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Abstract: A novel algorithm has been proposed to find all possible simple paths between any two given nodes of a graph which is a NP-hard 

problem. First a novel approach to represent a graph using Boolean operators has been structured. The unique Boolean expression is used to find 

all possible paths between any two nodes. The analysis of Boolean expression based representation of a graph reveals that the problem is in NP-

hard. Further a necessary and sufficient condition is given to show that the problem is not NP-complete. A detail theoretical analysis and 

experimental results has been given in support of its ingenuity. 
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I. INTRODUCTION  

Finding all possible paths between any two given nodes of a 

graph is a form of counting problems which are 

computationally equivalent with $#P$-complete problems [1]. 

The indication of intractability and its presence has been 

reported in literature. The problem statement is strictly 

bounded by finding out all possible paths between any two 

nodes in graph having no cycles. The presence of cycle would 

make the problem ambiguous to some extent. The problem of 

counting maximal independent sets which is similar in context 

of problem intractability has been reported to be in #P-

complete [2]. A generalised counting problem in form of 

Satisfiability has been proposed by Creignou et al [3]. An 

efficient approach on counting problems has been reported in 

literature [4]. An association with decision problems has been 

established by using a witness function. Wrathall [5] has 

established the idea behind polynomial-time hierarchy which 

can be successfully used to classify those problems which 

seems to have a polynomial time algorithm but no such 

algorithm is known. A novel quantum mechanical observable 

based mechanism to count number of paths has been 

established by Markopoulou et al. [6]. The number of paths is 

calculated to be an expectation value of specially engineered 

quantum mechanical observable. The expectation value gives 

good estimation of number of paths and seems promising in 

terms of time complexity. Provan et al. [7] has proposed a 

probabilistic approach to tackle the problem of finding 

whether two given node of a graph is connected or not thus in 

the other words finding any possible path between the given 

nodes. Bu et al. [8] has reported a study of a new problem 

which tries to find out new binary strings apart from the given 

one which can be satisfied by a set of given operations. The 

study has revealed an  algorithm to verify whether a 

string can be represented by another set of literals. The study 

draws a vital conclusion on satisfiability problems, generally 

tackled in problems dealing with Boolean expressions. 

Okamoto et al. [9] has proposed multiple algorithms to solve 

different problems based on counting number of independent 

sets in a chordal graph. Study has revealed that problem of 

counting the number of maximal independent sets and 

counting the number of minimum maximal independent sets 

are #P-complete. Efficient algorithms to solve problems like 

counting the number of independent sets of a fixed size and 

others have been proposed and found to be solvable in 

polynomial time. Another probabilistic approach to estimate 

number of connected pairs has been reported in literature [10]. 

The study has found enormous application in the field of 

reliability and survivability in communication networks. 

Survivability criteria has also been studied by Frank et al. [11] 

and reported to be useful in network designs which are more 

resistible to anonymous attacks. The notion of satisfiability 

and reduction procedures has been reported in the classical 

paper by Cook [12]. Tovey [13] has proposed a simplified 

version of NP-complete satisfiability problem. The paper has 

explained an important conclusion of solvability of SAT in 

linear time if no variable appears in more than two clauses. 

Johnson [14] presented a classical approach to describe the 

concept of NP-completeness. The concepts covered are found 

to be extremely supportive in establishing the fact that the 

problem of interest in this paper may be undecidable. Study of 

NP functions by Faliszewski et al. [15] has revealed that 

decreasing ambiguity may be done in terms of elimination of 

solution. The backtracking [16] nature of one of the algorithms 

proposed in this paper can be observable in other optimization 

problems and even in artificial intelligence field [17]. Thus the 

immense variety and interest of researchers in the classical 

fields of NP-completeness prompted the authors to study and 

analyse one of the famous and not so well studied problem of 

finding out the all possible paths from one given node to 

another given node in a graph. In addition to analysing the 

algorithms and results, an attempt has been made to point out 

an efficient way to find whether the problem is NP-complete 

or not is also included.  

