
��������	�
����	�
�����������

�� ��!�����"�������

�#"#�� $�%�%#��

�����&���'���������(((��)����������

© 2010, IJARCS All Rights Reserved 1

ISSN No. 0976-5697

An Anti-Spoofing Method:Reducing Router Memory

Er.Divyendu Kumar Mishra*and Kulvinder Singh Handa

M.tech.(Software Engg.)Student
Department of computer science

Kurukshetra University,
Kurukshetra, Haryana, India
ratan01mishra@gmail.com
kshanda@rediffmail.com

Abstract: Large-scale denial of service (DoS) attacks represent a grave threat to hosts on the computer network.It makes the situation much
worse to use of source IP address spoofing.Efficient method to defend against IP spoofing "The Implicit Token Scheme (ITS)presented in [9],
was demonstrated.The path taken by a packet also used by ITS, which cannot be controlled by the attacker, and binds it to the source IP address
of the same packet to form a token. All valid tokens are stored in a tokens database on border routers.After receiving a packet, the border router
checks the validity of the token it carries by consulting the tokens database.only those packets will be forwarded that carrying valid tokensand
other invalid tokens dropped. Although to maintain state information for thousands of simultaneous connections which could require more
memory than is available on typical routers, ITS requires border routers. In this paper we include a component to ITS to improve its scalability
by using Bloom filters. We show that it is simple to save a substaintial amount of router memory by implementing ITS using Bloom filters, and
it does not impose large strain on routers. We also modify the basic method to allow for it to be incrementally deployed. The efficiency of the
method is demonstrated through simulations by using real world Internet data.

Keywords: Denial of service (DoS), Implicit Token Scheme (ITS),Distributed Denial of Service (DDoS),IP traceback ,Ternary Content
Addressable Memory (TCAM),Router & Border Router .

I. INTRODUCTION

Our present society has become heavily dependent on

the Internet and the services offers by internet. Mission critical
applications have been deployed using the Internet including
government transactions and banking also. Unfortunately, with
the rapid increase in the use of the Internet as a mission critical
service came the increase of attacks on the Internet
infrastructure. Distributed Denial of Service (DDoS) attacks
are one of the well famous and most threatening of those
attacks. The flooding attack is one particular type of DDoS,
that floods the link of the victim network with a large amount
of packets leading to a high rate of packet drops for valid
users.Recent studies have shown that the number of DDoS
attacks is actually more prevalent than previously thought[14].
What makes protection against IP spoofing paramount is that
many approaches that could make less DDoS are inefficient in
the presence of IP spoofing.

By using the destination based forwarding paradigm
of the Internet Protocol (IP) victims of DDoS attacks cannot
authenticate the source address of the received packets .The
best method of installing filters at border routers, is rendered
inefficient by IP spoofing.To make the protection method
infeasible attackers choose randomly an IP address as the
source for different packets.
 Complete methods to detect and block spoofed packets
has been actively pursued in the research community. Many
fact have been developed to the IP spoofing problem are either
a variation of the IP traceback method[19,22,28] or try to
restrict the address space available to attacker(s) as[7,16]. A
third class of solutions which become famous recently is based
on the concept of capabilities[1,17].There is a class of DDoS

attacks in which the attackers select intermediate compromised
hosts, called zombies or botnets,to mount their attacks [6]. In
this class the attackers try to get control of unwitting hosts and
use them later on to mount coordinated DDoS attacks against
the victims. In the presence of such class of attacks one could
presume that the attackers do not need(or do not try) to spoof
the source addressthe main reason this is that they are not
using directly their hosts to mount the attacks and therefore
will not show their IP addresses.Nevertheless, IP spoofing is
still popularas shown in[15].What is more, we believe that IP
spoofing will be used popularly in the future for many reasons
that is given in the next part of paper.

First, it is very difficult to block spoofed addresses
because they don't have a pattern unlike real addresses.
Second, some attacks, like reflector attacks[18] where the
attacker become as some victim to send packets to a number of
hosts with the output that the victim receives a large number of
replies, faith on IP spoofing to work.Based on the above
discussion about the relative ease in which attackers can fake
their source IP address, it remains fact that they unable to
control the paths taken by packets they send to the victim. This
property of being unable to forge the paths taken by packets to
reach the target remain one of the cornerstones of
entrenchment against DDoS attacks which used spoofed
packets. In that spirit we have recently proposed the Implicit
Token Scheme(ITS) as a method to make less DDoS attacks.
 The basic idea in ITS is that attackers cannot complete
the TCP three-way handshake if they employ spoofed source
addresses. The method was demonstrated to be a very much
effective defense against spoofed traffic and in subsequent task
was shown to be easily spread on the current Internet
infrastructure. The main drawback of ITS, however, was it is
necessary to maintain state information for thousand of flows

Divyendu Kumar Mishra et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010, 555-563

© 2010, IJARCS All Rights Reserved 2

which needs a large amount of router memory.Reducing the
memory need of ITS is the main contribution of this paper.
 Wire-speed filters on Internet routers are normally
stored in Ternary Content Addressable Memory (TCAM)
which is expensive. Advanced router line cards (which is used
in present time)normally have only 1 TCAM chip which can
hold 256k entries to be shared with the router's forwarding
table. This limits any DDoS filtering solution to less than 100k
simultaneous flows which, for An Anti-Spoofing

Method:Reducing Router Memory busy sites, is far short of
what is expected. Therefore it is very important for any
proposed solution to IP spoofing to be scalable and to save
router memory. The rest of the paper is organized as follows.
The ITS method is discussed in Section 2.

