
 Volume 5, No. 7, September-October 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 158

ISSN No. 0976-5697

A Novel Boolean Expression based Algorithm to find all possible Simple Paths between

two nodes of a Graph

Sankhadeep Chatterjee
Department of Computer Science & Engineering

Hooghly Engineering & Technology College

Hooghly, India

Debarshi Banerjee
Department of Computer Science & Engineering

Hooghly Engineering & Technology College

Hooghly, India

Abstract: A novel algorithm has been proposed to find all possible simple paths between any two given nodes of a graph which is a NP-hard

problem. First a novel approach to represent a graph using Boolean operators has been structured. The unique Boolean expression is used to find

all possible paths between any two nodes. The analysis of Boolean expression based representation of a graph reveals that the problem is in NP-

hard. Further a necessary and sufficient condition is given to show that the problem is not NP-complete. A detail theoretical analysis and

experimental results has been given in support of its ingenuity.

Keywords: Boolean Transformation, Counting problems, Graph enumeration, NP-completeness, Satisfiability, Undecidability.

I. INTRODUCTION

Finding all possible paths between any two given nodes of a

graph is a form of counting problems which are

computationally equivalent with $#P$-complete problems [1].

The indication of intractability and its presence has been

reported in literature. The problem statement is strictly

bounded by finding out all possible paths between any two

nodes in graph having no cycles. The presence of cycle would

make the problem ambiguous to some extent. The problem of

counting maximal independent sets which is similar in context

of problem intractability has been reported to be in #P-

complete [2]. A generalised counting problem in form of

Satisfiability has been proposed by Creignou et al [3]. An

efficient approach on counting problems has been reported in

literature [4]. An association with decision problems has been

established by using a witness function. Wrathall [5] has

established the idea behind polynomial-time hierarchy which

can be successfully used to classify those problems which

seems to have a polynomial time algorithm but no such

algorithm is known. A novel quantum mechanical observable

based mechanism to count number of paths has been

established by Markopoulou et al. [6]. The number of paths is

calculated to be an expectation value of specially engineered

quantum mechanical observable. The expectation value gives

good estimation of number of paths and seems promising in

terms of time complexity. Provan et al. [7] has proposed a

probabilistic approach to tackle the problem of finding

whether two given node of a graph is connected or not thus in

the other words finding any possible path between the given

nodes. Bu et al. [8] has reported a study of a new problem

which tries to find out new binary strings apart from the given

one which can be satisfied by a set of given operations. The

study has revealed an algorithm to verify whether a

string can be represented by another set of literals. The study

draws a vital conclusion on satisfiability problems, generally

tackled in problems dealing with Boolean expressions.

Okamoto et al. [9] has proposed multiple algorithms to solve

different problems based on counting number of independent

sets in a chordal graph. Study has revealed that problem of

counting the number of maximal independent sets and

counting the number of minimum maximal independent sets

are #P-complete. Efficient algorithms to solve problems like

counting the number of independent sets of a fixed size and

others have been proposed and found to be solvable in

polynomial time. Another probabilistic approach to estimate

number of connected pairs has been reported in literature [10].

The study has found enormous application in the field of

reliability and survivability in communication networks.

Survivability criteria has also been studied by Frank et al. [11]

and reported to be useful in network designs which are more

resistible to anonymous attacks. The notion of satisfiability

and reduction procedures has been reported in the classical

paper by Cook [12]. Tovey [13] has proposed a simplified

version of NP-complete satisfiability problem. The paper has

explained an important conclusion of solvability of SAT in

linear time if no variable appears in more than two clauses.

Johnson [14] presented a classical approach to describe the

concept of NP-completeness. The concepts covered are found

to be extremely supportive in establishing the fact that the

problem of interest in this paper may be undecidable. Study of

NP functions by Faliszewski et al. [15] has revealed that

decreasing ambiguity may be done in terms of elimination of

solution. The backtracking [16] nature of one of the algorithms

proposed in this paper can be observable in other optimization

problems and even in artificial intelligence field [17]. Thus the

immense variety and interest of researchers in the classical

fields of NP-completeness prompted the authors to study and

analyse one of the famous and not so well studied problem of

finding out the all possible paths from one given node to

another given node in a graph. In addition to analysing the

algorithms and results, an attempt has been made to point out

an efficient way to find whether the problem is NP-complete

or not is also included.

