
Volume 6, No. 1, Jan-Feb 2015

International Journal of Advanced Research in Computer Science

TECHNICAL NOTE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 7

ISSN No. 0976-5697

The Heap Structure and Its Applications

C. R. Kavitha

SLN College of Sciences

Andhra Pradesh, India

Abstract :A heap is a partially sorted binary tree. Like the binary trees, heaps have a meaning for the Left and Right subtrees. The root of a heap

is guaranteed to hold the largest node in the trees; its subtrees contain data that have lesser values. Unlike the binary search tree, however, the

smaller nodes of a heap can be placed on either the Right or Left subtree. Therefore, both the Left and Right branches of the tree have the same

meaning .Heaps have another interesting facet: They are often implemented in an array rather than a linked list. This implementation is possible

because the heap is, by definition, complete or nearly complete. This allows a fixed relationship between each node and its children. There are

two factors at work: the time it takes to create a heap by adding each element and the time it takes to remove all of the elements from a heap.

Fortunately, we have a guarantee that adding a single element to and removing a single element from a heap both take O(log(n)) time.

Keywords: Heap, Reheapup, Reheapdown, Maxheap, Minheap

I. INTRODUCTION

A Heap is a Binary Tree Structure with the following

properties:

a) The tree is Full (or) Complete Binary Tree.

b) The key value of each node is greater than or equal

to the key value in each of its descendents [1].

Like Binary Search Tree, Heaps have two properties are

as follows [4]:

a. Structure Property:

A heap is a binary tree that is completely filled, with the

possible exception of the bottom level, which is filled from

left to right. The following figure shows a complete binary

tree.

A complete binary tree of height „h‟ has between 2

h
 and

2
h-1

node. This implies that the height of complete binary

tree is [log N].

b. Heap Order Property:

The property that allows operation to be performed

quickly is the heap-order property. Since we want to find the

minimum element, the smallest element should be at the root

[4]. The key of the parent node is always smaller than the

key of the child node, that is parent < key of child [5].

II. MAX TREE & MIN TREE

a. Max Tree:

A Max tree is a tree in which, value in each node is

greater than (or) equal to those in its children [2].

b. Min Tree:

A Min tree is a tree in which, value in each node is less

than (or) equal to those in its children [2].

It‟s not necessary for a max tree to be binary. Nodes of

a max (or) min tree may have an arbitrary number of

children.

III. TYPES OF HEAP

a. Max Heap:

A max heap is a max tree that‟s also a complete binary

tree [2].

Figure (a) & (b) are Max heap, because it‟s a complete binary tree Fig (c) is
not a Max heap because, it‟s not a complete binary.

C. R. Kavith, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,07-19

© 2015-19, IJARCS All Rights Reserved 8

b. Min Heap:

A min heap is a min tree that‟s also a complete binary

tree [2].

Figure (a) & (b) are Min heap, because both the trees are complete binary

trees. Fig (c) is not a Min heap because it‟s not a complete binary.

IV. HEAP OPERATIONS

Two operations: Insert and Delete. To implement the

insert and delete operations, we need two basics operations:

Reheap Up and Reheap Down.

A. Reheap up (Insertion):

This operation will take place when inserting a

new node into the tree [1].

B. Re-heap down (Deletion):

This operation will take place when deleting a node

from the tree [1].

a) Reheap UP (Insertion):

The Reheap-Up operation repairs a “broken” heap by

floating the last element up the tree until it is in its correct

location in the heap. This was showed in the following

example.

Step-1

Figure.1 Original Tree: not a heap after insertion of node (25)

Step-2

Figure. 2 Node (25) was floating to reach its position

Step-3

Figure.3 Node (25) was placed in the original position

b) Insertion into a Max Heap:

Let us take the following figure

Figure.1

This is the Max Heap with five elements. When an

element is added to this heap, the resulting 6
th

 element

position is shown in the following figure:

Figure. 2

The insertion can be completed by placing the new

element into the new node and then bubbling the new

element up the tree (along the path from the new node to the

root) until the new element has a parent whose priority is >

= of the new element. Suppose if we want to insert the

element „1‟, (in Fig-1), it may be inserted as the left child of

the node „2‟.

Figure. 3

Instead of inserting the element „1‟, insert the element

„5‟, (in Fig-1) this element is placed as the left child. But

according to the definition of Max heap, the element „2‟ is

moved down to it‟s left child & 5 is bubbled up one node as

follow:

Figure. 4

If we want to insert the element ‟21‟, in Fig-1, it‟s

inserted as a left child of „2‟, so 21 is inserted as a „ROOT‟

node & 20 becomes right child of the element 21 and the

element „2‟ become left child of ‟20‟.

