
 Volume 5, No. 7, September-October 2014

International Journal of Advanced Research in Computer Science

CASE STUDY AND REPORT

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 110

ISSN No. 0976-5697

Sorting of Numbers in a Graph-Theoretic Approach

Sinchan Sengupta

Computer Science Dept. ,

Scottish Church College,

Kolkata, India

Ritwika Law

Computer Science Dept. ,

Scottish Church College,

Kolkata, India

Abstract: Till now we have not come across any algorithm that uses graphs to sort any set of numbers (only topological sorts like-Breadth First

Search and Depth First Search exist). Our aim in this paper is to sort a set of numbers in either ascending or descending order, using undirected

weighted graphs and is based on already existing Kruskal’s algorithm. This paper highlights this new application of the algorithm and the fact

that it can be extended to sorting numbers as well. The given set of numbers to be sorted are assigned to the vertices of the graph and the edges

incident to that ordered pair of vertices are assigned some integer value(weights) based on which the sorting is done. The complexity of the

algorithm in this paper is in accordance with the complexities of already existing sorting algorithms.

Keywords: Graph completeness, ‘good’ graphs, sorting, Kruskal’s Algorithm, complexity.

I. INTRODUCTION

Our aim in this paper is to implement a sorting algorithm

using graphs.

According to [1] linear graph (or simply a graph) G = (V,

E) consists of a set of objects V={v1,v2,…} called vertices

and another set E={e1,e2,…}, whose elements are called

edges such that each edge is identified by an unordered pair

of vertices.

 A complete graph is a simple undirected graph in which

every pair of distinct vertices is connected by a pair of

unique edges. It is impossible to add an edge to a complete

graph because every possible edge has been drawn. To

implement this algorithm we will be requiring a complete

graph always.

 A graph structure can be extended by assigning a weight to

each edge of the graph. Graphs with weights, or weighted

graphs, are used to represent structures in which pair wise

connections have some numerical values.

To represent the graphs used for this algorithm we will use

an adjacency matrix. In [1] the author noted that the

adjacency matrix of a graph with n vertices and no parallel

edges is an n by n symmetric binary matrix X=[xij] defined

over the ring of integers such that:

Xij=1, if there is an edge between i’th and j’th vertex

Xij=0, if there is no edge between them

 Here the adjacency matrix will be taken as an input from

the user.

According to [1] a very important concept used widely in

the field of graph theory, is a minimum spanning tree, which

is a tree T, having the minimum sum of edge weights, and is

a subgraph of the original graph G, having all the vertices of

G. The most widely known algorithm that finds the

minimum spanning tree is the Kruskal’s Algorithm.

According to [2] Kruskal's algorithm is a greedy algorithm

in graph theory that finds a minimum spanning tree for a

connected weighted graph. This means it finds a subset of

the edges that forms a tree that includes every vertex, where

the total weight of all the edges in the tree is minimized. If

the graph is not connected, then it finds

a minimum spanning forest (a minimum spanning tree for

each connected component).

 According to [3] the general procedure followed for

obtaining a minimum spanning tree by Kruskal’s algorithm

are as under:

a) A forest is constructed with each node in a separate tree.

b) The edges are placed in a priority queue.

c) Until we have added (n-1) edges where ‘n’ is the number

of vertices in the graph,

 (i) Extract the cheapest edge from the queue,

 (ii) If it forms a cycle then reject it.

 (iii) Else add it to the forest. Adding it to the forest will

join two trees together.

At the termination of the algorithm, the forest forms a

minimum spanning forest of the graph. If the graph is

connected, the forest has a single component and forms a

minimum spanning tree.

This paper consists of two sections. The first section

presents how to assign integer values or weights to all the

edges of the graph. The second section discusses how the

sorting of numbers is carried out using graphs.

II. THEORY

SECTION A

The main objective in this section is to design such a data

structure that can be easily accessed and manipulated to

generate the sequence of sorted numbers.

For this purpose, we have used a concept, very close to that

of ‘good’ graphs. For e.g., to represent the relationship

among the numbers : 1,5,7 ; we take the help of an

undirected, complete graph, such that each edge represent

the relation among the numbers at two end-point vertices,

and the weight of that edge being the absolute difference of

the magnitude of it’s vertex values at the two end-points.

