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Abstract: Till now we have not come across any algorithm that uses graphs to sort any set of numbers (only topological sorts like-Breadth First 

Search and Depth First Search exist). Our aim in this paper is to sort a set of numbers in either ascending or descending order, using undirected 

weighted graphs and is based on already existing Kruskal’s algorithm. This paper highlights this new application of the algorithm and the fact 

that it can be extended to sorting numbers as well. The given set of numbers to be sorted are assigned to the vertices of the graph and the edges 

incident to that ordered pair of vertices are assigned some integer value(weights) based on which the sorting is done. The complexity of the 

algorithm in this paper is in accordance with the complexities of already existing sorting algorithms. 
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I. INTRODUCTION  

Our aim in this paper is to implement a sorting algorithm 

using graphs.        

According to [1] linear graph (or simply a graph)  G = (V, 

E) consists of a set of objects V={v1,v2,…} called vertices 

and another set E={e1,e2,…}, whose elements are called 

edges such that each edge is identified by an unordered pair 

of vertices.    

 A complete graph is a simple undirected graph in which 

every pair of distinct vertices is connected by a pair of 

unique edges. It is impossible to add an edge to a complete 

graph because every possible edge has been drawn. To 

implement this algorithm we will be requiring a complete 

graph always. 

 A graph structure can be extended by assigning a weight to 

each edge of the graph. Graphs with weights, or weighted 

graphs, are used to represent structures in which pair wise 

connections have some numerical values.   

To represent the graphs used for this algorithm we will use 

an adjacency matrix. In [1] the author noted that the 

adjacency matrix of a graph with n vertices and no parallel 

edges is an n by n symmetric binary matrix X=[xij] defined 

over the ring of integers such that: 

Xij=1, if there is an edge between i’th and j’th vertex 

Xij=0, if there is no edge between them 

 Here the adjacency matrix will be taken as an input from 

the user.  

According to [1] a very important concept used widely in 

the field of graph theory, is a minimum spanning tree, which 

is a tree T, having the minimum sum of edge weights, and is 

a subgraph of the original graph G, having all the vertices of 

G. The most widely known algorithm that finds the 

minimum spanning tree is the Kruskal’s Algorithm. 

According to [2] Kruskal's algorithm is a greedy algorithm 

in graph theory that finds a minimum spanning tree for a 

connected weighted graph. This means it finds a subset of 

the edges that forms a tree that includes every vertex, where 

the total weight of all the edges in the tree is minimized. If 

the graph is not connected, then it finds  

a minimum spanning forest (a minimum spanning tree for 

each connected component). 

 According to [3] the general procedure followed for 

obtaining a minimum spanning tree by Kruskal’s algorithm 

are as under:  

a ) A forest is constructed with each node in a separate tree. 

b ) The edges are placed in a priority queue. 

c ) Until we have added (n-1) edges where ‘n’ is the number 

of vertices in the graph, 

     (i) Extract the cheapest edge from the queue, 

     (ii) If it forms a cycle then reject it. 

     (iii) Else add it to the forest. Adding it to the forest will 

join two trees together. 

At the termination of the algorithm, the forest forms a 

minimum spanning forest of the graph. If the graph is 

connected, the forest has a single component and forms a 

minimum spanning tree. 

This paper consists of two sections. The first section 

presents how to assign integer values or weights to all the 

edges of the graph. The second section discusses how the 

sorting of numbers is carried out using graphs. 

 

II. THEORY 

SECTION   A 

The main objective in this section is to design such a data 

structure that can be easily accessed and manipulated to 

generate the sequence of sorted numbers. 

For this purpose, we have used a concept, very close to that 

of ‘good’ graphs. For e.g., to represent the relationship 

among the numbers : 1,5,7 ; we take the help of an 

undirected, complete graph, such that each edge represent 

the relation among the numbers at two end-point vertices, 

and the weight of that edge being the absolute difference of 

the magnitude of it’s vertex values at the two end-points.  
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Fig – 01:  Relationship graph for numbers: 1, 5, 7 

Mathematically, for this kind of graph: G= (V, E), we have 

‘E’ as the set of edges, where each e Є E, is an edge such 

that V1   and V2 (Є V) are incident on it, and it’s weight be 

defined as: 

W (e) = | | V1 | - | V2 | |   …………………. (1) 

Now, let us analyze all possible cases that one can encounter 

while sorting numbers based on comparison (i.e., between 

two adjacent vertices connected by an edge):  

a ) Comparison between two positive numbers or two 

negative numbers. 

b) Comparison between one positive and one negative 

numbers. 

  For the first case, the weight of the edge is 

given by (1); but for the second case, this same equation has 

to be modified to calculate the weight as:  

W (e) = | V1  -  V2  |   …………………. (2) 

, where V1 is positive and V2  is negative. 