II. PROPOSED METHODOLOGY

A. Boolean Transformation –

Boolean transformation of a graph is based on the notion of

simple Boolean logical operators such as „ ‟ (logical AND)

and „ ‟ (Logical OR). The transformation is done by analysing

the branching of the graph at different nodes. The expression

is generated by the experience one may have if one start a

Sankhadeep Chatterjee et al, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,158-161

© 2010-14, IJARCS All Rights Reserved 159

journey from the given source to a given destination. For

instance following the graph depicted in figure 1 it is observed

that starting a journey from node „1‟ there is only one choice at

beginning but at „2‟ we get two choices. This situation is the

most generalized version of a „OR‟ condition where „3‟ and

„4‟ are in a relation „OR‟ if we look at them from „2‟. Thus the

„OR‟ condition is defined as; - „A‟ and „B‟ are in a „OR‟

relation if they have been produced from same root node. In

figure 1 root „2‟ produces „3‟ and „4‟ hence they are in „OR‟

relation. The root node in both or all cases is related with its

child with „AND‟ relation. In figure 1 „2‟ is related with a

„AND‟ relation with „3‟ and „4‟. Similarly „1‟ is related with

„2‟ with „AND‟. Combining all these basic relations the whole

graph can be represented as follows for the problem of our

interest –

Figure 1. At node „2‟ we get two different choices to be traversed.

The generalised representation of a graph can be derived using

the following recursive algorithm –

Boolean_Transform(S): S is the input node. holder[1:n] holds

the existing connections of the current node.

numberOfConnection holds total number of existing

connections of the current node.

1. Initialize holder[n] ← 0, numberOfConnection ← 0

2. Do for i = 0 to n-1

3. if G[S][i] = 1 then

4. numberOfConnection ← numberOfConnection + 1

5. holder[i] ← 1

6. end if

7. end for

8. m ← numberOfConnection

9. print “ (”

10. print S + 1

11. if numberOfConnection = 0 then

12. print “) ”

13. return

14. end if

15. print “ ”

16. if numberOfConnection> 1 then

17. print “ (”

18. return

19. end if

20. Do for j = 0 to n-1

21. if holder[j] = 1 then

22. Boolean_Transform(j)

23. if numberOfConnection> 1 then

24. print “ ”

26. numberOfConnection ← numberOfConnection – 1

27. end if

28. end if

29. end for

30. if m > 1 then

31. print “) ”

32. return

33. end if

34. print “) ”

35. return

36. end

The algorithm takes where the branching factor is and

d is the depth of the traversal. The Boolean transformation of

the graph gives a Boolean expression where the variables take

value either „0‟ or „1‟. For a particular combination of „0‟s and

„1‟s the evaluated value of the expression would be TRUE. As

the expression is produced for a given source and destination,

a „TRUE‟ means selecting the nodes corresponding to the „1‟s

would take us to the destination otherwise not. For instance the

Boolean expression of figure 1 has four variables; of which

each can take exactly two possible values thus there are all

total 2
4
 or 16 many possible combinations exist. If solution (1,

0, 1, 0, 1) is taken which is indicating a traversal through „1‟ to

„3‟ to „5‟ and putting these solution set in „G1‟ we get a

„FALSE‟ thereby indicating an impossible path to reach „5‟

from „1‟ where as for solution set (1, 1, 0, 1, 1) the result

comes to be „TRUE‟ which indicates a possible path from „1‟

to „5‟. Thus satisfying the Boolean expression is sufficient to

find a possible simple path.

B. On the question of NP-completeness of the problem of

finding out all possible Simple Paths between two nodes of

a Graph –

Proof – The above algorithm transforms any instance I of the

original problem (L) into which is an instance of the problem

of finding the set of values for X1, X2, … Xn such that it

satisfies the Boolean expression G(X1, X2, … Xn). The solution

of the Boolean expression is clearly the satisfiability problem

which is already a well-known NP – complete problem. The

conversion of satisfiability to the problem of our interest can

be done easily by traversing the Boolean expression in

polynomial time. Hence satisfiability L that is a sufficient

condition to show that the problem of our interest is in NP –

hard. Now if it is possible to show that there exists a

nondeterministic polynomial time algorithm to solve the L

then it would be sufficient to show it is NP-complete.

However it seems quite awkward to find such an algorithm

that can conclude in polynomial time whether all possible

paths have been found or not. To make it sure that we haven‟t

left any other possible path, all possible combinations must be

tested which would lead us to an algorithm of exponential

complexity. Hence the only possible way to show the problem

L is not in NP is to prove that the problem is undecidable.

