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Abstract: Large-scale denial of service (DoS) attacks represent a grave threat to hosts on the computer network.It makes the situation much 
worse to use of source IP address spoofing.Efficient method to defend against IP spoofing "The Implicit Token Scheme (ITS)presented in [9], 
was demonstrated.The path taken by a packet also used by ITS, which cannot be controlled by the attacker, and binds it to the source IP address 
of the same packet to form a token. All valid tokens are stored in a tokens database on border routers.After receiving a packet, the border router 
checks the validity of the token it carries by consulting the tokens database.only those packets will be forwarded that carrying valid tokensand 
other invalid tokens dropped. Although to maintain state information for thousands of simultaneous connections which could require more 
memory than is available on typical routers, ITS requires border routers. In this paper we include a component to ITS to improve its scalability 
by using Bloom filters. We show that it is simple to save a substaintial amount of router memory by implementing ITS using Bloom filters, and 
it does not impose large strain on routers. We also modify the basic method to allow for it to be incrementally deployed. The efficiency of the 
method is demonstrated through simulations by using real world Internet data. 
 
Keywords: Denial of service (DoS), Implicit Token Scheme (ITS),Distributed Denial of Service (DDoS),IP traceback ,Ternary Content 
Addressable Memory (TCAM),Router & Border Router . 

I. INTRODUCTION 

 
Our present society has become heavily dependent on 

the Internet and the services offers by internet. Mission critical 
applications have been deployed using the Internet including 
government transactions and banking also. Unfortunately, with 
the rapid increase in the use of the Internet as a mission critical 
service came the increase of attacks on the Internet 
infrastructure. Distributed Denial of Service (DDoS) attacks 
are one of the well famous and most threatening of those 
attacks. The flooding attack is one particular type of DDoS, 
that  floods the link of the victim network with a large amount 
of packets leading to a high rate of packet drops for valid 
users.Recent studies have shown that the number of DDoS 
attacks is actually more prevalent than previously thought[14]. 
What makes protection against IP spoofing paramount is that 
many approaches that could make less DDoS are inefficient in 
the presence of IP spoofing. 

By using the destination based forwarding paradigm 
of the Internet Protocol (IP) victims of DDoS attacks cannot 
authenticate the source address of the received packets .The 
best method of installing filters at border routers, is rendered 
inefficient by IP spoofing.To make the protection method 
infeasible attackers choose randomly an IP address as the 
source for different packets. 
          Complete methods to detect and block spoofed packets 
has been actively pursued in the research community. Many 
fact have been developed to the IP spoofing problem are either 
a variation of the IP traceback method[19,22,28]  or try to 
restrict the address space available to attacker(s) as[7,16]. A 
third class of solutions which become famous recently is based 
on the concept of capabilities[1,17].There is a class of DDoS 

attacks in which the attackers select intermediate compromised 
hosts, called zombies or botnets,to mount their attacks [6]. In 
this class the attackers try to get control of unwitting hosts and 
use them later on to mount coordinated DDoS attacks against 
the victims. In the presence of such class of attacks one could 
presume that the attackers do not need(or do not try) to spoof 
the source addressthe main reason this is that they are not 
using directly their hosts to mount the attacks and therefore 
will not show their IP addresses.Nevertheless, IP spoofing is 
still popularas shown in[15].What is more, we believe that IP 
spoofing will be used popularly in the future for many reasons 
that is given in the next part of paper. 

First, it is very difficult to block spoofed addresses 
because they don't have a pattern unlike real addresses. 
Second, some attacks, like reflector attacks[18] where the 
attacker become as some victim to send packets to a number of 
hosts with the output that the victim receives a large number of 
replies, faith on IP spoofing to work.Based on the above 
discussion about the relative ease in which attackers can fake 
their source IP address, it remains fact that they unable to 
control the paths taken by packets they send to the victim. This 
property of being unable to forge the paths taken by packets to 
reach the target remain one of the cornerstones of 
entrenchment against DDoS attacks which used spoofed 
packets. In that spirit we have recently proposed the Implicit 
Token Scheme(ITS) as a method to make less DDoS attacks. 
             The basic idea in ITS is that attackers cannot complete 
the TCP three-way handshake if they employ spoofed source 
addresses. The method was demonstrated to be a very much 
effective defense against spoofed traffic and in subsequent task 
was shown to be easily spread on the current Internet 
infrastructure. The main drawback of ITS, however, was it is 
necessary to maintain state information for thousand of flows 
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which needs a large amount of router memory.Reducing the 
memory need of ITS is the main contribution of this paper. 
             Wire-speed filters on Internet routers are normally 
stored in Ternary Content Addressable Memory (TCAM) 
which is expensive. Advanced router line cards (which is used 
in present time)normally have only 1 TCAM chip which can 
hold 256k entries to be shared with the router's forwarding 
table. This limits any DDoS filtering solution to less than 100k 
simultaneous flows which, for An Anti-Spoofing 