C. R. Kavith, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,07-19

© 2015-19, IJARCS All Rights Reserved 9

Figure. 5

c) Algorithm for heap insertion:

algorithm insertHeap (ref heap<arrayof datatype>

 ref last <index>,

 insert data into heap)

 Precondition : heap is a valid heap structure

 Postcondition : data have been inserted into heap

 Return : True if successful ; False if array full;

a. if (heap full)

b. end if

c. last = last + 1

d. heap [last] = data

e. reheapup (heap, last)

f. return true

End inserheap

Example:

Step-3 Now the node 67 was placed correctly in its position.

d) Reheap Down (Deletion):

ReheapDown repairs a “broken” heap by pushing the

root down the tree until it is in its correct position in the

heap [1].

e) Deletion from a Max Heap:

Any node can be deleted from a heap tree. But from the

application point of view, deleting the root node has some

special importance [3].

(a). Read the Root Node: When deleting a node from a

heap, the most common and meaningful logic is to

delete the root. The heap is thus left without a root.

(b). Replace Root node by the last element in the heap

tree: To reestablish the heap, move the data in the last

heap node to the root and reheapdown.

(c). When an element is to be removed from a Max heap,

it‟s taken from the root of the heap. Suppose if we

want to delete the element ‟21‟, the resulting tree will

be as follow:

(d) After deleting the root node „21‟. The leaf node „2‟ is

placed in the root and reheapdown has to take place

C. R. Kavith, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,07-19

© 2015-19, IJARCS All Rights Reserved 10

(e) Deletion of node 20 will give following tree:

f) Algorithm for heap deletion:

algorithm deletetHeap (ref heap < array of datatype>,

 ref last <index>,

 delete root of heap & passes data

 back to caller)

 Precondition : heap is a valid heap structure,

 last is index to last node in heap,

 Postcondition : root has been deleted from heap

 root data placed in dataout.

 Return : True if successful ; False if array full;

a. if (heap full)

b. return false

c. end if

d. dataout = heap [0]

e. heap [0] = heap [last]

f. reheapdown (heap, 0, last)

g. return true

End deleteHeap

Example:

Delete the node 78

V. MAX HEAP INITIALIZATION

a. Let us consider an array a[] with n-elements.

Assume n=10 and the priority of the elements in

a[10] is as follow:

 a[20, 12, 35, 15, 10, 80, 30, 17, 2, 1]

b. Suppose this array elements are arranged in a

complete binary tree [2], as shown in the following

fig.

c. This complete binary tree is not a „Max Heap‟, To

heapify (make into a max heap) the above complete

binary tree, use i = n/2 formula

Max heap is a max tree that is also a complete binary

tree. But from the above figure, the positions [4] and [8] are

not satisfying the definition of Max heap. So in this array

position the heapified is going to take place. The position

going to be heapified is [8], applying this in

 i = n/2; i = 8/2 = 4

d. The heapified tree is as follow:

C. R. Kavith, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,07-19

© 2015-19, IJARCS All Rights Reserved 11

e. Now take the priority of [3,6 and 7] nodes to

heapified

f. The heapified tree is as follow:

g. The heapified tree of the priority [3,6 and 7] is as

follow:

h. Now also, the above fig. is not a Max heap, because

i. The heapified tree is as follow:

j. Now take

k. The heapified tree is as follow:

l. The heapified tree is as follow

C. R. Kavith, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,07-19

© 2015-19, IJARCS All Rights Reserved 12

m. Still also the array position[3] to be heapified

n. The heapified tree is as follow:

o. The array position[6] to be heapified

p. The heapified tree is as follow:

q. According to Max Heap – definition

a) the Root node 80 – is greater than it‟s children node

– 17, 35

b) the Root node 17 – is greater than it‟s children node

– 15, 10

c) the Root node 35 – is greater than it‟s children node

– 20, 30

d) the Root node 15 – is greater than it‟s children node

– 12, 2

VI. APPLICATIONS OF HEAP TREE

There are two main applications of heap trees [1]

a. Sorting using Heap Tree (Heap sort): The sorting

method which is based on heap tree is called Heap

Sort”. And this is the efficient sorting method.

b. Priority Queue implementation using Heap Tree:

Priority Queue can be implemented using circular

array, Linked List. Another simplified

implementation is possible using heap tree. The

heap, however, can be represented using an array.