Figure 1. Defense model.

The basic theory of Bloom filters and its use to the
ITS method is presented in Section 3. The preliminary
implementation and the performed simulations results of it is
also presented in Section 4. In Section 4 we discuss the
incremental deployment plans of ITS and the partial matching
needed to development of it. We also argue about the profit of
a particular Bloom filter implementation over other plan.
Other work related to DDoS and the application of Bloom
filters in data transmission(i.e. transfer of packet), are
presented in section 5. We conclude with Section 6.

II. THE ITS METHOD

 As shown in Figure 1 the Implicit Token Scheme
(ITS) gives protection against IP spoofed traffic by geting
Internet Service Providers (ISPs) install filters at the border
router.The installed filters have tokens that must be matched
by arriving packets to be forwarded.
 The token is composed of an IP address and a path

signature.(i.e. the path signature is a collection of values
marked by intermediate routers on the path traveled by the
packet from source to destination). These signatures, unlike
the source IP address, are uncontrollable by the attacker and
therefore cannot be forged.When the filters is installed to use
if Border router will forward packets if they carry tokens that
have same entries as in the tokens database; else the packet
will be dropped. This way IP addresses are closely bound to

unforgeable path signature. Furthermore, since the token is 6
byte long the probability of a spoofed address having the exact
signature is too much small.
 How to collect valid tokens it is our first question. An
optimal solution is to collect tokens during contineous traffic
when there is no DDoS attack. There are a number of
problems with this approach.First, at the time of DDoS attack
the victim "sees" a number of previously unseen addresses and
all of them are considered spoofed because they are not in the
tokens database. Second, due to frequently changing in routing
the path signature most likely will change from the time it is
recoded to the time it is used which leads to may false
positives. A better approach to developing the database is to
add the tokens for each TCP session separately after the TCP
handshake is finished.
 An added profit of ITS method is that the path signature

is up to date and very small changes on the order of a TCP
transaction. One could reserve a part of the bandwidth, say,
90% to already developed connections which are guaranteed to
be unspoofed, and the last 10% to the rest of the traffic to
allow for new connections. This method has a serious
drawback: an criminal(cyber criminal i.e.attacker) can flood
the 10% of bandwidth reserved for connection establishment
and thus prevents new users from connecting to the target.

 To get the solution of the denial of connection attack we
use the concept of a SYN cookie(SYN Cookies are the key
element of a technique used to guard against SYN flood
attacks.) In this task use it on the Border Router instead of the
target. In order to initiate a TCP connection, the client sends a
TCP SYN packet to the server.In response, the server sends a
TCP SYN+ACK packet back to the client[31].When the
Border router receives a TCP SYN segment having a
destination address equal to that of the target it responds with a
SYN-ACK segment on the behalf of the target. This is done
without maintaining state information by using a special value
for the Initial Segment Number in the TCP header. For more
details on SYN cookies see [25]. When a Border router
receives a TCP segment it takes one of the following
steps[32]:

• If the segment has SYN=1, it replies with a SYN-
ACK that includes the cookie as ISN. This is shown
on lines 2-6 in Figure 2.

• If the segment has SYN=0, it checks if the segment
contains a valid token then it is forwarded as it shown
in Figure 2 on lines 7-9. Otherwise it performs the
step below.

• It checks the sequence number. If it is a response to a
valid cookie then the token is added to the tokens
database and the segment is forwarded. This is shown
in Figure 2 on lines 10-13.

• If all of the above checks fail the segment is dropped.
In short, when a border router receives a packet it
runs the algorithm shown below.

1 for each packet pkt
2 do
3 if pkt.SYN=1
4 then
5 sendCookie
6 Exit
7 if pkt.TOKEN in D
8 then

Divyendu Kumar Mishra et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010, 555-563

© 2010, IJARCS All Rights Reserved 3

9 forward packet
10 elseif checkCookie(pkt)=TRUE
11 then
12 forward pkt
13 insert pkt.TOKEN in D
14 else
15 drop pkt

Figure 2. Packet Filtering in ITS

The efficiency of the method has been demonstrated
in [9] with simulations using real world network data from the
Skitter initiative [20]. However, this method requires that
Border Routers maintain the tokens database in TCAM
memory since filtering operations have to be done at wire
speed. The main contribution of this paper is to make the
method scalable by reducing its memory requirements. Before
doing so we give a few details about path signatures

that will be needed in later sections.
 In the original method the path signature was made up
of intermediate routers marks where each router contributes 2
bits to the path signature. Each 2-bit mark is the result of an
MD5 hash of the IP addresses on the current link. When a
router with IP address x receives a packet from a neighbor
with IP address y the resulting mark is:
 mark=MD5 (x || y) & 3 (1)