Method:Reducing Router Memory  busy sites, is far short of 
what is expected. Therefore it is very important for any 
proposed solution to IP spoofing to be scalable and to save 
router memory. The rest of the paper is organized as follows. 
The ITS method is discussed in Section 2.  
 
 

 
 

Figure 1. Defense  model. 
 

The basic theory of  Bloom filters and its use to the 
ITS method is presented in Section 3. The preliminary 
implementation and the performed simulations results of it is  
also presented in Section 4. In Section 4 we discuss the 
incremental deployment plans of ITS and the partial matching 
needed to development of it. We also argue about the profit of 
a particular Bloom filter implementation over other plan. 
Other work related to DDoS and the application of Bloom 
filters in data transmission(i.e. transfer of packet), are 
presented in section 5. We conclude with Section 6. 
 

II. THE ITS METHOD 

 

        As shown in Figure 1 the Implicit Token Scheme 
(ITS) gives protection against IP spoofed traffic by geting 
Internet Service Providers (ISPs) install filters at the border 
router.The installed filters have tokens that must be matched 
by arriving packets to be forwarded. 
              The token is composed of an IP address and a path 

signature.(i.e. the path signature is a collection of values 
marked by intermediate routers on the path traveled by the 
packet from source to destination). These signatures, unlike 
the source IP address, are uncontrollable by the attacker and 
therefore cannot be forged.When the filters is installed to use 
if Border router will forward packets if they carry tokens that 
have same entries as in the tokens database; else the packet 
will be dropped. This way IP addresses are closely bound to 

unforgeable path signature. Furthermore, since the token is 6 
byte long the probability of a spoofed address having the exact 
signature is too much small. 
           How to collect valid tokens it is our first question. An 
optimal solution is to collect tokens during contineous traffic 
when there is no DDoS attack. There are a number of 
problems with this approach.First, at the time of DDoS attack 
the victim "sees" a number of previously unseen addresses and 
all of them are considered spoofed because they are not in the 
tokens database. Second, due to frequently changing in routing 
the path signature most likely will change from the time it is 
recoded to the time it is used which leads to may false 
positives. A better approach to developing the database is to 
add the tokens for each TCP session separately after the TCP 
handshake is finished. 
          An added profit of ITS method is that the path signature 

is up to date and very small changes on the order of a TCP 
transaction. One could reserve a part of the bandwidth, say, 
90% to already developed connections which are guaranteed to 
be unspoofed, and the last 10% to the rest of the traffic to 
allow for new connections. This method has a serious 
drawback: an criminal(cyber criminal i.e.attacker) can flood 
the 10% of bandwidth reserved for connection establishment 
and thus prevents new users from connecting to the target.  

          To get the solution of the denial of connection attack we 
use the concept of a SYN cookie(SYN Cookies are the key 
element of a technique used to guard against SYN flood 
attacks.) In this task use it on the Border Router instead of the 
target. In order to initiate a TCP connection, the client sends a 
TCP SYN packet to the server.In response, the server sends a 
TCP SYN+ACK packet back to the client[31].When the 
Border router receives a TCP SYN segment having a 
destination address equal to that of the target it responds with a 
SYN-ACK segment on the behalf of the target. This is done 
without maintaining state information by using a special value 
for the Initial Segment Number in the TCP header. For more 
details on SYN cookies see [25]. When a Border router 
receives a TCP segment it takes one of the following 
steps[32]: 

• If the segment has SYN=1, it replies with a SYN-
ACK that includes the cookie as ISN. This is shown 
on lines 2-6 in Figure 2. 

• If the segment has SYN=0, it checks if the segment 
contains a valid token then it is forwarded as it shown 
in Figure 2 on lines 7-9. Otherwise it performs the 
step below. 