II. PROPOSED METHODOLOGY 

A. Boolean Transformation –  

 

Boolean transformation of a graph is based on the notion of 

simple Boolean logical operators such as „ ‟ (logical AND) 

and „ ‟ (Logical OR). The transformation is done by analysing 

the branching of the graph at different nodes. The expression 

is generated by the experience one may have if one start a 
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journey from the given source to a given destination. For 

instance following the graph depicted in figure 1 it is observed 

that starting a journey from node „1‟ there is only one choice at 

beginning but at „2‟ we get two choices. This situation is the 

most generalized version of a „OR‟ condition where „3‟ and 

„4‟ are in a relation „OR‟ if we look at them from „2‟. Thus the 

„OR‟ condition is defined as; - „A‟ and „B‟ are in a „OR‟ 

relation if they have been produced from same root node. In 

figure 1 root „2‟ produces „3‟ and „4‟ hence they are in „OR‟ 

relation. The root node in both or all cases is related with its 

child with „AND‟ relation. In figure 1 „2‟ is related with a 

„AND‟ relation with „3‟ and „4‟. Similarly „1‟ is related with 

„2‟ with „AND‟. Combining all these basic relations the whole 

graph can be represented as follows for the problem of our 

interest – 

 

 

 

 
Figure 1. At node „2‟ we get two different choices to be traversed. 

 

The generalised representation of a graph can be derived using 

the following recursive algorithm –  

Boolean_Transform(S): S is the input node. holder[1:n] holds 

the existing connections of the current node. 

numberOfConnection holds total number of existing 

connections of the current node. 

1. Initialize holder[n] ← 0, numberOfConnection ← 0 

2. Do for i = 0 to n-1  

3.  if G[S][i] = 1 then 

4. numberOfConnection ← numberOfConnection + 1 

5.   holder[i] ← 1 

6.  end if 

7. end for 

8. m ← numberOfConnection 

9. print “ ( ” 

10. print S + 1 

11. if numberOfConnection = 0 then 

12.  print “ ) ” 

13.  return 

14. end if 

15. print “  ” 

16. if numberOfConnection> 1 then 

17.  print “ ( ” 

18.  return 

19. end if 

20. Do for j = 0 to n-1 

21.  if holder[j] = 1 then 

22.   Boolean_Transform(j) 

23.   if numberOfConnection> 1 then 

24.    print “  ” 

26. numberOfConnection ← numberOfConnection – 1 

27.   end if 

28.  end if 

29. end for 

30. if m > 1 then 

31.  print “ ) ” 

32.  return 

33. end if 

34. print “ ) ” 

35. return 

36. end 

 

The algorithm takes  where the branching factor is  and 

d is the depth of the traversal. The Boolean transformation of 

the graph gives a Boolean expression where the variables take 

value either „0‟ or „1‟. For a particular combination of „0‟s and 

„1‟s the evaluated value of the expression would be TRUE. As 

the expression is produced for a given source and destination, 

a „TRUE‟ means selecting the nodes corresponding to the „1‟s 

would take us to the destination otherwise not. For instance the 

Boolean expression of figure 1 has four variables; of which 

each can take exactly two possible values thus there are all 

total 2
4
 or 16 many possible combinations exist. If solution (1, 

0, 1, 0, 1) is taken which is indicating a traversal through „1‟ to 

„3‟ to „5‟ and putting these solution set in „G1‟ we get a 

„FALSE‟ thereby indicating an impossible path to reach „5‟ 

from „1‟ where as for solution set (1, 1, 0, 1, 1) the result 

comes to be „TRUE‟ which indicates a possible path from „1‟ 

to „5‟. Thus satisfying the Boolean expression is sufficient to 

find a possible simple path. 

 

B. On the question of NP-completeness of the problem of 

finding out all possible Simple Paths between two nodes of 

a Graph –  

 

Proof – The above algorithm transforms any instance I of the 

original problem (L) into  which is an instance of the problem 

of finding the set of values for X1, X2, … Xn such that it 

satisfies the Boolean expression G(X1, X2, … Xn). The solution 

of the Boolean expression is clearly the satisfiability problem 

which is already a well-known NP – complete problem. The 

conversion of satisfiability to the problem of our interest can 

be done easily by traversing the Boolean expression in 

polynomial time. Hence satisfiability  L that is a sufficient 

condition to show that the problem of our interest is in NP – 

hard. Now if it is possible to show that there exists a 

nondeterministic polynomial time algorithm to solve the L 

then it would be sufficient to show it is NP-complete. 