 Where || is the concatenation operation and the
bitwise AND operation, & 3, is used to retain, only the last
two bits of the resulting hash. Equation (1) gives the mark
contributed by an individual router. It is added to the
identification field in
the IP header as follows :

 idnew=idold << 2 + mark (2)

Because the mark is a 2-bit value it is

necessary to left-shit by two bits the identification
field value to make room for the new mark. This
means that the rightmost two bits in the identification
field always carry the last mark and the leftmost two
bits carry the "oldest" mark. Since the identification
field in the IP header is 16-bit long it can hold a
maximum of 8 marks. Other sizes of the mark (e.g. 4
or 8 bits) are possible but it is argued in [9,26,29],
based on the average "Internet length" that two-bits
are optimal.

III. BLOOM FILTERS

As can be seen from lines 7 and 13 in the algorithm
presented in Figure 2 , packet tokens need to be stored and
retrieved from the tokens database at wire speed. This
necessitates the use of the expensive and limited size of onchip
SRAM on the Border Router. To reduce the memory footprint
we will use Bloom filters to store the tokens database. What
follows is a quick overview of Bloom filters. Bloom filters
were introduced in 1970 by B. H. Bloom [4].They have been
widely used since, especially in database applications.
Recently there has been a surge in the use of Bloom filters in
networking applications (see [5] for a survey).
 A Bloom filter is a space-efficient data structure
used to test set membership. It is an array of m bits, initialized

to zero, used to represent a set of n elements, S=x1,… xn. The
filter uses k independent and uniform hash functions, h1,…,hk,
each with range in 1,…,m. To "add" an element xi in x1,…,xn

to the filter the k hash functions are applied to xi and the
corresponding bits in the filter are set to one. Adding an
element x to the filter is written in pseudo-code as follows:

ADD-ELEMENT(x)
1 for j=1 to k
2 do
3 filter[hj(x)] gets x

It is clear that when a particular bit is set, an
additional setting does not change it. To check if an element y

belongs to the set the k hash functions are applied to y and the
corresponding bits are checked. If one of the bits is 0 then
clearly the element is not in the set. If all the bits are equal to 1
then we could say that the element belongs to the set.The
following pseudo-code checks if y is an element of the set:

CHECK-ELEMENT(y)
1 for j=1 to k

2 do

3 if filter[hj(y)]=1
4 then return FALSE
5 return TRUE

Obviously, an element z could have all the
corresponding bits equal to 1 without the element itself
belonging to the set. This is called a false positive. It is in our
interest that the rate of false positives be as small as possible.
The false positive rate can be calculated as follows. When a
given hash function hi is applied to an input x1 the results is a
value between 1 and m. Since the hash functions are
uniform, the probability that this result is equal to a particular
number v is 1/m. Therefore the probability of the bit at
position v being 1 after one hash function is 1/m. The
probability that it is 0 is 1-1/m. The probability that it is 0 after
all k hash functions are applied is (1-1/m)k. Since there are n

elements in the set, the probability that the bit v is equal to 0
after we process all elements is (1-1/m)kn. Hence 1- (1-1/m)kn
is the probability that a given bit v is set to 1
after all input elements x1,…,xn are processed. Since we want
the false positive rate, we need the probability that for an
arbitrary input y the corresponding k bits are 1 without y

belonging to the set. This probability is

 fp=(1-(1-1/m)^kn)^k (3)

 Approximately to 1-e^d/m)^k (4)

 Asymptotically the false positive rate depends on k

and the ratio m/n. If we fix the ratio m/n then one can show
[13] that the minimum of the false positive rate in equation (4)
as a function of k, occurs when

 ko=m/n*ln2 (5)

And the optimal false positive ratio is

 fp0=(1/2)^k (6)

 Usually, the false positive rate and the number of elements
n are fixed and we need to deduce the number of bits required

Divyendu Kumar Mishra et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010, 555-563

© 2010, IJARCS All Rights Reserved 4

to achieve those values. Combining equations (5) and (6) we
get
 m=-2.08n* ln*f �(7)

One disadvantage of Bloom filters is that it is not
possible to delete entries stored in the filter. To do so requires
the setting to zero all the k bits that the entry points to. But this
could confuse the filter since as we mentioned a bit could be
set to 1 by multiple entries. To solve this problem a variation
of Bloom Filters called counting Bloom Filters was introduced
by Fan et. al. [8]. In a counting Bloom Filter each entry is a
counter rather than a single bit. When we add an entry the
corresponding counters are incremented and when the item is
removed the corresponding counters
are decremented. In fact, only 4 bits per counter are what
mostly application need [8]. To simplify the discussion we
will ignore this aspect in the rest of the paper and consider
only connection establishment, not connection closure. This is
not really a restriction since we could assume that once a
DDoS attack is over the Border Router resets all its entries.