Laxman Tawade et al, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,110-115

© 2010-14, IJARCS All Rights Reserved 111

Fig – 01: Relationship graph for numbers: 1, 5, 7

Mathematically, for this kind of graph: G= (V, E), we have

‘E’ as the set of edges, where each e Є E, is an edge such

that V1 and V2 (Є V) are incident on it, and it’s weight be

defined as:

W (e) = | | V1 | - | V2 | | …………………. (1)

Now, let us analyze all possible cases that one can encounter

while sorting numbers based on comparison (i.e., between

two adjacent vertices connected by an edge):

a) Comparison between two positive numbers or two

negative numbers.

b) Comparison between one positive and one negative

numbers.

 For the first case, the weight of the edge is

given by (1); but for the second case, this same equation has

to be modified to calculate the weight as:

W (e) = | V1 - V2 | …………………. (2)

, where V1 is positive and V2 is negative.

Now, we are concerned with sorting ‘n’ numbers (n>0),

where the numbers may be in a random order, mixture of

positive as well as negative numbers. To deal with all such

random order of numbers (distinct permutation of or

arrangement of ‘n’ elements), we need to construct a

complete graph, where all vertices represent the numbers to

be sorted, and every vertex is connected to every other

vertex (or number) in that graph. This is done because the

sorted order includes any combination of ‘n’ numbers,

where any number can be present before or after any other

number. This complete graph gives us the opportunity to

have all options and combinations open to include the edges

and vertices and traverse them in any order, since every path

exists in such a graph. For e.g.,

 Let us take the following set of numbers: [2, -1, 3, 8]

The vertices of the graph in this case are the numbers given

above: 2,-1, 3, 8; and the weight of the edges of the graph

are given by (1) and (2). Therefore, the graph can be

constructed as:

Fig-02 : Graphical representation of a random set of 4

elements.

SECTION B

 Section A specifies how to represent a graph that will be

used in this algorithm to sort a set of given numbers. So now

we can assume that the graph has already been created

which is represented in the computer memory by an

adjacency matrix. Here, we specify

how the given n elements, which are assigned to the

vertices, are being sorted.

ALGORITHM

[Input: ‘n’ numbers to be sorted in a 1D array.

 Data Structures: 2D array to represent the adjacency

matrix.

Output : 1D array to display the numbers.]

Step 1: Start

Step 2: Accept ‘n’ numbers from the user and store them in

an array.

Step 3: Find the smallest element of A. Store its value in

‘Vs’ and its position in ‘p’. ’Vs’ is

the source vertex.

Step 4: Set i: =i+1

Step 5: Set j: =j+1

Step 6: a) If A[i] and A[j] are both positive and both

negative then,

 Xij=|| A[i] |-| A[j] ||

 b) If either of A[i] or A[j] is positive and the other

is negative then,

Xij=|a-b|

 Where ‘a’ is the positive vertex and ‘b’ is the

negative vertex.

 c) Set Xij: =0 when i=j

 Step 7: If j<=n then go to step 5

 Step 8: If i<=n then go to step 4

9

Laxman Tawade et al, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,110-115

© 2010-14, IJARCS All Rights Reserved 112

Step 9: Select an edge (i,j) from the connected graph

represented by the adjacency matrix such that:

a) Xij is minimum

b) d(Vs)<2 and Vt ≠ Vs, where Vt Є A and Vt ≠Vs

c) component(i) ≠ component(j)

Step 10: a) Set Xij: =M

 b) Set Xij: =M

 where M → + ∞

 Step 11: Repeat from Step 9 until (n-1) edges are selected.

 Step 12: Select the edge (i,j) such that Xij=M from the pth

row.

 Step 13: Set k: = 0

 Step 14: B[k]: =A[i]

 Step 15: k: =k+1

Step 16: Select an edge (u,v) from the jth row such that

Xuv=M and v≠i

 Step 17: a) Set i: = u

 b) Set j: = v

 Step 18: Set B[k+1]: = A[i]

 Step 19: Repeat from Step 12 until (n-1) edges are selected.