• It checks the sequence number. If it is a response to a 
valid cookie then the token is added to the tokens 
database and the segment is forwarded. This is shown 
in Figure 2 on lines 10-13. 

• If all of the above checks fail the segment is dropped. 
In short, when a border router receives a packet it 
runs the algorithm shown below. 

 
1 for each packet pkt 
2 do 
3 if pkt.SYN=1 
4 then 
5 sendCookie 
6 Exit 
7 if pkt.TOKEN in D 
8 then 
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9 forward packet 
10 elseif checkCookie(pkt)=TRUE 
11 then 
12 forward pkt 
13 insert pkt.TOKEN in D 
14 else 
15 drop pkt 
 
Figure 2. Packet Filtering in ITS 
 

The efficiency of the method has been demonstrated 
in [9] with simulations using real world network data from the 
Skitter initiative [20]. However, this method requires that 
Border Routers maintain the tokens database in TCAM 
memory since filtering operations have to be done at wire 
speed. The main contribution of this paper is to make the 
method scalable by reducing its memory requirements. Before 
doing so we give a few details about path signatures 

that will be needed in later sections. 
          In the original method the path signature was made up 
of intermediate routers marks where each router contributes 2 
bits to the path signature. Each 2-bit mark is the result of an 
MD5 hash of the IP addresses on the current link. When a 
router with IP address x receives a packet from a neighbor 
with IP address y the resulting mark is: 
                            mark=MD5 (x || y) & 3        ...........(1) 
 

 Where || is the concatenation operation and the 
bitwise AND operation, & 3, is used to retain, only the last 
two bits of the resulting hash. Equation (1) gives the mark 
contributed by an individual router. It is added to the 
identification field in 
the IP header as follows : 
 
                        idnew=idold << 2 + mark     ..........(2) 

 
Because the mark is a 2-bit value it is 

necessary to left-shit by two bits the identification 
field value to make room for the new mark. This 
means that the rightmost two bits in the identification 
field always carry the last mark and the leftmost two 
bits carry the "oldest" mark. Since the identification 
field in the IP header is 16-bit long it can hold a 
maximum of 8 marks. Other sizes of the mark (e.g. 4 
or 8 bits) are possible but it is argued in [9,26,29], 
based on the average "Internet length" that two-bits 
are optimal. 
 

III. BLOOM FILTERS 

 

As can be seen from lines 7 and 13 in the algorithm 
presented in Figure 2 , packet tokens need to be stored and 
retrieved from the tokens database at wire speed. This 
necessitates the use of the expensive and limited size of onchip 
SRAM on the Border Router. To reduce the memory footprint 
we will use Bloom filters to store the tokens database. What 
follows is a quick overview of Bloom filters. Bloom filters 
were introduced in 1970 by B. H. Bloom [4].They have been 
widely used since, especially in database applications. 
Recently there has been a surge in the use of Bloom filters in 
networking applications (see [5] for a survey). 
                 A Bloom filter is a space-efficient data structure 
used to test set membership. It is an array of m bits, initialized 

to zero, used to represent a set of n elements, S=x1,… xn. The 
filter uses k independent and uniform hash functions, h1,…,hk, 
each with range in 1,…,m. To "add" an element xi in x1,…,xn 

to the filter the k hash functions are applied to xi and the 
corresponding bits in the filter are set to one. Adding an 
element x to the filter is written in pseudo-code as follows: 

 
ADD-ELEMENT(x) 
1 for j=1 to k 
2 do 
3 filter[hj(x)] gets x 
 
 

It is clear that when a particular bit is set, an 
additional setting does not change it. To check if an element y 

belongs to the set the k hash functions are applied to y and the 
corresponding bits are checked. If one of the bits is 0 then 
clearly the element is not in the set. If all the bits are equal to 1 
then we could say that the element belongs to the set.The 
following pseudo-code checks if y is an element of the set: 