A. Building the filter

 Originally the list of tokens was stored in what is
called a tokens database. The implementation of the database
was not specified but rather assumed to exist. Furthermore, an
assumption was made that one can retrieve and store entries in
the database. In this section we show how the abovementioned
database can be implemented as a single bloom filter.
 Each entry in the database contains a token, which is
composed of the source IP address and the corresponding path

signature stored in the 16-bit IP identification field of the IP
header [9]. This field is marked by the routers along the path,
from the source to the destination, where each router
contributes 2 bits. In the discussion of Bloom filters in Section
3 we have assumed that the elements of the set and their
number are known in advance. In ITS, the tokens are added to
the filter every time a TCP connection is established.
Therefore the number of elements is not known in advance but
increases with time. This is not really a problem at all. Recall
from Section 3 that the number of bits needed to get the
optimal value of false positive is proportional to n, which is
the number of elements in the set. The pseudo-code for adding
the token of a packet to the filter is shown in Figure 3 below:
 ADD-PACKET(pkt)

1 token=pkt.sig|| pkt.source
2 for i=1 to k

3 do

4 bitPos=hi(token)
5 filter[bitPos] gets 1

Figure 3. Adding a packet token to the filter

Similarly checking if a packet is in the filter is shown in figure
4.

CHECK-PACKET(pkt)
1 token=pkt.sig|| pkt.source
2 for i=1 to k
4 do

5 bitPos=hi(token)
6 if filter[bitPos]=0 return FALSE
7 return TRUE

Figure 4. Checking if a packet is stored in the filter.

Figure 5. The efficiency of the filter as a function of the
filter size.

 In our analysis we will regard this number n as an

upper bound on the number of elements that we can store in
the Bloom filter. It can be seen from equation (4) that the
smaller the value of n the smaller the false positive rate. It
should be noted that it is possible in the algorithm shown in
Figure 4 above that a packet will have all the resulting bits
equal to 1 without the packet actually being in the filter.
Having implemented these two functions using a Bloom filter
we can use them in the algorithm shown in Figure 2 to replace
the original functions. The function CHECKPACKET replaces
the condition of the if statement on line 7 in Figure 2 and the
ADD-PACKET function replaces the insert statement on line
13 in the same Figure.

B. Implementation

Due to its widely availability and effectiveness we

have chosen to use MD5 for hashing. The 128-bit output of an
MD5 was used as four independent 32-bit hashes therefore we
needed two MD5 operations to generate the eight hash
functions h1,…,h8. Our goal is to maintain about 500,000
flows. For a false positive rate of 1%, from equation (7) the
filter size is 2.08 X 5 X 105 ln 0.01�0.6 MB. As a
comparison, without Bloom filters we need 6 bytes for each
token for a total of 6 X 5 X 105= 3MB. This is a memory
saving of 5 times. We have performed a series of simulations
using real-world topological data from Skitter [20]. For every
trial run we chose randomly 600 hosts: 100 were used as
clients and 500 as attack sources. The IP address and path
identifier of clients were manually added to the Bloom filter
(not through TCP). The attacking sources send data at the
constant rate of 10M packets/s while the clients send at the
rate of 1M packets/s. The link victim's link rate is set to
100MB, i.e. just enough for the legitimate clients. The metric
used to measure the performance of our method is the fraction
of bandwidth of the link between the border router and the
target consumed by the attacking packets. As expected, the
results in Figure 5 show that the bigger the filter size, the
better the efficiency of the method since the false positive rate
is smaller. It should be noted that for a size of 0.9 MB less
than 5% of the bandwidth is used by the attackers which is an
excellent results with a gain of a factor of more than 3 in

Divyendu Kumar Mishra et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010, 555-563

© 2010, IJARCS All Rights Reserved 5

memory size since the original ITS method requires 3 MB of
memory.

IV. INCREMENTAL DEPLOYMENT

 One cannot expect that all routers on the Internet
deploy ITS at the same time. Any method would be useless if
it cannot be incrementally deployed. The original ITS method
was shown to be incrementally deployed [10]. The question
here is to do the same but with a smaller memory footprint
using Bloom filters. To be able to do that it is helpful to
describe how the original method worked. Suppose a given
Border Router receives two packets, p1 and p2 with signatures
sig1=a15… a0 and sig2=b15… b0 . The 16-bit signature is
stored in the identification field in the IP header. The base ITS
method uses exact match to compare packets: two sig1=sig2
are equal if ai=bi for all i. Exact match cannot be used if we
take incremental deployment into account. When ITS is
incrementally deployed, the packets will be forwarded by
routers that do not implement ITS. The marks of these routers
will be missing from the packet signature.