This implementation is therefore free from the

complexities of circular array and Linked List but

getting the advantages of simplification of array

[6].

a) Sorting using Heap Tree (Heap Sorting):

Any kind of data can be sorted either in ascending order

or in descending order using heap tree. This actually

comprises of the following steps:

Phase 1: Build a heap tree with the given set of data to sort

the data in ascending /descending order, we have to built

Max heap / Min heap in step-

Phase 2:(a) Delete the root node from the heap.

 (b) Place the last leaf node in the root position.

 (c) Rebuild the heap.

 (d) Place the deleted node in the output.

Phase 3: Continue Step-2 until the heap tree is empty.

EXAMPLE

Sort the following set of data in Ascending Order

 33, 14, 65, 2, 76, 69, 59, 85, 47, 99, 98

Phase 1

Build a heap tree with the given set of data

Step 1

Step 2

Insert the element „14‟

Step 3

Insert the element „65‟

C. R. Kavith, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,07-19

© 2015-19, IJARCS All Rights Reserved 13

Step 4
Insert the element „2‟

Step 5
Insert the element ‟76‟

Step 6

Insert the element „69‟

Step 7
Insert the element „59‟

Step 8
Insert the element „85‟

Step 9

Insert the element ‟47‟

Step 10

Insert the element ‟99‟

Step 11

Insert the element ‟98‟

C. R. Kavith, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,07-19

© 2015-19, IJARCS All Rights Reserved 14

The construction of Heap tree for the given set of data

was over. Now move to Phase 2, to carry out the Deletion

and Rebuilding of data in the Heap tree

Phase 2: (a) Delete the root node from the heap.

 (b) Place the last leaf node in the root position.

 (c) Rebuild the heap.

 (d) Place the deleted node in the output.

Step 1

Delete the root node „99‟ and place it in the output, and

place the last leaf node „76‟ in the root position

After swapping the root node and the last node, the next

step is to rebuild the heap tree. Because after swapping the

resultant tree is not a Heap tree, so rebuild the heap tree

using “REHEAPDOWN” process as follow:

After Reheapdown the leaf node was placed in a correct

place. And the tree has become perfect Heap Tree.

Step 2: Delete the root node „98‟ and place it in the output ,

and place the last leaf node „14‟ in the root position.

After swapping the root node and the last node, the next

step is to rebuild the heap tree. Because after swapping the

resultant tree is not a Heap tree, so rebuild the heap tree

using “REHEAPDOWN” process as follow

C. R. Kavith, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,07-19

© 2015-19, IJARCS All Rights Reserved 15

After Reheapdown the leaf node was placed in a correct

place. And the tree has become perfect Heap Tree.

Step 3: Delete the root node „85‟ and place it in the output

and place the last leaf node „47‟ in the root position.

After swapping the root node and the last node, the next

step is to rebuild the heap tree. Because after swapping the

resultant tree is not a Heap tree, so rebuild the heap tree

using “REHEAPDOWN” process as follow:

After Reheapdown the leaf node was placed in a correct

place. And the tree has become perfect Heap Tree.

Step 4: Delete the root node „76‟ and place it in the output,

and place the last leaf node „2‟ in the root position.

After swapping the root node and the last node, the next

step is to rebuild the heap tree. Because after swapping the

resultant tree is not a Heap tree, so rebuild the heap tree

using “REHEAPDOWN” process as follow:

C. R. Kavith, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,07-19

© 2015-19, IJARCS All Rights Reserved 16

After Reheapdown the leaf node was placed in a correct

place. And the tree has become perfect Heap Tree.

Step 5: Delete the root node „69‟ and place it in the output,

and place the last leaf node „2‟ in the root position.

After swapping the root node and the last node, the next

step is to rebuild the heap tree. Because after swapping the

resultant tree is not a Heap tree, so rebuild the heap tree

using “REHEAPDOWN” process as follow:

After Reheapdown the leaf node was placed in a correct

place. And the tree has become perfect Heap Tree.

After swapping the root node and the last node, the next

step is to rebuild the heap tree. Because after swapping the

resultant tree is not a Heap tree, so rebuild the heap tree

using “REHEAPDOWN” process as follow:

C. R. Kavith, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,07-19

© 2015-19, IJARCS All Rights Reserved 17

After Reheapdown the leaf node was placed in a correct

place. And the tree has become perfect Heap Tree.

Step 7: Delete the root node „59 and place it in the output,

and place the last leaf node „14‟ in the root position.

After swapping the root node and the last node, the next

step is to rebuild the heap tree. Because after swapping the

resultant tree is not a Heap tree, so rebuild the heap tree

using “REHEAPDOWN” process as follow:

After Reheapdown the leaf node was placed in a correct

place. And the tree has become perfect Heap Tree.

Step 8: Delete the root node „47„ and place it in the output,

and place the last leaf node „2‟ in the root position.