CHECK-ELEMENT(y) 
1 for j=1 to k 

2 do 

3 if filter[hj(y)]=1 
4 then return FALSE 
5 return TRUE 

Obviously, an element z could have all the 
corresponding bits equal to 1 without the element itself 
belonging to the set. This is called a false positive. It is in our 
interest that the rate of false positives be as small as possible. 
The false positive rate can be calculated as follows. When a 
given hash function hi is applied to an input x1 the results is a 
value between 1 and m. Since the hash functions are 
uniform, the probability that this result is equal to a particular 
number v is 1/m. Therefore the probability of the bit at 
position v being 1 after one hash function is 1/m. The 
probability that it is 0 is 1-1/m. The probability that it is 0 after 
all k hash functions are applied is (1-1/m)k. Since there are n 

elements in the set, the probability that the bit v is equal to 0 
after we process all elements is (1-1/m)kn. Hence 1- (1-1/m)kn 
is the probability that a given bit v is set to 1 
after all input elements x1,…,xn are processed. Since we want 
the false positive rate, we need the probability that for an 
arbitrary input y the corresponding k bits are 1 without y 

belonging to the set. This probability is 
                             
                         fp=(1-(1-1/m)^kn)^k                           ......(3) 
 
  Approximately to 1-e^d/m)^k                                   .......(4) 
                            
       Asymptotically the false positive rate depends on k 

and the ratio m/n. If we fix the ratio m/n then one can show 
[13] that the minimum of the false positive rate in equation (4) 
as a function of k, occurs when 
 
                       ko=m/n*ln2                                        .........(5) 
 
And the optimal false positive ratio is 
 
                       fp0=(1/2)^k                                     .........(6)  
 
      Usually, the false positive rate and the number of elements 
n are fixed and we need to deduce the number of bits required 
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to achieve those values. Combining equations (5) and (6) we 
get 
                      m=-2.08n* ln*f                             ........... �(7) 

One disadvantage of Bloom filters is that it is not 
possible to delete entries stored in the filter. To do so requires 
the setting to zero all the k bits that the entry points to. But this 
could confuse the filter since as we mentioned a bit could be 
set to 1 by multiple entries. To solve this problem a variation 
of Bloom Filters called counting Bloom Filters was introduced 
by Fan et. al. [8]. In a counting Bloom Filter each entry is a 
counter rather than a single bit. When we add an entry the 
corresponding counters are incremented and when the item is 
removed the corresponding counters 
are decremented. In fact, only 4 bits per counter are what 
mostly application need [8]. To simplify the discussion we 
will ignore this aspect in the rest of the paper and consider 
only connection establishment, not connection closure. This is 
not really a restriction since we could assume that once a 
DDoS attack is over the Border Router resets all its entries. 
 
A. Building the filter 

 

              Originally the list of tokens was stored in what is 
called a tokens database. The implementation of the database 
was not specified but rather assumed to exist. Furthermore, an 
assumption was made that one can retrieve and store entries in 
the database. In this section we show how the abovementioned 
database can be implemented as a single bloom filter. 
                Each entry in the database contains a token, which is 
composed of the source IP address and the corresponding path 

signature stored in the 16-bit IP identification field of the IP 
header [9]. This field is marked by the routers along the path, 
from the source to the destination, where each router 
contributes 2 bits. In the discussion of Bloom filters in Section 
3 we have assumed that the elements of the set and their 
number are known in advance. In ITS, the tokens are added to 
the filter every time a TCP connection is established. 
Therefore the number of elements is not known in advance but 
increases with time. This is not really a problem at all. Recall 
from Section 3 that the number of bits needed to get the 
optimal value of false positive is proportional to n, which is 
the number of elements in the set. The pseudo-code for adding 
the token of a packet to the filter is shown in Figure 3 below:     
                             ADD-PACKET(pkt) 

1 token=pkt.sig|| pkt.source 
2 for i=1 to k 

3 do 

4 bitPos=hi(token) 
5 filter[bitPos] gets 1 

 

Figure 3. Adding a packet token to the filter 
 

Similarly checking if a packet is in the filter is shown in figure 
4. 

CHECK-PACKET(pkt) 
1 token=pkt.sig|| pkt.source 
2 for i=1 to k 
4 do 

5 bitPos=hi(token) 
6 if filter[bitPos]=0 return FALSE 
7 return TRUE 
 

Figure 4. Checking if a packet is stored in the filter. 

 

 
Figure 5. The efficiency of the filter as a function of the 
filter size. 
 