A. Partial Matching

It is helpful to illustrate with an example the idea of
partial deployment. Let s and d be the source and target
respectively. As required by the Internet Protocol, every
packet sent from s to d has to have a different value in the
identification field in the IP header. Assume further that there
are five intermediate routers R0, R1, R2, R3 and R4 between s

and the Border Router that protects d. Suppose that one of the
intermediate routers, say R2, does not implement ITS. Let M0,
M1, M2, M3 and M4 be the marks of the routers respectively.
Initially, s needs to establish a TCP connection with the target
d. This is done via the Border Router, which saves the path

signature in the tokens database. It is important to note that
signature saved by the Border Router depends on the original
value of the identification field and the path taken by the
packet. In our example suppose that the initial value of the
identification field when the TCP handshake is completed by s

(this is when the Border Router saves the signature) is a15…
a0. Since each router mark consumes 2 bits and the
identification field in the IP header is updated according to
equation (2) then when the packet reaches the Border Router it
has the value a8… a0M4M3M1M0. Note that since R2 does
not implement ITS its mark is absent. At a later time when s

sends a packet with initial value for the identification field
equal to b15… b0$ it will reach the border router with the
signature b8… b0M4M3M1M0. Clearly the two signatures are
not the same and the border router drops the second packet. In
fact the Border Router drops all the packets subsequent to
connection establishment because all of them will have
different initial value as required by IP and therefore will reach
the Border Router with different path signature from the one
stored in the tokens database. The example we have provided
is not a rare occurrence. In fact to minimize this problem we
have chosen that each router mark should be 2-bits. As can be
seen from Figure 6 the number of paths that have length
(number of hops) more than 8 is very small. The solution to
the above problem is to use partial matching instead of exact
matching [10]. The basic idea in partial matching is to count
the number of identical marks from right to left in the path

signature. In the example above the signatures

sig1=a8…a0M4M3M1M0 and sig2=b8…b0M4M3M1M0
have at least 4 identical marks. Starting from right to left the
identical marks are: M0 then M1then M3 and finally M4. The
algorithm for partial matching is shown in Figures. The two
signatures used in the example could have more matches
(accidental) depending on the values of the a'i and b'i. Once
the number of matches is computed it is used as a priority,
which is then assigned to the packet. Therefore in this method
no packet is dropped, it is assigned a low priority.

Figure 6. The distribution of the paths length.

COUNT-MATCHES(sig,pkt)
1 count �0
2 for i=1 to 8
3 do

4 if pkt.sig & (22i-1)= sig & (22i-1)
5 then

6 count ��count+1
7 else return count
8 return count

Figure 7. Counting the number of matches between two
signatures

1 for each packet pkt
2 do

3 if pkt.SYN=1
4 then

5 sendCookie
6 Exit
7 if check Cookie(pkt)=TRUE
8 then

9 add pkt to queue 0
10 insert pkt.token in D
11 else

12 sig=lookup(pkt)
13 n�� COUNT-MATCHES(pkt)
14 add pkt to queue n

Figure 8. Modified packet filtering using partial matching

B. Partial Matching Using Bloom Filters

Divyendu Kumar Mishra et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010, 555-563

© 2010, IJARCS All Rights Reserved 6

Now we need to implement partial matching using
Bloom filters to save memory. The approach is similar to what
was done before but quite. The main obstacle is that the hash
of the concatenation of two strings is not equal to the
concatenation of the hashes. In other words, given a hash
function g and two strings x and y, in general
 g(x||y) �g(x) || g(y)

For a given IP address IPx and path signature sigx,
instead of considering the whole token, IPx || sigx, for hashing
operations we consider intermediate values of the token. If we
consider again the example given in Section 41. Assume that
the source with IP address IPx sent a packet with the
identification field having the value a15…a0 and the packet is
forwarded by 4 ITS routers with marks M4, M3, M1 and M0
(recall that the router with mark M2 does not implement ITS).
We know that the path signature of the packet when it reaches
the Border Router will be a8… a0M4M3M1M0. The problem
arises because once the token is hashed we cannot perform
partial matching. Consider the hash of the whole token with a
hash function g:
 g(IPx || a1a0M4M3M1M0)

Clearly we cannot perform any partial matching on
the above value. To be able to perform partial matching it
important to perform the hashing on the partial signatures. We
use k hash functions but the hashing is applied differently. For
a given source IP address IPx and path signature sigx, we
perform k different hash operations on 8 modifications of the
packet token (for a total of 8*k hash operations per packet):
 hi(IPx || sigx & ((2^2j)-1)) 1<=i<=k,1<=j<=8

Where again || is the concatenation operator and & is
the bitwise AND operator. For example, the first k hashes
corresponding to j=1, give hi(sigx & 3) =hi(IPx || M0) with 0<i
< k+1 because sigx& 3=M0. We say that two path signatures

sig1 and sig2 have a match of order j if and only if for all i we
have:
 hi(IP1 || sig1 & ((2^2j)-1))=hi(IP2 || sig2 & ((2^2j)-1))