After swapping the root node and the last node, the next

step is to rebuild the heap tree. Because after swapping the

resultant tree is not a Heap tree, so rebuild the heap tree

using “REHEAPDOWN” process as follow:

After Reheapdown the leaf node was placed in a correct

place. And the tree has become perfect Heap Tree.

Step 9: Delete the root node „33„ and place it in the output,

and place the last leaf node „2‟ in the root position.

After swapping the root node and the last node, the next

step is to rebuild the heap tree. Because after swapping the

resultant tree is not a Heap tree, so rebuild the heap tree

using “REHEAPDOWN” process as follow:

C. R. Kavith, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,07-19

© 2015-19, IJARCS All Rights Reserved 18

After Reheapdown the leaf node was placed in a correct

place. And the tree has become perfect Heap Tree.

Step10: Delete the root node „14„ and place it in the output,

and place the last leaf node „2‟ in the root position.

After swapping the root node and the last node, the next

step is to rebuild the heap tree. Because after swapping the

resultant tree is not a Heap tree, so rebuild the heap tree

using “REHEAPDOWN” process as follow:

Step11: The remaining node is „2‟ place it in the output.

Phase 3

Continue Step-2 until the heap tree is empty. After

placing the node „2‟ in the output, the Heap tree has become

empty. The sorted data is placed in the output as follow:

c. Priority Queue implementation using Heap Tree:

In a multi-user environment the operating scheduler

decides which of the several processes to run. Generally the

processes are allowed to run for a fixed amount of time.

One algorithm uses a queue. Jobs are initially placed at the

end of the queue. The Scheduler will always take the first

job in the queue. It will run the job till it finishers or till its

time limit is up. This strategy is generally not appropriate

because for some jobs the waiting time may be more than its

actual processing time. These jobs must have certain priority

over other jobs. This type of application requires a special

type of queue called „Priority Queue‟. Another name for

Heap is Priority Queue.The priority queue has two basic

operations:

a) Insert- which is similar to Enqueue – to insert an

element in the queue.

b) Delete-which is similar to Dequeue – deletes the

data with highest priority [4].

Elements associated with their priority values are to be

stored in the form of heap tree, which can be formed based

on their priority values.The top priority element that has to

be processed first is at the root. So, it can be deleted and

heap can be rebuilt to get the next element to be processed.

Example:
Consider the following processes with their priorities:

process P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Priority 5 4 3 4 5 5 3 2 1 5

 1
st
 Top Priority element and process : 5(p1,p5,p6,p10)

2
nd

 Top Priority element and process : 4 (p2,p4)

3
rd

 Top Priority element and process : 3 (p3,p7)

4
th

 Top Priority element and process : 2 (p8)

5
th

 Top Priority element and process : 1 (p9)

Construction of Heap Tree

Step 1

Step 2

C. R. Kavith, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,07-19

© 2015-19, IJARCS All Rights Reserved 19

Step 3

VII. CONCLUSION

The concept of a heap is simple, but the actual

implementation can appear tricky, How do you remove the

root node and still ensure that it is eventually replaced by the

correct node? How do you add a new node to a heap and

ensure that it is moved into the proper spot. Heap sort is

relatively simple algorithm built upon the heap data

structure. Heap sort has guaranteed O(n*log(n)))

performance, though the constant factor is typically a bit

higher than for other algorithms such as quick sort. Heap

sort is not a stable sort, so the original ordering of equal

elements may not be maintained.

VIII. ACKNOWLEDGEMENT

I would like to thank my parents and my brother for

their support for completing this journal. Last, and most

obvious but not least, I thank the IJARCS for their valuable

guidance to correct my article.

IX. REFERENCES

[1]. Richard F.Gilberg, Behrouz A.Forouzan, Data Structures – A

pseudocode Approach with C++2nd Edition, 2005, Thomson-

Books/Cole, pp. 407-434.

[2]. Sartaj Sahni – Data Structures, Algorithms and Applications

in C++, 2nd Edition, 2005, Universities Press(India) Private

Limited,pp. 464-491.

[3]. Samanta Debasis – Classic Data Structure, 2nd Edition, 2009,

Prentice Hall, pp. 266-272.

[4]. A.A.Puntambekar, N.A.Despande, S.S.Sane-Data

Structures,2006, Technical Publications, pp. 436-445.

[5]. Kushwaha Dharmender Singh, Misra Arun Kumar- entice

Hall Learning Private Limited,pp. 560- 575.

[6]. AlexAllain, www.cprogramming.com/tutorial/ Computer

sicencetheory/heapsort.html.

http://www.cprogramming.com/tutorial/

