply of aodv structure.

Here we have remove packet type from structure of aodv

request and aodv reply [7]. As well as one more parameter of

AODV is 8 bits reserved field that is sent as 0 and ignored at

reception [7], here we have also removed it. By which we

may improve the QoS of routing protocol and found more

efficient routing protocol. These changes will reduce values,

sizes etc. of following terms:

a. Simulation Length

b. Number of generated packets

c. Number of sent packets

d. Average packet size

e. Average packet size (current node)

f. Number of sent bytes

g. Maximal delay in simulation End2End delays

h. Average in simulation End2End delays

i. Minimal(node, PID) in simulation processing times at

intermediate nodes

j. Maximal(node, PID) in simulation processing times at

intermediate nodes

k. Average in simulation processing times at

intermediate nodes

B. Experimental Results:

In this AODV routing protocol has set in which we

have create network with 23 nodes and 2 servers. For

execution of this script, we have used NS2 simulator on

Linux os and simulate it by which creates NAM file and

Trace file. NAM File is used for represents animation of

network simulation and Trace file is used for simulation

results in which we have used Trace Graph for results

evaluation [4].

a) Network Simulation Information of Original

AODV Protocol:

Figure 8: Simulation Information of Original AODV

b) Network Simulation Information of Changed

AODV Protocol:

Figure 9: Simulation Information of Efficient AODV

c) Network Simulation Current node Information of

Original AODV Protocol:

Figure 10: Current Node Information of Original AODV

d) Network Simulation Current node Information of

Changed AODV Protocol:

Figure 11: Current Node Information of Efficient AODV

Vishal Singh et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,56-63

© 2015-19, IJARCS All Rights Reserved 61

e) Simulation Processing Times at Intermediate

Nodes of Original AODV:

Figure 12: Simulation Processing Times at Intermediate Nodes of Original

AODV

f) Result of Simulation Processing Times at

Intermediate Nodes of Changed AODV:

Figure 13: Simulation Processing Times at Intermediate Nodes of Efficient

AODV

g) Result of Simulation End2End delays of Original

AODV protocol:

Figure 14: Simulation End2End Delays of Original AODV

h) Result of Simulation End2End delays of Changed

AODV protocol:

Figure 15: Simulation End2End Delays of Efficient AODV

a. Experimental Results with 2D Graphs:

In this section, describes 2D results for many terms

such as:

(a). Packet Size vs. Average Simulation End2End delay.

(b). Cumulative Sum of Numbers of all the Received

Packets.

(c). Throughput of Receiving Bits vs. Average Simulation

Processing Time.

a) Result of Packet Size vs Average Simulation

End2End delay of Original AODV:

Figure 16: Packet Size vs Average Simulation End2End delay of Original

AODV

b) Result of Packet Size vs Average Simulation

End2End delay of Changed AODV:

Figure 17: Packet Size vs Average Simulation End2End delay of Efficient

AODV

Vishal Singh et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,56-63

© 2015-19, IJARCS All Rights Reserved 62

c) Result of Cumulative Sum of Numbers of all the

Received Packets of Original AODV:

Figure 18: Cumulative Sum of Numbers of all the Received Packets of
Original AODV

d) Result of Cumulative Sum of Numbers of all the

Received Packets of Changed AODV:

Figure 19: Cumulative Sum of Numbers of all the Received Packets of

Efficient AODV

e) Result of Throughput Of Receiving Bits vs Average

Simulation Processing Time of Original AODV:

This graph represents the throughput of AODV routing

protocol between receiving bits and average simulation

processing time.

Figure 20: Throughput Of Receiving Bits vs Average Simulation

Processing Time of Original AODV

f) Result of Throughput Of Receiving Bits vs Average

Simulation Processing Time of Changed AODV:

Figure 21: Throughput of Receiving Bits vs Average Simulation Processing
Time of Efficient AODV

Vishal Singh et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,56-63

© 2015-19, IJARCS All Rights Reserved 63

C. Experiment on IPv4 Header:

Currently, 8 bit data is passed in Differentiated Field

(Type of Service) But Only 6 bit data is effectively used

while remaining 2 bits are unutilized [8]. Further, neither

there is any suggestion how to use it nor is it anywhere

elaborated as why these 2 bits are preserved in every packet.

And Version field of IP Header contains 4 bits but Bit 0 is

reserved and Bit 1, 2, 3 defines IP version [8]. As well as

Flags field of IP Header also contains 3 bits but first Bit is

reserved [8]. The reserved bits of Version and Flags Fields

no need to send with every packet. Here we have removed

these reserved bits from IP Header fields, this will reduce

minimum length 160 bits of IPv4 header and reduced length

is 156 bits in each packet.

D. Experimental Results:

a) Result of Original IP Header fields of IPv4

header:

Figure 22: IP Header Fields of Original IPv4 Header

b) Result of Changed IP Header fields of IPv4 header:

Figure 23: IP Header Fields of Efficient IPv4 Header

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented some changes on existing

protocols by which we may improve the quality of service on

WINS node and develop more efficient protocol.

We summarize our major results presented in below:

a. We have removed the packet type from header request

and reply structure of AODV routing protocol and

also removed reserved field from header reply

structure of AODV routing protocol. By which we

have found more efficient routing protocol.

b. We have removed reserved 2 bits ECN field from

differentiated service field (Type of service), removed

reserved 1 bit from version field and removed

reserved 1 bit from Flags field of IPv4 header format.

By which we have improved Quality of Service of

IPv4 protocol.

For Future work, we may remove or change more

parameters in other protocols.

X. ACKNOWLEDGMENT

This research paper is made possible through the help

and support from everyone. Especially, please allow me to

dedicate my acknowledgment toward the following

significant advisors and contributors:

First and foremost, I would like to thank Mr. Ashish

Kumar (Asst. Prof.) for his most support and encouragement.

He kindly read my paper and offered invaluable detailed

advices on grammar, organization, and theme of the paper.

Second, I would like to thank HoD of dept. of C.S.E.,

M.Tech and Dean of the institute.

XI. REFERENCES

[1] Proposed work: Secure & Efficient Mechanism of Quality of

Service on WINS Node, Vishal Singh, Rajendra Singh,

Saurabh Sachan; NCISCL, 5-6 April-2014 in HBTI Kanpur,

pp: (127-130).

[2] A Survey: QoS of MANET through cryptography and

routing protocol enhancement, Vishal Songh, Ashish Kumar

Saxena, IJERSTE, ISSN: 2319-7463 Vol. 3 Issue 2,

February-2014, pp: (225-231).

[3] Differentiated Services,

http://en.wikipedia.org/wiki/Differentiated_services, Nov

2014, pp: (1-4).

[4] Trace Analyzer for NS-2, SCOReD-2006, Shah Alam,

Selangor, MALAYSIA, 27-28 June, 2006, pp: (29-32).

[5] Ns2, http://en.wikipedia.org/wiki/Ns_(simulator), Jan 2015,

pp: (1-4).

[6] OMNET++ Community – www.omnetpp.org, Andras Varga

and OMNET++ Team 2001-13, pp: 1

[7] AODV Routing, C. Perkins Nokia Research Center E.

Belding-Royer University of California, Santa Barbara S.

Das University of Cincinnati July 2003, rfc3561, pp: (4-9).

[8] Inetrnet Protocol, Information Sciences Institute University

of Southern California 4676 Admiralty Way Marina del Rey,

California, rfc791, pp: (11-14).