Note in the above equation we have used the same

source IP address. We illustrate the idea by applying it to the
example given in Section 4.1. Recall that the same source,
with IP address IPx, sent two packets with different initial
values in the identification field: a15… a0 and b15… b0. The
ITS router marks are M4, M3, M1, and M0. Using hash
function hi we get the following set of values:

 hi (IP || M0) hi (IP || M0)
 hi (IP || M1M0) hi (IP || M1M0)
 hi (IP || M3M1M0) hi (IP || M3M1M0)
 hi (IP || M4M3M1M0) hi (IP || M4M3M1M0)
 hi (IP || a0a1M4M3M1M0) hi (IP|| a0a1M4M3M1M0)

Where in the above 1��i � �k. Clearly, the result of the
first four lines are identical, even though the two packets had
different identification field initially. This means that the two
signatures have matches of order 0, 1, 2 and 3. As before we
use the number of matches between signatures to assign a
priority to a packet. We assign a priority n depending on the
match order of a signature. If a signature have match orders
0…k then it is assigned priority k+1. In the example above the
number of matches would be four, because it has matches of
order 0,1,2 and 3. This matching procedure is shown in the

algorithm in Figure 9. Furthermore, given a border router, for
every packet it receives it executes the algorithm in Figure 10.

HASHED-MATCHES(pkt)
1 count ��0
2 for i =1 to 8
3 do

4 mask=pkt.sig & (22i-1)
5 token=pkt.IP || mask
6 for i=1 to k
7 do

8 bitPos=hi(token)
9 if filter[bitPos]=0
10 then return count
11 count ��count+1
12 return count

Figure 9. Counting the number of hashed matches of a packet.

1 for each packet pkt
2 do

3 if pkt.SYN=1
4 then

5 sendCookie
6 Exit
7 if checkCookie(pkt.ack)=TRUE
8 then

9 add pkt to queue 0
10 ADD-PACKET-TO-FILTER(pkt)
11 else

12 n ��HASHED-MATCHES(pkt)
13 add pkt to queue n

Figure 10. Modified packet filtering using hashed partial
matching.

Similar to the case of exact matching it is clear that it

is possible to have a partial matching without the original
signatures being the same. These false positives are expected
when using Bloom filters.

C. Implementation Details

It turns out that the straightforward implementation as
shown in Figures 9 and 10 is not very efficient. In fact we
would need 8 "independent" Bloom filters, one for each
signature variation. If we check the results of Figure 5 then we
could see that to achieve 70% bandwidth consumption by
attackers (only 30% reserved for legitimate users) we need a
filter with size equal to 0.4MB which means for the 8 filters
we need about 3.2MB which is larger than required without

using Bloom filters. A better approach is to use 8 hash
functions, one hash function for every variation. Not only the
algorithm for counting the number of signature matches in
Figure 9 needs to be changed but also we need to include a
function to add a given token to the filter as this is not
straightforward as in the case of using 8 filters. As in all cases,
adding a token to the filter is done after the TCP handshake is
completed and the Border Router checks the validity of the
SYN-cookie. Given a source IP address, IPx and path

signature sigx, and the 8 hash functions labeled h1… h8, the
Border Router uses the algorithm shown in Figure 11 to add
the packet token to the filter and the one shown in Figure 12 to
count the number of matches in the filter.

Divyendu Kumar Mishra et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010, 555-563

© 2010, IJARCS All Rights Reserved 7

ADD-PACKET-TO-FILTER(pkt)
1 for i=1 to 8
2 do
3 mask=pk.sig & (22i-1)
4 token=pkt.IP || mask
5 bitPos=hi(token)
6 filter[bitPos] �gets 1

Figure 11. Adding the hash of a packet variation to the filter

MODIFIED-HASHED-MATCHES(pkt)
1 count ��0
2 for i=1 to 8
3 do

4 mask=pkt.sig & (22i-1)
5 token=pkt.IP || mask
8 bitPos=hi(token)
9 if filter[bitPos]=0
10 then return count
11 count ��count+1
12 return count

Figure 12. Modified version of the function in Figure 9.

On the surface it looks like the number of hash
operation is going to be as before, 8 per packet. In reality, as
we mentioned in Section 3.2 we used only two MD5
operations to implement the 8 hashes. In this case this cannot
be done since we are applying the hashing to 8 different
variations and therefore we need to do eight hash operations
per packet instead of only two. If hashing becomes a
bottleneck, instead of MD5 one can use other hashing
techniques have been demonstrated to perform well and are
much cheaper to implement in hardware [23].
 To test the efficiency of our method we performed a
series of simulations using the real-world Internet paths
provided by Skitter initiative [20]. First we characterize partial
deployment by a parameter d which is the number of routers
implementing our method for a given path. Given a path
containing k routers, we randomly choose d<= k routers to
implement the method and the remaining k-d routers forward
packets in the normal fashion without modifying the packet
headers. Figure 13 shows the results of the simulation for d=1,
d=2, and d=4. For comparison purposes we included in Figure
13 the full deployment results already shown in Figure 5 It is
clear from the presented results that the proposed method
succeeded in reaching the goals we have set for it:
combating IP spoofing while minimizing the memory usage
on routers. We can see from Figure 13 that even if only one
router along the path (d=1) about 70% of the bandwidth is
reserved to legitimate users with a cost of 1MB of router
memory. The results for d=1 is important because it is an
excellent incentive for Internet Service Providers (ISP) to
deploy ITS. This means that even if no other ISP deploys ITS
they still gets an efficient method to protect their networks
from IP spoofing.