Undecidability of the problem would be sufficient to conclude

that the problem is NP-hard but not NP-complete.

FindAllPath(Boolean Expression): Start is the first variable of

the given Boolean Expression. Goal is the destination given.

substring denotes part of original Boolean Expression.

1. If Start = Goal then

2. Print path

3. Else

4. Count substrings with AND relation

5. If Count >= 1 then

Sankhadeep Chatterjee et al, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,158-161

© 2010-14, IJARCS All Rights Reserved 160

6. Do for each substring

7. FindAllPath (substring)

8. End for

9. End if

10. End if

III. RESULT & DISCUSSION

The algorithm Boolean_Transform recursively transforms the

given graph into an equivalent Binary expression. The

procedure followed by the algorithm is depicted in Figure 2

and Figure 3 which are depicting a typical graph and the

search tree when it‟s fed to the Boolean_Transform. The

search is initiated at node „1‟ then it traverses to „2‟ and „5‟.

As there is no other connection it returns to „2‟ and looks for

other possibilities at „2‟. Unavailability of other choices

returns the control to „1‟ again. It looks for other choices

available at „1‟ and finds „3‟ next; hence start traversing from

„3‟. Finally we come up with the tree depicted in Figure 3. The

Binary expression generated is as follows –

 = (1 ((2 (5)) (3 (5)) (4 (3 (5)))))

Figure 2: A typical graph used to test Boolean_Transform

FindAllPath algorithm takes a Boolean expression as input and

it recursively operate on the given expression to find all paths

possible to reach the given Goal or destination node. It is

important to notice that the Boolean_Transform generates the

equation for a particular node. The next algorithm to handle

the Boolean expression is thus designed for a particular goal.

Figure 3 depicts the test results for the algorithm

Boolean_Transform algorithm for a set of randomly selected

graphs. It depicts the number of edges in the graph. Figure 4

shows the number of iterations required by corresponding

problem instances to be solved by the algorithm

Boolean_Transform. The analysis of Figure 3 and Figure 4

reveals that with increasing number of edges in a graph the

iterations required by the algorithm increases though for same

Figure 3: Tree generated after calling Boolean_Transform on the graph

depicted in Figure 2

Figure 3:Number of edges in different test cases

Figure 4: Iterations required in constructing Boolean Expressions in
different test cases using Boolean_Transform.

0

10

20

30

40

50

60

70

80

90

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

N
u

m
b

e
r

o
f

e
d

ge
s

Index of Test cases

0

20

40

60

80

100

120

140

160

180

200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

Index of Test cases

Sankhadeep Chatterjee et al, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,158-161

© 2010-14, IJARCS All Rights Reserved 161

Figure 5: Tree generated after calling Boolean_Transform with pruning on

the graph depicted in Figure 2.

Figure 6: Iterations required in constructing Boolean Expressions in

different test cases with original algorithm (Boolean_Transform) and the
same with pruning.

number of edges it may take different number of iterations

which is a clear indication of non-dependency of number of

edges upon time complexity. Figure 4 reveals that the

increasing number of edges increases the time complexity and

reflects a nature of exponential complexity. A modification

over Boolean_Transform could have been done by pruning

some of the branches which are spawned during the generation

of the tree (Figure 1). The scenario is described in Figure 5

which reveals how the generation of one node can be avoided

using pruning technique. Though the implementation of such

an algorithm would take very small modification of

Boolean_Transform, but it would incur extra memory

overload. To store the tree generated so far. Thus such

algorithm is not a good choice as it takes almost same time

complexity as that of the original one as depicted in Figure 6.

IV. CONCLUSION

The paper proposes a unique way to represent a graph in terms

of Boolean variables and operators which is referenced by an

algorithm to find all possible path between any two given

node. The Boolean Transformation proposes a unique way to

prove that the problem discussed is NP-hard. Further the

conclusion has been made to show how it can be shown that

the problem of finding all possible paths is NP-hard but not

NP-complete. The present work will be immensely helpful for

the researchers in near future.

V. REFERENCES

[1] Leslie G. Valiant, The Complexity of Enumeration and

Reliability Problems, SIAM J. Comput., 8(3), 410–421.