   In our analysis we will regard this number n as an 

upper bound on the number of elements that we can store in 
the Bloom filter. It can be seen from equation (4) that the 
smaller the value of n the smaller the false positive rate. It 
should be noted that it is possible in the algorithm shown in 
Figure 4 above that a packet will have all the resulting bits 
equal to 1 without the packet actually being in the filter. 
Having implemented these two functions using a Bloom filter 
we can use them in the algorithm shown in Figure 2 to replace 
the original functions. The function CHECKPACKET replaces 
the condition of the if statement on line 7 in Figure 2 and the 
ADD-PACKET function replaces the insert statement on line 
13 in the same Figure.  
 
B.  Implementation  

 
Due to its widely availability and effectiveness we 

have chosen to use MD5 for hashing. The 128-bit output of an 
MD5 was used as four independent 32-bit hashes therefore we 
needed two MD5 operations to generate the eight hash 
functions h1,…,h8. Our goal is to maintain about 500,000 
flows. For a false positive rate of 1%, from equation (7) the 
filter size is 2.08 X 5 X 105 ln 0.01�0.6 MB. As a 
comparison, without Bloom filters we need 6 bytes for each 
token for a total of 6 X 5 X 105= 3MB. This is a memory 
saving of 5 times. We have performed a series of simulations 
using real-world topological data from Skitter [20]. For every 
trial run we chose randomly 600 hosts: 100 were used as 
clients and 500 as attack sources. The IP address and path 
identifier of clients were manually added to the Bloom filter 
(not through TCP). The attacking sources send data at the 
constant rate of 10M packets/s while the clients send at the 
rate of 1M packets/s. The link victim's link rate is set to 
100MB, i.e. just enough for the legitimate clients. The metric 
used to measure the performance of our method is the fraction 
of bandwidth of the link between the border router and the 
target consumed by the attacking packets. As expected, the 
results in Figure 5 show that the bigger the filter size, the 
better the efficiency of the method since the false positive rate 
is smaller. It should be noted that for a size of 0.9 MB less 
than 5% of  the bandwidth is used by the attackers which is an 
excellent results with a gain of a factor of more than 3 in 



Divyendu Kumar Mishra et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010, 555-563 
 

© 2010, IJARCS All Rights Reserved  5 

memory size since the original ITS method requires 3 MB of 
memory.  
 

IV. INCREMENTAL DEPLOYMENT 

 

     One cannot expect that all routers on the Internet 
deploy ITS at the same time. Any method would be useless if 
it cannot be incrementally deployed. The original ITS method 
was shown to be incrementally deployed [10]. The question 
here is to do the same but with a smaller memory footprint 
using Bloom filters. To be able to do that it is helpful to 
describe how the original method worked. Suppose a given 
Border Router receives two packets, p1 and p2 with signatures 
sig1=a15… a0 and sig2=b15… b0 . The 16-bit signature is 
stored in the identification field in the IP header. The base ITS 
method uses exact match to compare packets: two sig1=sig2 
are equal if ai=bi for all i. Exact match cannot be used if we 
take incremental deployment into account. When ITS is 
incrementally deployed, the packets will be forwarded by 
routers that do not implement ITS. The marks of these routers 
will be missing from the packet signature. 
 
A. Partial Matching 

 

It is helpful to illustrate with an example the idea of 
partial deployment. Let s and d be the source and target 
respectively. As required by the Internet Protocol, every 
packet sent from s to d has to have a different value in the 
identification field in the IP header. Assume further that there 
are five intermediate routers R0, R1, R2, R3 and R4 between s 

and the Border Router that protects d. Suppose that one of the 
intermediate routers, say R2, does not implement ITS. Let M0, 
M1, M2, M3 and M4 be the marks of the routers respectively. 
Initially, s needs to establish a TCP connection with the target 
d. This is done via the Border Router, which saves the path 

signature in the tokens database. It is important to note that 
signature saved by the Border Router depends on the original 
value of the identification field and the path taken by the 
packet. In our  example suppose that the initial value of the 
identification field when the TCP handshake is completed by s 