Now, we are concerned with sorting ‘n’ numbers (n>0), 

where the numbers may be in a random order, mixture of 

positive as well as negative numbers. To deal with all such 

random order of numbers (distinct permutation of or 

arrangement of ‘n’ elements), we need to construct a 

complete graph, where all vertices represent the numbers to 

be sorted, and every vertex is connected to every other 

vertex ( or number ) in that graph. This is done because the 

sorted order includes any combination of ‘n’ numbers, 

where any number can be present before or after any other 

number. This complete graph gives us the opportunity to 

have all options and combinations open to include the edges 

and vertices and traverse them in any order, since every path 

exists in such a graph. For e.g., 

 Let us take the following set of numbers: [2, -1, 3, 8] 

The vertices of the graph in this case are the numbers given 

above: 2,-1, 3, 8; and the weight of the edges of the graph 

are given by (1) and (2). Therefore, the graph can be 

constructed as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-02 : Graphical representation of a random set of 4 

elements. 

 

SECTION B 

 

 Section A specifies how to represent a graph that will be     

used in this algorithm to sort a set of given numbers. So now 

we can assume that the graph has already been created 

which is represented in the computer memory by an 

adjacency matrix. Here, we specify  

how the given n elements, which are assigned to the 

vertices, are being sorted. 

 

 

ALGORITHM 

 

 

[        Input: ‘n’ numbers to be sorted in a 1D array. 

           Data Structures: 2D array to represent the adjacency 

matrix. 

Output :   1D array to display the numbers. ] 

 

 

Step 1: Start 

Step 2: Accept ‘n’ numbers from the user and store them in 

an array. 

Step 3: Find the smallest element of A. Store its value in 

‘Vs’ and its position in ‘p’. ’Vs’ is                                                 

the source vertex. 

Step 4: Set i: =i+1 

Step 5: Set j: =j+1 

Step 6: a) If A[i] and A[j] are both positive and both 

negative then, 

        Xij=|| A[i] |-| A[j] ||  

                 b) If either of A[i] or A[j] is positive and the other 

is negative then, 

Xij=|a-b| 

               Where ‘a’ is the positive vertex and ‘b’ is the 

negative vertex. 

           c) Set Xij: =0 when i=j 

       Step 7: If j<=n then go to step 5 

       Step 8: If i<=n then go to step 4 
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Step 9: Select an edge (i,j) from the connected graph 

represented by the adjacency matrix such that: 

a) Xij is minimum 

b) d(Vs)<2 and Vt ≠ Vs, where Vt Є A and Vt ≠Vs 

c) component(i) ≠ component(j) 

Step 10: a) Set Xij: =M 

              b) Set Xij: =M 

          where M → + ∞ 

    Step 11: Repeat from Step 9 until (n-1) edges are selected. 

    Step 12: Select the edge (i,j) such that Xij=M from the pth 

row. 

    Step 13: Set k: = 0 

    Step 14: B[k]: =A[i] 

    Step 15: k: =k+1 

Step 16: Select an edge (u,v) from the jth row such that 

Xuv=M and v≠i 

    Step 17: a) Set i: = u 

              b) Set j: = v 

  Step 18: Set B[k+1]: = A[i] 

  Step 19: Repeat from Step 12 until (n-1) edges are selected. 

  Step 20: End 

 

[Here, B contains the sorted order of the set of ‘n’ elements. 

The above algorithm is designed to sort the numbers in 

ascending order. To sort the numbers in descending order, 

the same algorithm is used, only making a change in Step 2,  

where we have to store the largest element as the initial 

vertex.] 

 

Example 1 : Sorting the numbers : 4,6,-3,-4 and 5 in 

ascending order.       (Sorting of distinct elements) 

 

Procedure : Here, we can consider five vertices as: 

 

Tab 1 -   Vertex arrangement for e.g. 1 

 

V1 V2 V3 V4 V5 

4 6 -3 -4 5 

                              

 The complete graph corresponding to the set of numbers is: 

 

 
 

Fig 03  - Graphical representation of the relationship among 

the set of numbers 

 

 

The adjacency matrix of the above graph is: 

 

Tab 2 -   Adjacency matrix 

 V1 V2 V3 V4 V5 

V1 0 2 7 8 1 

V2 2 0 9 10 1 

V3 7 9 0 1 8 

V4 8 10 1 0 9 

V5 1 1 8 9 0 

 

Now, we apply the proposed algorithm on this graph. 

 

 

            Step 1: The initial vertex chosen as V4 since, it is the 

maximum element in the entire set of numbers. 

A most minimum edge (V1,V5) is selected  

satisfying the  conditions mentioned in step 4 of 

the algorithm.  

 

 
Fig 04 - Selection of first edge 

 

 

 Step 2: Edge (V2, V5) is selected as the next minimum edge 

weight is also 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Fig  05- Selection of second edge 
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Step 3 : Edge (V3. V4) is selected as the next minimum edge 

weight is also 1. 

 

 

 

 

 

 

 

 

 

 

 

 

                      

Fig 06- Selection of third edge 

 

 

           Step 4 : Edge (V1. V3) is selected (edge value ‘2’ is 

not selected as it forms a closed circuit ) of weight ‘7’.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    

 

           Fig  07- Selection of forth edge 

 

 

Step 5:  So, to get the sorted order, we traverse the      edges 

from the initial vertex, i.e. V4 and following the edge path 

from it, we get the sorted order as : 

 

Tab 3- Sorted order of the numbers 

 

V4 V3 V1 V5 V2 

-4 -3 4 5 6 

 

 

So, the ascending order sorting of the numbers yield the 

sequence: -4, -3, 4, 5, and 6 , which is obtained by following 

the edge sequence starting from the initial vertex as depicted 

in Fig – 07. 