(1977)

[2] Min-Sheng Lin, Sheng-Huang Su, Counting maximal

independent sets in directed path graphs. Information

Processing Letters 114, 568-572. (2014)

[3] Nadia Creignou, Miki Hermann, Complexity of Generalized

Satisfiability Counting Problems information and computation

125, 112 (1996)

[4] D.C. Kozen, The design and analysis of algorithms, Counting

problems and #P, Springer-Verlag, pp. 138–143. (1992)

[5] C. Wrathall, Complete sets and the polynomial-time hierarchy,

Theoretical Computer Science, 3 (1) , pp. 23–33. (1976)

[6] Fotini Markopoulou, Simone Severini, A Note on Observables

for Counting Trails and Paths in Graphs. Journal of

Mathematical Modelling and Algorithms 8, 335-342. (2009)

[7] J. Scott Provan and Michael O. Ball, The Complexity of

Counting Cuts and of Computing the Probability that a Graph

is Connected, SIAM J. Comput., 12(4), 777–788. (12 pages)

(1983)

[8] Tian-Ming Bua, ChenYuanb, PengZhanga, Computing on

binary strings, Theoretical Computer Science. (In press)

[9] Yoshio Okamotoa, TakeakiUnob, Ryuhei Ueharac, Counting

the number of independent sets in chordal graphs. Journal of

Discrete Algorithms 6, 229-242. (2008)

[10] A.T Amin, K.T Siegrist, P.J Slater, The expected number of

pairs of connected nodes: Pair-connected

reliability. Mathematical and Computer Modelling 17, 1-11,

(1993)

[11] H. Frank, I.T. Frisch, Analysis and design of survivable

networks, IEEE Trans. on Communication Technology,

COM-18 (5), pp. 501–519. (1970)

[12] Cook, S. A., The complexity of theorem-proving procedures.

In Proceedings of the third annual ACM symposium on

Theory of computing (pp. 151-158). ACM. (1971, May)

[13] Tovey, C. A., A simplified NP-complete satisfiability

problem. Discrete Applied Mathematics, 8(1), 85-89. (1984)

[14] David S Johnson, The NP-completeness column: An ongoing

guide. Journal of Algorithms 6, 145-159. (1985)

[15] Piotr Faliszewski , Lane A. Hemaspaandra, The consequences

of eliminating NP solutions. Computer Science Review 2, 40-

54. (2008)

[16] Bitner, J. R., &Reingold, E. M., Backtrack programming

techniques. Communications of the ACM, 18(11), 651-656.

(1975)

[17] Sint, L., & de Champeaux, D., An improved bidirectional

heuristic search algorithm. Journal of the ACM

(JACM), 24(2), 177-191. (1977)

0

20

40

60

80

100

120

140

160

180

200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

Index of Test cases

Iterations (Original) Iterations (With Pruning)

http://epubs.siam.org/action/doSearch?ContribStored=Valiant%2C+L+G
http://link.springer.com/search?facet-author=%22Fotini+Markopoulou%22
http://link.springer.com/search?facet-author=%22Simone+Severini%22
http://epubs.siam.org/action/doSearch?ContribStored=Provan%2C+J+S
http://epubs.siam.org/action/doSearch?ContribStored=Ball%2C+M+O
http://www.sciencedirect.com/science/article/pii/S0304397514007294
http://www.sciencedirect.com/science/article/pii/S0304397514007294
http://www.sciencedirect.com/science/article/pii/S0304397514007294
http://www.sciencedirect.com/science/article/pii/S0304397514007294
http://www.sciencedirect.com/science/article/pii/S0304397514007294
http://www.sciencedirect.com/science/article/pii/S0304397514007294
http://www.sciencedirect.com/science/article/pii/S0304397514007294
http://www.sciencedirect.com/science/article/pii/S0304397514007294
http://www.sciencedirect.com/science/article/pii/S1570866707000330
http://www.sciencedirect.com/science/article/pii/S1570866707000330
http://www.sciencedirect.com/science/article/pii/S1570866707000330
http://www.sciencedirect.com/science/article/pii/S1570866707000330
http://www.sciencedirect.com/science/article/pii/S1570866707000330
http://www.sciencedirect.com/science/article/pii/S1570866707000330
http://www.sciencedirect.com/science/article/pii/S1570866707000330
http://www.sciencedirect.com/science/article/pii/S1570866707000330
http://www.sciencedirect.com/science/article/pii/089571779390245T
http://www.sciencedirect.com/science/article/pii/089571779390245T
http://www.sciencedirect.com/science/article/pii/089571779390245T
http://www.sciencedirect.com/science/article/pii/0196677485900252
http://www.sciencedirect.com/science/article/pii/S1574013708000038
http://www.sciencedirect.com/science/article/pii/S1574013708000038