(this is when the Border Router saves the signature) is a15… 
a0. Since each router mark consumes 2 bits and the 
identification field in the IP header is updated according to 
equation (2) then when the packet reaches the Border Router it 
has the value a8… a0M4M3M1M0. Note that since R2 does 
not implement ITS its mark is absent. At a later time when s 

sends a packet with initial value for the identification field 
equal to b15… b0$ it will reach the border router with the 
signature b8… b0M4M3M1M0. Clearly the two signatures are 
not the same and the border router drops the second packet. In 
fact the Border Router drops all the packets subsequent to 
connection establishment because all of them will have 
different initial value as required by IP and therefore will reach 
the Border Router with different path signature from the one 
stored in the tokens database. The example we have provided 
is not a rare occurrence. In fact to minimize this problem we 
have chosen that each router mark should be 2-bits. As can be 
seen from Figure 6 the number of paths that have length 
(number of hops) more than 8 is very small. The solution to 
the above problem is to use partial matching instead of exact 
matching [10]. The basic idea in partial matching is to count 
the number of identical marks from right to left in the path 

signature. In the example above the signatures 

sig1=a8…a0M4M3M1M0 and sig2=b8…b0M4M3M1M0 
have at least 4 identical marks. Starting from right to left the 
identical marks are: M0 then M1then M3 and finally M4. The 
algorithm for partial matching is shown in Figures. The two 
signatures used in the example could have more matches 
(accidental) depending on the values of the a'i and b'i. Once 
the number of matches is computed it is used as a priority, 
which is then assigned to the packet. Therefore in this method 
no packet is dropped, it is assigned a low priority.  
 

 
 

Figure 6. The distribution of the paths length. 
 

COUNT-MATCHES(sig,pkt) 
1 count �0 
2 for i=1 to 8 
3 do 

4 if pkt.sig & (22i-1)= sig & (22i-1) 
5 then 

6 count ��count+1 
7 else return count 
8 return count 

 

Figure 7. Counting the number of matches between two 
signatures 

 
1 for each packet pkt 
2 do 

3 if pkt.SYN=1 
4 then 

5 sendCookie 
6 Exit 
7 if check Cookie(pkt)=TRUE 
8 then 

9 add pkt to queue 0 
10 insert pkt.token in D 
11 else 

12 sig=lookup(pkt) 
13 n�� COUNT-MATCHES(pkt) 
14 add pkt to queue n 

 

Figure 8. Modified packet filtering using partial matching 
 
B.  Partial Matching Using Bloom Filters 
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Now we need to implement partial matching using 
Bloom filters to save memory. The approach is similar to what 
was done before but quite. The main obstacle is that the hash 
of the concatenation of two strings is not equal to the 
concatenation of the hashes. In other words, given a hash 
function g and two strings x and y, in general  
                            g(x||y) �g(x) || g(y) 

For a given IP address IPx and path signature sigx, 
instead of considering the whole token, IPx || sigx, for hashing 
operations we consider intermediate values of the token. If we 
consider again the example given in Section 41. Assume that 
the source with IP address IPx sent a packet with the 
identification field having the value a15…a0 and the packet is 
forwarded by 4 ITS routers with marks M4, M3, M1 and M0 
(recall that the router with mark M2 does not implement ITS). 
We know that the path signature of the packet when it reaches 
the Border Router will be a8… a0M4M3M1M0. The problem 
arises because once the token is hashed we cannot perform 
partial matching. Consider the hash of the whole token with a 
hash function g: 
                       g(IPx || a1a0M4M3M1M0) 
 

Clearly we cannot perform any partial matching on 
the above value. To be able to perform partial matching it 
important to perform the hashing on the partial signatures. We 
use k hash functions but the hashing is applied differently. For 
a given source IP address IPx and path signature sigx, we 
perform k different hash operations on 8 modifications of the 
packet token (for a total of 8*k hash operations per packet): 
                 hi(IPx  || sigx & ((2^2j)-1))      1<=i<=k,1<=j<=8      
 

Where again || is the concatenation operator and & is 
the bitwise AND operator. For example, the first k hashes 
corresponding to j=1, give hi(sigx & 3) =hi(IPx || M0) with 0<i 
< k+1 because sigx& 3=M0. We say that two path signatures 

sig1 and sig2 have a match of order j if and only if for all i we 
have: 
     hi(IP1 || sig1 & ((2^2j)-1))=hi(IP2 || sig2 & ((2^2j)-1)) 

