
Volume 5, No. 6, July-August 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 154

ISSN No. 0976-5697

Software Reuse – Changes in Process and Organizations

Dr. B V Ramana Murthy
Department of CSE,

Jyotishmathi College of Technology and Science,

Shamirpet, Hyderabad, India

Mr. Vuppu Padmakar
Department of CSE

Guru Nanak Institutions Technical Campus

Ibrahimpatnam, Hyderabad, India

Ms. A Vasavi
Department of CSE

Jyotishmathi College of Technology and Science,

Shamirper, Hyderabad, India

Abstract: The transition form no reuse to informal code reuse in which chunks of code are copied adapted slightly, and then incorporated the

new systems occurs when developers are familiar with each other’s code and trust each other, later on the trend has changed and the
programming paradigms’ has changed there is evolution of object orientations, which formally “ Never rewrite the code but reuse the code”
reusability can be achieves by inheritance at the programming level but the context here is at the product level, which can be achieved by using
component technologies which is order of the day, component is a readily available software module which can be used directly or can be tailor
made according to the specification. For better reusability the company must have vision towards the market to find out which companies they
create, the organizational strength must emphasize on domain engineering and application engineering. The company has to maintain reuse
manager for the management of these components in a better way. Using component technologies the company can able to save development
cost, time and can deliver product with quality.

Keywords: Software Reuse, Domain Engineering, Software Application Engineering, Software Cost.

I. INTRODUCTION

The basic concept of systematic software reuse is

simple. Develop systems of components of a reasonable size

and reuse them. Then extend the idea of “Component

Systems” beyond code alone to requirements, analysis

models, design, and test. All the stages of the software

development process are subject to “reuse”.

Developers can save problem-solving effort all along

the development chain.[5] They can minimize redundant

work. They can enhance the reliability of their work because
each reused component system has already been reviewed

and inspected in the course of its original developments.

Code components have passed unit and system test

elsewhere and often have stood the test of use in the field.

By these means developers can reduce development time

from years to months or to weeks instead of months.

II. REUSE INVOLVE CONCURRENT

PROCESSES

The reuse community has come to understand on the

basis of its experience that making systematic reuse

effective requires major changes in the way organizations

develop software. In the past the software process has

focused on developing each application from scratch. At

most, individual developers have shared code on an ad hoc

basis.
The new way links many application development

projects with processes that identify and create reusable

assets. To do so, they must overhaul their business and

organizational structures. We have come to understand that

this significant organizational change can be thought of in

terms of business process reengineering. It is rethinking of

everything pertaining to software from there stand point of

those who ultimately benefit from good software obtained

quickly reliably and inexpensively.

Substantial reuse requires, first of all, that reusable
assets be identified in terms of a system architecture. Then

the assets must be created and appropriately packaged and

stocked. Potential users must have confidence in the

components integrity, secondly an organization must

refashion its systems engineering process so that developer

can identify opportunities for reuse and work selected

components into the process.

Systematic software reuse is thus the purposeful

creation, management, support, and reuse of assets. As

illustrated in figure below this can be expressed in terms of

four concurrent processes. We call the people in the reusable

asset processes, creators, and those in the development
projects, reusers.

Figure: 1

B V Ramana Murthy et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,154-158

© 2010-14, IJARCS All Rights Reserved 155

a. Create: This process identifies and provides reusable

assets appropriate to the needs of the reusers. These

assets may be new, reengineered, or purchased of

various kinds such as code, interfaces, architectures,

tests, tools and so on. This process may include

activities such as inventory and analysis of existing
applications and assets, domain analysis, architecture,

definition, assessment of reusers needs technology

evolution reusable asset testing and packaging.[1]

b. Reuse This process uses the reusable assets to produce

applications or products. Activities include the

examination of domain models and reusable assets, the

collection and analysis of end-user needs the design

and implementation of additional components

adaptation of provided assets, and the construction and

testing of complete applications.

c. Support: This process supports the overall set of

processes and manages and maintains the reusable
asset collection. Activities may include the

certification of submitted reusable assets.

Classification and indexing in some library,

announcing and distributing the asset, providing

additional documentation, collecting feedback and

defect reports from reusers.

d. Manage: This process plans, initiates, resources,

tracks and coordinates the other processes. Activities

include setting priorities and schedules for new asset

construction, analyzing the impact and resolving

conflict concerning alternative routes when a needed
asset is not available, establishing training and setting

direction.

A. Domain engineering:

In most reuse programs to date, a key activity

associated with the create process is a fairly systematic way

of identifying potentially reusable assets, and an architecture
to enable their reuse.[2] This activity is called domain

engineering in the systematic reuse community. The

development of reuse process is also sometimes called

application system engineering. The essence of systematic

software reuse is that initial investment by the creator to

identify and carefully structure reusable assets will enable

reusers to build application rapidly and cost effectively.

Domain engineering reflects the idea that sharing

between related applications occurs in one or more

application domain or problem domain or solution domains.

Reuse of the assets then occurs during a subsequent
application system engineering phase.