 Step 20: End

[Here, B contains the sorted order of the set of ‘n’ elements.

The above algorithm is designed to sort the numbers in

ascending order. To sort the numbers in descending order,

the same algorithm is used, only making a change in Step 2,

where we have to store the largest element as the initial

vertex.]

Example 1 : Sorting the numbers : 4,6,-3,-4 and 5 in

ascending order. (Sorting of distinct elements)

Procedure : Here, we can consider five vertices as:

Tab 1 - Vertex arrangement for e.g. 1

V1 V2 V3 V4 V5

4 6 -3 -4 5

 The complete graph corresponding to the set of numbers is:

Fig 03 - Graphical representation of the relationship among

the set of numbers

The adjacency matrix of the above graph is:

Tab 2 - Adjacency matrix

 V1 V2 V3 V4 V5

V1 0 2 7 8 1

V2 2 0 9 10 1

V3 7 9 0 1 8

V4 8 10 1 0 9

V5 1 1 8 9 0

Now, we apply the proposed algorithm on this graph.

 Step 1: The initial vertex chosen as V4 since, it is the

maximum element in the entire set of numbers.

A most minimum edge (V1,V5) is selected

satisfying the conditions mentioned in step 4 of

the algorithm.

Fig 04 - Selection of first edge

 Step 2: Edge (V2, V5) is selected as the next minimum edge

weight is also 1.

 Fig 05- Selection of second edge

 -3 V3

 -4 V4

5

V5

 4 V1

6
1

1

V2

Laxman Tawade et al, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,110-115

© 2010-14, IJARCS All Rights Reserved 113

Step 3 : Edge (V3. V4) is selected as the next minimum edge

weight is also 1.

Fig 06- Selection of third edge

 Step 4 : Edge (V1. V3) is selected (edge value ‘2’ is

not selected as it forms a closed circuit) of weight ‘7’.

 Fig 07- Selection of forth edge

Step 5: So, to get the sorted order, we traverse the edges

from the initial vertex, i.e. V4 and following the edge path

from it, we get the sorted order as :

Tab 3- Sorted order of the numbers

V4 V3 V1 V5 V2

-4 -3 4 5 6

So, the ascending order sorting of the numbers yield the

sequence: -4, -3, 4, 5, and 6 , which is obtained by following

the edge sequence starting from the initial vertex as depicted

in Fig – 07.

Example 2 :

Sorting the numbers: – 6, 7, 1, 5, -6, -2 in descending order.

 (With repetition cases involved)

Hence, we can consider the six vertices as:

Tab 4- Vertex arrangement

V1 V2 V3 V4 V5 V6

-6 7 1 5 -6 -2

The complete graph corresponding to the set of numbers is:

Fig 08 - Complete graph of Tab - 4

The adjacency matrix of the above graph is :

Tab 5- Adjacency matrix

 V1 V2 V3 V4 V5 V6

V1 0 13 7 11 0 4

V2 13 0 6 2 13 9

V3 7 6 0 4 7 3

V4 11 2 4 0 11 7

V5 0 13 7 11 0 4

V6 4 9 3 7 4 0

Now, we apply the proposed algorithm on this graph.

Step 1: The initial vertex chosen as V2 since it is the

maximum element in the entire set of numbers. A most

minimum edge (-6,-6) is selected satisfying the conditions

mentioned in step 4 of the algorithm.

 -3 V3

 4 V4

 5

 V5

 4 V1

 6 V2

 -3 V3

-4

V4

 5

 V5

 4 V1

 6 V2

1

7

1

1

1

1

1

Laxman Tawade et al, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,110-115

© 2010-14, IJARCS All Rights Reserved 114

Fig 09 – Selection of first edge

Step -2 Edge (7, 5) is selected as the next minimum edge

weight is ‘2’.

Fig 10 -Selection of second edge

Step -3 Edge (1,-2) is selected as the next minimum edge

weight is ‘3’.

Fig 11 – Selection of third edge

Step-4 Edge (5, 1) is selected as the next minimum edge

weight is ‘4’.