However it seems quite awkward to find such an algorithm 

that can conclude in polynomial time whether all possible 

paths have been found or not. To make it sure that we haven‟t 

left any other possible path, all possible combinations must be 

tested which would lead us to an algorithm of exponential 

complexity. Hence the only possible way to show the problem 

L is not in NP is to prove that the problem is undecidable. 

Undecidability of the problem would be sufficient to conclude 

that the problem is NP-hard but not NP-complete. 

 

FindAllPath(Boolean Expression): Start is the first variable of 

the given Boolean Expression. Goal is the destination given. 

substring denotes part of original Boolean Expression. 

1. If Start = Goal then 

2.  Print path 

3. Else  

4.  Count substrings with AND relation 

5.  If Count >= 1 then 
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6.   Do for each substring 

7.    FindAllPath (substring) 

8.   End for 

9.  End if 

10. End if 

 

III. RESULT & DISCUSSION 

The algorithm Boolean_Transform recursively transforms the 

given graph into an equivalent Binary expression. The 

procedure followed by the algorithm is depicted in Figure 2 

and Figure 3 which are depicting a typical graph and the 

search tree when it‟s fed to the Boolean_Transform. The 

search is initiated at node „1‟ then it traverses to „2‟ and „5‟. 

As there is no other connection it returns to „2‟ and looks for 

other possibilities at „2‟. Unavailability of other choices 

returns the control to „1‟ again. It looks for other choices 

available at „1‟ and finds „3‟ next; hence start traversing from 

„3‟. Finally we come up with the tree depicted in Figure 3. The 

Binary expression generated is as follows –  

 

 = ( 1  ( ( 2  ( 5 ) )  ( 3  ( 5 ) )  ( 4  ( 3  ( 5 ) ) ) ) ) 
 

 

 
Figure 2: A typical graph used to test Boolean_Transform 

 

 

FindAllPath algorithm takes a Boolean expression as input and 

it recursively operate on the given expression to find all paths 

possible to reach the given Goal or destination node. It is 

important to notice that the Boolean_Transform generates the 

equation for a particular node. The next algorithm to handle 

the Boolean expression is thus designed for a particular goal. 

Figure 3 depicts the test results for the algorithm 

Boolean_Transform algorithm for a set of randomly selected 

graphs. It depicts the number of edges in the graph. Figure 4 

shows the number of iterations required by corresponding 

problem instances to be solved by the algorithm 

Boolean_Transform. The analysis of Figure 3 and Figure 4 

reveals that with increasing number of edges in a graph the 

iterations required by the algorithm increases though for same 

 
Figure 3: Tree generated after calling Boolean_Transform on the graph 

depicted in Figure 2 

 

 

 
 

Figure 3:Number of edges in different test cases 
 

 
 

Figure 4: Iterations required in constructing Boolean Expressions in 
different test cases using Boolean_Transform.  
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Figure 5: Tree generated after calling Boolean_Transform with pruning on 

the graph depicted in Figure 2. 
 

 

 
 

Figure 6: Iterations required in constructing Boolean Expressions in 

different test cases with original algorithm (Boolean_Transform) and the 
same with pruning. 

 

number of edges it may take different number of iterations 

which is a clear indication of non-dependency of number of 

edges upon time complexity. Figure 4 reveals that the 

increasing number of edges increases the time complexity and 

reflects a nature of exponential complexity. A modification 

over Boolean_Transform could have been done by pruning 

some of the branches which are spawned during the generation 

of the tree (Figure 1). The scenario is described in Figure 5 

which reveals how the generation of one node can be avoided 

using pruning technique. Though the implementation of such 

an algorithm would take very small modification of 

Boolean_Transform, but it would incur extra memory 

overload. To store the tree generated so far. Thus such 

algorithm is not a good choice as it takes almost same time 

complexity as that of the original one as depicted in Figure 6. 

IV. CONCLUSION 

The paper proposes a unique way to represent a graph in terms 

of Boolean variables and operators which is referenced by an 

algorithm to find all possible path between any two given 

node. The Boolean Transformation proposes a unique way to 

prove that the problem discussed is NP-hard. Further the 

conclusion has been made to show how it can be shown that 

the problem of finding all possible paths is NP-hard but not 

NP-complete. The present work will be immensely helpful for 

the researchers in near future. 
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