Sometimes domain engineering has been loosely

described as just lke ordinary systems engineering such as

structure analysis structured design or object oriented

analysis object oriented design except that it applies to a

family of systems rather than just one.[4] It is like systems

engineering but it is also more that one of kind systems

engineering. It seeks the family of similar systems that can

inhabit a domain. As a result domain engineering is more

complex that established systems engineering. Therefore

management should not turn to it without forethought and

should establish domain engineering only when it foresees a
business benefit in reuse.

B. Application System Engineering:

This activity has long existed in the form of building

applications from scratch, possibly with the aid of a few

back pocket programs. The goal now is to make use of the

extensive set of reusable assets that have been provided. The

intent is to build the application much more rapidly and cost

effectively.[3]

Application system engineering specializes and

assembles these components into application. These
applications are largely constrained to fit the architecture

and the components. Typical applications usually consist of

components from several different sets of components.

Starting from the models of the architecture and

reusable components, the reusers puts together available

reusable assets to meet at least the bulk of the new set of

requirements. This is sometimes called a delta

implementation because it is an outgrowth of what already

exists.

The reusers have to find and specialize components by

exploiting a variability mechanisms provided. If it is not

possible to meet all the new requirements with the available
reusable components additional programming will be

needed. This programming may be done by the creator,

producing new reusable components or by the reusers.

Finally the components are integrated and the

application tested.

Table: 1

Domain engineering Application system

Engineering

Define and scope domain

Analysis examples needs trends

Develop domain model and

architecture

Structure commonality and

variability

Engineer reusable component

systems languages and tools

Do delta analysis and design

relative to domain model and

architecture

Use component systems as

starting point

Find specialize and integrate

components

Exploit variability mechanism

language generators.

III. REUSE REQUIRES CHANGED IN

ORGANIZATION

The traditional software organization was a senior

manager over a number of project managers. The senior

manager allocated resources, such as people coming off

projects that were completing, to projects that were building

up. Each project manager ran his or her own project. There

was no organized source of reusable components. An
organization geared for reuse is different.[4]

A systematic reuse process is different because it

involves two primary functions, which usually find

expression as two organizations. One is the creator or

domain engineering organization. The second is the reuser,

or application engineering organization.[8] Companies with

experience in systematic use generally find that a third

function evolves that of support it in turn finds expression in

organizational form as shown fig.

B V Ramana Murthy et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,154-158

© 2010-14, IJARCS All Rights Reserved 156

Figure: 2

Experience shows some problems with other
organizational structures. For example if creators are put

into the project organizations under project managers

focused on getting something out the door, that objective

often results in delaying, or even forgetting the creator

objectives.[7] This pressures explains why setting goals on

how much software is to be contributed to a library and

establishing financial rewards for reuse have not worked.

However, if creator and reusers functions are totally

separated, as happens when a reuse repository is set up in a

geographically separate area, the creators tend to be working

in a vacuum. That is the reusable components do not meet

the practical needs of the reusers or they may appear too late
to meet schedule needs.

The creators must be close enough to the reusers to

keep reusable components practical. At the same time they

must be insulated from daily project pressures if they are to

get reusable components designed and built. The result is

the three-function organization diagrammed in figure above.

Even with this organization structure, the pressures are

still present. The creator and reusers functions have distinct

goals. Creators need to build high quality assets that will

serve the needs of many reusers over years of product

cycles. Reusers have the usual business goals more faster,

cheaper for example a project manager facing tight
deadlines and a high challenging problem might kill to get a

high qualified creator on his or her team. That would

interfere with the more long-range goals of the creator

organization. There is no right answer to issues such as this

one. That is why the diagram shows a senior manager over

all three functions. He or she has to adjudicate the interests

of creators and resuers. Some organizations have labeled

this post the “reuse manager”. That title has the advantage of

focusing attention on the overall goal.

IV. INCREMENTAL ADOPTION OF REUSE

A company faces two conflicting pressures. On the one

hand, it must keep the existing operations going. They are

the activities that bring in the funds which keep the

company going. Line managers are keenly aware of this

need. On the other hand it must keep updating it practices
because as it often seems, competition never sleeps.

Unfortunately Line managers find it difficult to inaugurate

new practice while keeping the old practices in motion.[10]

Obviously a successful company has to do both. The

adoption path common to several reuse strategies is to start

with focused pilot projects. As these pilots meet a degree of

success, expand them incrementally, increasing reuse

coverage and penetration into the organization. Observation

of the introduction of business process reengineering and

indeed change management in general further reinforces this

stepwise approach.

Figure: 3

The above figure illustrates some of the steps that a

typical organization may progress through. This figure is

based on synthesis of experience at several organizations.

What we observe is that the benefits due to reuse, such as

improved time to market (TTM), or higher-quality systems,

or lower overall development costs, increase as the levels of
reuse and the sophistication of the reuse program

B V Ramana Murthy et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,154-158

© 2010-14, IJARCS All Rights Reserved 157

increase.[9] Furthermore it takes time investment and

experience with reuse in each organization to get to those

levels of reuse. So what seems to happen is that the

organization moves from stage to stage as it consolidates it

gain and feels the pressure for more improvement.