Fig 12- Selection of forth edge

Step 5: Edge (-6, -2) is selected as the next minimum edge

weight is also ‘4’.

Fig 13 – Selection of fifth edge

 Step 6: So the sorted order is,

Tab 6 - Sorted order of the numbers

V2 V4 V3 V6 V1 V5

7 5 1 -2 -6 -6

So, the descending order sorting of the numbers yield the

sequence: 7, 5, 1,-2,-6, and -6, which is obtained by

following the edge sequence starting from the initial vertex

as depicted in Fig – 13.

Since the selection of edges in this algorithm is in

accordance with Kruskal’s algorithm, with just a few

additional restrictions imposed, we can surely say that the

proposed method of sorting numbers is an extended

application of Kruskal’s algorithm.

-6

-2 -6

7 1

5

0 2

4 4 3

-6

-2 -6

7 1

5

0 2

4

3

-6

-2 -6

7 1

5

0 2

3

-6

-2 -6

7 1

5

0 2

-6

-2 -6

7 1

5

0

Laxman Tawade et al, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,110-115

© 2010-14, IJARCS All Rights Reserved 115

III. COMPLEXITY

 According to [4], initially, ‘E’ is the set of all edges in the

graph G. First, we determine an edge with minimum cost

and then delete this edge from the graph as that edge can no

longer be selected as a prospective edge for the next step. To

select the next minimum edge cost from the remaining set,

the edges can be either maintained as a minheap, and then

we can select the next edge in O (log |E|) time or we have to

group the edges/arrange the edges in such a way that one

can easily determine whether the vertices V and W are

already connected by the earlier selection of edges.

Since, our algorithm is based on the operations performed

by the well known Kruskal’s algorithm, analyzing the same

will provide a very good insight to the run-time complexity

of the proposed algorithm.

According to [2], Kruskal's algorithm is known to run in O

(|E| log |E|) time, or equivalently O (|E| log |V|), time, all

with simple data structures. These running times are

equivalent because:

 E is at most V
2
 and V² = 2 log V is O (log V).

 Each isolated vertex is a separate component of the

minimum spanning forest. If we ignore isolated

vertices we obtain V ≤ E+1, so log V is O (log E).

In the algorithm proposed in Section B, it is required that the

minimum element from the array be calculated at the

beginning of the method. To do that, a maximum of ‘n’

times traversal through the data structure (1D array of set of

vertices) is required. This generates a O (log n) complexity,

where ‘n’ is the number of elements (vertices). The

application of Kruskal’s algorithm incurs a complexity of O

(|E| log |V|), which is already shown. For the graphical

construction considered for sorting numbers explained in

Section A, clearly , the cardinality of vertex set is ‘n’,

whereas, for the edge set, the maximum value is n(n-1)/2 .

(≈ n ²).

Hence, the time complexity can be expressed as :

O (n) + O (|E| log |E|)

= O (n) + O (n ² log n ²)

= O (n) + O (2n ² log n)

≈ O (n ² log n)

More generally, this algorithm runs in O(|E| log |V|) time.

The space complexity of the above algorithm is O (n ²) since

an additional data structure is used to store the adjacency

matrix of the graph, which is a 2D array.

III. ACKNOWLEDGMENT

We would like to express our utmost gratitude to prof. Mr.

Arun Kumar Chakrabarti, Gurudas College, Kolkata, for his

untiring will to make this maiden endeavour of ours

successful. Also, our sincere thanks go out to all the

professors of Dept. of Computer Science, Scottish Church

College, for their encouragement and help in this matter. At

the end of the day, our parents are the pillars of strength,

without whom any effort is futile.

V. REFERENCES

[1] Narsingh Deo, Graph Theory- With Applications to

Engineering and Computer Science, Eastern

Economy Edition, 1974, Pub: Asoke K.

Ghosh, pp: 1-2, 55-56, 157-158.

[2] http://en.wikipedia.org/wiki/Kruskal's_algorithm#

Description

[3] R. B. Patel, Expert Data Structures with C, third

edition, Khanna Book Publishing Co. (P) Ltd., pp:

470-471.

[4] http://en.wikipedia.org/wiki/Kruskal's_algorithm#C

omplexity