 

 

 

 

 

 

 

Example 2 :  

 

Sorting the numbers: – 6, 7, 1, 5, -6, -2 in descending order. 

 (With repetition cases involved) 

 

Hence, we can consider the six vertices as: 

 

Tab 4-   Vertex arrangement 

V1 V2 V3 V4 V5 V6 

-6 7 1 5 -6 -2 

                            

 

The complete graph corresponding to the set of numbers is:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 08 - Complete graph of Tab - 4 

 

The adjacency matrix of the above graph is : 

 

Tab 5-   Adjacency matrix 

 V1 V2 V3 V4 V5 V6 

V1 0 13 7 11 0 4 

V2 13 0 6 2 13 9 

V3 7 6 0 4 7 3 

V4 11 2 4 0 11 7 

V5 0 13 7 11 0 4 

V6 4 9 3 7 4 0 

 

Now, we apply the proposed algorithm on this graph. 

 

Step 1: The initial vertex chosen as V2 since it is the 

maximum element in the entire set of numbers. A most 

minimum edge (-6,-6) is selected satisfying the conditions 

mentioned in step 4 of the algorithm. 
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Fig 09 – Selection of first edge 

 

 

Step -2 Edge (7, 5) is selected as the next minimum edge 

weight is ‘2’. 

 

 

 
 

Fig 10 -Selection of second edge 

 

Step -3 Edge (1,-2) is selected as the next minimum edge 

weight is ‘3’. 

 

 

 

 
 

Fig  11 – Selection of third edge 

 

 

 

 

 

 

 

Step-4 Edge (5, 1) is selected as the next minimum edge 

weight is ‘4’. 

 

 
 

Fig  12- Selection of forth edge 

 

Step 5: Edge (-6, -2) is selected as the next minimum edge 

weight is also ‘4’. 

 

 

 
 

Fig 13 – Selection of fifth edge 

 

       Step 6: So the sorted order is, 

 

Tab  6 - Sorted order of the numbers 

 

V2 V4 V3 V6 V1 V5 

7 5 1 -2 -6 -6 

                            

 

So, the descending order sorting of the numbers yield the 

sequence: 7, 5, 1,-2,-6, and -6, which is obtained by 

following the edge sequence starting from the initial vertex 

as depicted in Fig – 13. 

 

Since the selection of edges in this algorithm is in 

accordance with Kruskal’s algorithm, with just a few 

additional restrictions imposed, we can surely say that the 

proposed method of sorting numbers is an extended 

application of Kruskal’s algorithm.  
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III.      COMPLEXITY 

 According to [4], initially, ‘E’ is the set of all edges in the 

graph G. First, we determine an edge with minimum cost 

and then delete this edge from the graph as that edge can no 

longer be selected as a prospective edge for the next step. To 

select the next minimum edge cost from the remaining set, 

the edges can be either maintained as a minheap, and then 

we can select the next edge in O (log |E|) time or we have to 

group the edges/arrange the edges in such a way that one 

can easily determine whether the vertices V and W are 

already connected by the earlier selection of edges. 

Since, our algorithm is based on the operations performed 

by the well known Kruskal’s algorithm, analyzing the same 

will provide a very good insight to the run-time complexity 

of the proposed algorithm. 

According to [2], Kruskal's algorithm is known to run in O 

(|E| log |E|) time, or equivalently O (|E| log |V|), time, all 

with simple data structures. These running times are 

equivalent because: 

 E is at most V
2
 and V² = 2 log V is O (log V). 

 Each isolated vertex is a separate component of the 

minimum spanning forest. If we ignore isolated        

vertices we obtain V ≤ E+1, so log V is O (log E). 

In the algorithm proposed in Section B, it is required that the 

minimum element from the array be calculated at the 

beginning of the method. To do that, a maximum of ‘n’ 

times traversal through the data structure (1D array of set of 

vertices) is required. This generates a O (log n) complexity, 

where ‘n’ is the number of elements (vertices). The 

application of Kruskal’s algorithm incurs a complexity of O 

(|E| log |V|), which is already shown. For the graphical 

construction considered for sorting numbers explained in 

Section A, clearly , the cardinality of vertex set is ‘n’, 

whereas, for the edge set, the maximum value is n(n-1)/2 . 

(≈ n ² ).  

Hence, the time complexity can be expressed as :  

O ( n ) + O (|E| log |E| ) 

= O ( n ) + O (n ² log n ² ) 

= O ( n ) + O (2n ² log n  ) 

≈ O (n ² log n  ) 

More generally, this algorithm runs in O( |E| log |V| ) time. 

The space complexity of the above algorithm is O (n ²) since 

an additional data structure is used to store the adjacency 

matrix of the graph, which is a 2D array. 
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