Figure 13. Bandwidth fraction used by attackers for three
different values of d as well as the case of full deployment

V. RELATED WORK

 The earliest work to solve the problems created by the
ability of attackers to spoof the source IP address of packets
are IP traceback techniques [19,22,24] which permit a target to
trace the origin of packets even if source address spoofing is
employed. One method in particular uses Bloom filters to
minimize the storage requirements on routers [21]. Unlike our
approach, most these methods use probabilistic packet
marking. They require routers to add, with a certain
probability, a mark to the IP header. The path taken by attack
packets is reconstructed when a sufficient number of attack
packet has been received by the victim. These methods have
been shown to be successful in finding the approximate origin
of the attack packets. The cost of the reconstruction algorithm,
however, becomes prohibitive when the number of attackers is
large. Other approaches to source address spoofing and one of
the earliest such methods is Ingress filtering by Ferguson and
Senie [11]. This requires the installation of ingress filtering at
every ISP. Even so, IP addresses in the local network can still
be spoofed. Another approach to ingress filtering is the SAVE
protocol proposed by Li. et. al. [12]. The information obtained
from the Border Gateway Protocol (BGP) update message was
used by Duan et. al. [7] to selectively drop packets that appear
to be spoofed. Also based on BGP updates is the method
proposed by Park and Lee [16] to discard spoofed IP packets
using a route-based detection method. The problem with BGP-
based methods is the need for independent Autonomous
Systems (AS) to cooperate when in fact they have no incentive
to do so. To our knowledge, the first use of deterministic
packet marking was introduced by Yaar et. al. in [26] and was
extended in [29]. They used the path identification which is a
deterministic mark stamped by the intermediate routers on
every packet as a way to distinguish malicious from legitimate
users. Even if one assumes that the malicious signatures can be
clearly identified the number of malicious and legitimate users
having the same signature grows as the number of attackers
grows which quickly leads to selfinflicted DoS. Following the
introduction by Anderson et. al. [1] of the concept of
capabilities there was a flurry of papers published on the
subject [17,27,30]. Argyraki et. al. [2] argued that capabilities
are not necessary nor sufficient to defend against DDoS

Divyendu Kumar Mishra et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010, 555-563

© 2010, IJARCS All Rights Reserved 8

attacks . Their main contention is that these methods are prone
to denial of capabilities attacks.

VI. CONCLUSION

 The Implicit Token Scheme (ITS) is an efficient
method to defend against spoofed IP traffic. In this paper we
have proposed the use of Bloom filters, a space efficient data
structure, to store rules of ITS and thereby reduce the storage
requirements on intermediate routers. Since Bloom filters can
give rise to false positives we also derived an expression for
the false positive rate as a function of the filter size as well as
the optimal values needed to minimize the rate of false

positives. Several simulations were preformed on real-world
data and the results prove that the proposed method
accomplishes its aim of saving the (up to a factor of 5)
memory requirements on intermediate routers. Even in the
case of partial deployment the simulation results show that the
method is still effective both in combating IP spoofing and
saving on router memory.

VII. REFERENCES

[1] Anderson, T., Roscoe, T., and Wetherall, D. “Preventing
internet denial-of-service with capabilities”. SIGCOMM
Comput. Commun. Rev., pp. 39-44, 2004.

[2] Argyraki, K., and Cheriton., D. “Network capabilities: The
good, the bad and the ugly”. In HotNets-IV: The Fourth
Workshop on Hot Topics in Networks, pp. 27- 32, 2005.

[3] Argyraki, K., and Cheriton, D. R. “Active Internet Traffic
Filtering: Real-time Response to Denial-ofservice
Attacks”. In Proceedings of the Annual USENIX
Technical Conference, pp. 135-148, 2005.

[4] Bloom, B. H. “Space/time Trade-offs in Hash Coding With
Allowable Errors”, Communications of the ACM, pp.
422-426, 1970.

[5] Broder, A., and Mitzenmacher, M. “Network Applications
of Bloom Filters: A Survey”, Internet Mathematics, pp.
485-509, 2005.

[6] Cooke, E., Jahanian, F., and McPherson, D “The Zombie
Roundup: Understanding, Detecting, and Disrupting
Botnets”. In SRUTI'05: Proceedings of the

Steps to Reducing Unwanted Traffic on the Internet on
Workshop, pp. 39-44, 2005.

[7] Duan, Z., Yuan, X., and Chandrashekar, J. “Constructing
Inter-domain Packet Filters to Control IP Spoofing Based
on BGP Updates”. In Proceedings of IEEE INFOCOMM,
pp. 1-12, 2006.