Note in the above equation we have used the same 

source IP address. We illustrate the idea by applying it to the 
example given in Section 4.1. Recall that the same source, 
with IP address IPx, sent two packets with different initial 
values in the identification field: a15… a0 and b15… b0. The 
ITS router marks are M4, M3, M1, and M0. Using hash 
function hi we get the following set of values: 
 
   hi (IP || M0)                         hi (IP || M0)      
   hi (IP || M1M0)                    hi (IP || M1M0) 
   hi (IP || M3M1M0)               hi (IP || M3M1M0)  
   hi (IP || M4M3M1M0)           hi (IP || M4M3M1M0) 
  hi (IP || a0a1M4M3M1M0)     hi (IP|| a0a1M4M3M1M0)   
 

Where in the above 1��i � �k. Clearly, the result of the 
first four lines are identical, even though the two packets had 
different identification field initially. This means that the two 
signatures have matches of order 0, 1, 2 and 3. As before we 
use the number of matches between signatures to assign a 
priority to a packet. We assign a priority n depending on the 
match order of a signature. If a signature have match orders 
0…k then it is assigned priority k+1. In the example above the 
number of matches would be four, because it has matches of 
order 0,1,2 and 3. This matching procedure is shown in the 

algorithm in Figure 9. Furthermore, given a border router, for 
every packet it receives it executes the algorithm in Figure 10. 

HASHED-MATCHES(pkt) 
1 count ��0 
2 for i =1 to 8 
3 do 

4 mask=pkt.sig & (22i-1) 
5 token=pkt.IP || mask 
6 for i=1 to k 
7 do 

8 bitPos=hi(token) 
9 if filter[bitPos]=0 
10 then return count 
11 count ��count+1 
12 return count 

 

Figure 9. Counting the number of hashed matches of a packet. 
 
1 for each packet pkt 
2 do 

3 if pkt.SYN=1 
4 then 

5 sendCookie 
6 Exit 
7 if checkCookie(pkt.ack)=TRUE 
8 then 

9 add pkt to queue 0 
10 ADD-PACKET-TO-FILTER(pkt) 
11 else 

12 n ��HASHED-MATCHES(pkt) 
13 add pkt to queue n 

 

Figure 10. Modified packet filtering using hashed partial 
matching. 

 
Similar to the case of exact matching it is clear that it 

is possible to have a partial matching without the original 
signatures being the same. These false positives are expected 
when using Bloom filters. 
 
C. Implementation Details 

 

It turns out that the straightforward implementation as 
shown in Figures 9 and 10 is not very efficient. In fact we 
would need 8 "independent" Bloom filters, one for each 
signature variation. If we check the results of Figure 5 then we 
could see that to achieve 70% bandwidth consumption by 
attackers (only 30% reserved for legitimate users) we need a 
filter with size equal to 0.4MB which means for the 8 filters 
we need about 3.2MB which is larger than required without 

using Bloom filters. A better approach is to use 8 hash 
functions, one hash function for every variation. Not only the 
algorithm for counting the number of signature matches in 
Figure 9 needs to be changed but also we need to include a 
function to add a given token to the filter as this is not 
straightforward as in the case of using 8 filters. As in all cases, 
adding a token to the filter is done after the TCP handshake is 
completed and the Border Router checks the validity of the 
SYN-cookie. Given a source IP address, IPx and path 

signature sigx, and the 8 hash functions labeled h1… h8, the 
Border Router uses the algorithm shown in Figure 11 to add 
the packet token to the filter and the one shown in Figure 12 to 
count the number of matches in the filter. 
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ADD-PACKET-TO-FILTER(pkt) 
1 for i=1 to 8 
2 do 
3 mask=pk.sig & (22i-1) 
4 token=pkt.IP || mask 
5 bitPos=hi(token) 
6 filter[bitPos] �gets 1 

 

Figure 11. Adding the hash of a packet variation to the filter 
 

MODIFIED-HASHED-MATCHES(pkt) 
1 count ��0 
2 for i=1 to 8 
3 do 

4 mask=pkt.sig & (22i-1) 
5 token=pkt.IP || mask 
8 bitPos=hi(token) 
9 if filter[bitPos]=0 
10 then return count 
11 count ��count+1 
12 return count 

 

Figure 12. Modified version of the function in Figure 9. 
 