[8] Fan, L., Cao, P., Almeida, J., and Broder, A. Z. “Summary
Cache: A Scalable Wide-area Web Cache Sharing
Protocol”, IEEE/ACM Trans. Netw., pp. 281- 293, 2000.

[9] Farhat, H. “ Protecting TCP Services From Denial of
Service Attacks”. In Proceedings of the ACM SIGCOMM
workshop on Large-scale attack defense, pp. 155-160,
2006.

[10] Farhat, H. “An Effective Defense Against Spoofed IP
Traffic”. In NTMS'2007: Proceedings of the First IFIP
International Conference on New Technologies, Mobility
and Security, pp. 375-384, 2007.

[11] Ferguson, P., and Senie, D. “Network Ingress Filtering:

Defeating Denial of Service Attacks Which Employ IP
Source Address Spoofing”. RFC 2827, 2000.

[12] Li, J., Mirkovic, J., Wang, M., Reiher, P., and Zhang, L.
“SAVE: Source Address Validity Enforcement Protocol”.
In Proceedings of IEEE INFOCOMM, pp. 1557-1566,
2002.

[13] Mitzenmacher, M. “Compressed Bloom Filters”,
IEEE/ACM Trans. Netw., pp. 604-612, 2002.

[14] Moore, D., Shannon, C., Brown, D. J., Voelker, G.~M.,
and Savage, S. “Inferring Internet Denial-of-service
Activity”. ACM Trans. Comput. Syst., pp. 115-139, 2006.

[15] Pang, R., Yegneswaran, V., Barford, P., Paxson, V., and
Peterson, L. “Characteristics of Internet Background
Radiation”. In IMC '04: Proceedings of the 4th ACM
SIGCOMM conference on Internet measurement, pp. 27-
40, 2004.

[16] Park, K., and Lee, H. “On the Effectiveness of
Routebased Packet Filtering for Distributed DoS Attack
Prevention in Power-law Internets”. In Proceedings of
ACM SIGCOMM, pp. 15-26, 2001.

[17] Parno, B., Wendlandt, D., Shi, E., Perrig, A., Maggs, B.,
and Hu, Y.-C. “Portcullis: Protecting Connection Setup
From Denial-of-capability Attacks”. In Proceedings of
ACM SIGCOMM, pp. 289-300, 2007.

[18] Paxson, V. “An Analysis of Using Reflectors for
Distributed Denial-of-service Attacks”. Comput.
Commun. Rev., pp. 38-47, 2001.

[19] Savage, S., Wetherall, D., Karlin, A., and Anderson, T.
“Network Support for IP Traceback”. IEEE/ACM Trans.
Netw., pp. 226-237, 2001.

[20] CAIDA's skitter initiative. http://www.caida.org.

[21] Snoeren, A., Partridge, C., Sanchez, L. A., Jones, C.
E.,Tchakountio, F., Schwartz, B., Kent, S. T., and Strayer,
W. T. “Single-packet IP Traceback”. IEEE/ACM Trans.
Netw., 721-734, 2002.

[22] Song, D., and Perrig, A. “Advanced and Authenticated
Marking Schemes for IP Traceback”. In Proceedings of
IEEE INFOCOMM, pp. 878-886, 2001.

[23] Stone, J., Greenwald, M., Partridge, C., and Hughes, J.
“Performance of Checksums and CRC's Over Real Data”.
IEEE/ACM Trans. Netw., pp. 529-543, 1998.

[24] Sung, M., and Xu, J. “IP Traceback-based Intelligent
Packet Filtering: A Novel Technique for Defending
Against Internet DDoS Attacks”. In Proceedings of the
IEEE International Conference on Network Protocols, pp.
302-311, 2002.

[25] D.J. Bernstein. http://cr.yp.com/syncookies.html.

[26] Yaar, A., Perrig, A., and Song, D. “PI: A Path
Identification Mechanism to Defend Against DDoS
Attacks”. In Proceedings of the IEEE Symposium on
Security and Privacy, pp. 93-107, 2003.

[27] Yaar, A., Perrig, A., and Song, D. “SIFF: A Stateless
Internet Flow Filter to Mitigate DDoS Flooding Attacks”.
In Proceedings of the IEEE Symposium on Security and
Privacy, pp. 130-143, 2004.

[28] Yaar, A., Perrig, A., and Song, D. “FIT: Fast Internet
Traceback”. In Proceedings of IEEE INFOCOMM, pp.
1395-1406, 2005.

Divyendu Kumar Mishra et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010, 555-563

© 2010, IJARCS All Rights Reserved 9

[29] Yaar, A., Perrig, A., and Song, D. “StackPi: New Packet
Marking and Filtering Mechanisms for DDoS and IP
Spoofing Defense”. IEEE Journal on Selected Areas in
Communications, pp. 1853-1863, 2006.

[30] Yang, X., Wetherall, D., and Anderson, T. “A
DoSlimiting Network Architecture”, Comput. Commun.
Rev., pp. 241-252, 2005.