On the surface it looks like the number of hash 
operation is going to be as before, 8 per packet. In reality, as 
we mentioned in Section 3.2 we used only two MD5 
operations to implement the 8 hashes. In this case this cannot 
be done since we are applying the hashing to 8 different 
variations and therefore we need to do eight hash operations 
per packet instead of only two. If hashing becomes a 
bottleneck, instead of MD5 one can use other hashing 
techniques have been demonstrated to perform well and are 
much cheaper to implement in hardware [23]. 
                 To test the efficiency of our method we performed a 
series of simulations using the real-world Internet paths 
provided by Skitter initiative [20]. First we characterize partial 
deployment by a parameter d which is the number of routers 
implementing our method for a given path. Given a path 
containing k routers, we randomly choose d<= k routers to 
implement the method and the remaining k-d routers forward 
packets in the normal fashion without modifying the packet 
headers. Figure 13 shows the results of the simulation for d=1, 
d=2, and d=4. For comparison purposes we included in Figure 
13 the full deployment results already shown in Figure 5 It is 
clear from the presented results that the proposed method 
succeeded in reaching the goals we have set for it:  
combating IP spoofing while minimizing the memory usage 
on routers. We can see from Figure 13 that even if only one 
router along the path (d=1) about 70% of the bandwidth is 
reserved to legitimate users with a cost of 1MB of router 
memory. The results for d=1 is important because it is an 
excellent incentive for Internet Service Providers (ISP) to 
deploy ITS. This means that even if no other ISP deploys ITS 
they still gets an efficient method to protect their networks 
from IP spoofing. 
  

 
Figure 13. Bandwidth fraction used by attackers for three 
different values of d as well as the case of full deployment 

 

V. RELATED WORK 

 

          The earliest work to solve the problems created by the 
ability of attackers to spoof the source IP address of packets 
are IP traceback techniques [19,22,24] which permit a target to 
trace the origin of packets even if source address spoofing is 
employed. One method in particular uses Bloom filters to 
minimize the storage requirements on routers [21]. Unlike our 
approach, most these methods use probabilistic packet 
marking. They require routers to add, with a certain 
probability, a mark to the IP header. The path taken by attack 
packets is reconstructed when a sufficient number of attack 
packet has been received by the victim. These methods have 
been shown to be successful in finding the approximate origin 
of the attack packets. The cost of the reconstruction algorithm, 
however, becomes prohibitive when the number of attackers is 
large. Other approaches to source address spoofing and one of 
the earliest such methods is Ingress filtering by Ferguson and 
Senie [11]. This requires the installation of ingress filtering at 
every ISP. Even so, IP addresses in the local network can still 
be spoofed. Another approach to ingress filtering is the SAVE 
protocol proposed by Li. et. al. [12]. The information obtained 
from the Border Gateway Protocol (BGP) update message was 
used by Duan et. al. [7] to selectively drop packets that appear 
to be spoofed. Also based on BGP updates is the method 
proposed by Park and Lee [16] to discard spoofed IP packets 
using a route-based detection method. The problem with BGP-
based methods is the need for independent Autonomous 
Systems (AS) to cooperate when in fact they have no incentive 
to do so. To our knowledge, the first use of deterministic 
packet marking was introduced by Yaar et. al. in [26] and was 
extended in [29]. They used the path identification which is a 
deterministic mark stamped by the intermediate routers on 
every packet as a way to distinguish malicious from legitimate 
users. Even if one assumes that the malicious signatures can be 
clearly identified the number of malicious and legitimate users 
having the same signature grows as the number of attackers 
grows which quickly leads to selfinflicted DoS. Following the 
introduction by Anderson et. al. [1] of the concept of 
capabilities there was a flurry of papers published on the 
subject [17,27,30]. Argyraki et. al. [2] argued that capabilities 
are not necessary nor sufficient to defend against DDoS 
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attacks . Their main contention is that these methods are prone 
to denial of capabilities attacks.  
 

VI. CONCLUSION 

 

           The Implicit Token Scheme (ITS) is an efficient 
method to defend against spoofed IP traffic. In this paper we 
have proposed the use of Bloom filters, a space efficient data 
structure, to store rules of ITS and thereby reduce the storage 
requirements on intermediate routers. Since Bloom filters can 
give rise to false positives we also derived an expression for 
the false positive rate as a function of the filter size as well as 
the optimal values needed to minimize the rate of false 

positives. Several simulations were preformed on real-world 
data and the results prove that the proposed method 
accomplishes its aim of saving the (up to a factor of 5) 
memory requirements on intermediate routers. Even in the 
case of partial deployment the simulation results show that the 
method is still effective both in combating IP spoofing and 
saving on router memory. 
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