For example, the transition from no reuse to informal code
reuse in which chunks of code are copied adapted slightly,

and then incorporated into the new system occurs when

developers.

a. Are familiar with each other’s code and trust each

other

b. Feel the need to reduce time to market, even though

they would prefer to rewrite the software.

a) This strategy works – for a while. Development

time is reduced, and testing is often less tedious

than with totally new code. But as more products

are developed using this approach, maintenance

problems increase. Multiple copies of the software,
each slightly different have to be managed. Defects

found in one copy have to be found and fixed

multiple times. This often leads to a black box code

reuse strategy, in which a carefully chosen instance

of code is reengineered, tested and documented for

reuse.

b) Measure progress: Management will use a variety

of measurements to gauge the progress of reuse

programs. Fundamentally, they appear to fall into

three categories. [6]

The first category measures levels of reuse within an
application area for example each completed system

employs 75% of reused components.

A second measures the properties of reusable

components for the purpose of assessing their intrinsic

reusability. These include measures of size, complexity,

cohesion, and coupling to other components.

The third category measures process efficiency and

savings in development time and cost.

An survey has taken out, the following are the metrics

taken out by discussion from IT Professionals.

Table: 2

SNo Item With Reuse Without Reuse

1 Time to

delivery

Reduced by 40% At delivery time

2 Cost Reduced by 60% Total product cost

3 Quality Increments due to

components usage

100%

Depends on the

development up to

80%

4 Maintains Easy & 100% Has to work due

to authentication

engineering.

Scaling of reuse effect on product development. The

following is the data compiled after having hands on
experience on reuse factor of the software product

development.

Scaling from 1- 5

Table: 3

Scale Intensity Remarks

1 Trivial Not much impact on product.

2 Small Less impact up to 10%

3 Medium Impact on application developer

4 High Good impact on application developer

with respect domain engineering

5 Very High Recommended to go for reuse

We have taken parameter of the product development

and the results as follows.

Table: 4

S.No Item Scale

1 Time 4

2 Cost 5

3 Quality 4

Time, cost and quality are the basic principles of

software engineering and the above table represents the

success of reuse. The graphical representation of the above

table

Figure: 4

A graph has been considered to show the effectiveness

of reuse in the companies.

Table: 5

Reuse %

With components 60%

Without components 0

Scaling from 1 – 10

Table: 6

SNo Item With Component

Technology

Without

Component

Technology

1 Time to delivery 40% More 10

2 Cost 60% Max 10

3 Quality 100% 60%

4 Maintains easy 40% product

development cost.

V. CONCLUSION

a. A component has to be used three to five times in

application projects to recover the initial cost of

creating it and the ongoing cost of supporting it.

b. It costs 1.5 to 3.0 times as much to create and support
a reusable component as it does to implement a similar

component for a single application.

c. It costs only one quarter as much to utilize a reusable

component as it does to develop a new one from

scratch.

d. It takes two or three product cycles, usually about

three years, before the benefits of reuse become

significant. It takes time for the accumulating benefits

to pay off the start-up cost.

B V Ramana Murthy et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,154-158

© 2010-14, IJARCS All Rights Reserved 158

VI. ACKNOWLEDGEMENTS

The authors would like to thank Sardar Tavinder Singh,
Chairman and Mr. Gagandeep Singh Kohli, Vice Chairman

and Dr. H S Saini, Managing Director, Guru Nanak

Institutions for their encouragement and support for this

research paper work. The authors would like to express their

gratitude to the reviewers for their valuable suggestions and

comments.

VII. REFERENCE

[1]. Powell,T.A., Website Engineering Prentice Hall,1999.

[2]. Pressman, R. S.,“Can Internet Based Applications be

Engineered?” IEEE Software, September 1998, pp.

104-110.

[3]. The Agile Alliiance Home Page,

hhtp//www.agilealliance.org/home

[4]. Ambler ,S, “what is Agile Modelling

http://www.agilemodeling.com/index.htm.

[5]. Cockburn A.,Agile Software Development: Addison

Weley

[6]. Cockburn and J HighSmith ., What is Agile Software

Development The People Factor “IEEE computing Vol

34 pp 131-133

[7]. DeMarco ,.T,and T Listener .Peopleware second edition

[8]. DeMarco ,.T and Boehm,”The Agile Methods fray

“IEEE Computer Vol 35 pp 90-92.

[9]. HighSmith, J. Agile Software Ecosystem Addision–

Wesley.

[10]. Highsmith J., “The Methodology Debate” Part -1 Vol

14.

Short Bio Data for the Authors

 Dr. B. V.Ramana Murthy has done his PhD from
Osmania University, presently he working as Professor in

Computer Science and Engineering, has 18 years of

experience in Teaching and R&D. His primary area of

interest is Software Engineering & Web Engineering.

 Mr. V Padmakar is pursuing PhD in CSE and has

done his M Tech (CSE) from JNTUH, presently working as

Professor in Computer Science and Engineering has 17

years of experience in Teaching and Industry. His primary

area of interests is Software Engineering, Network Security
and Data mining

 Mrs. A.Vasavi has done her M.Tech (CSE) from

JNTUH, presently She is working as Associate Professor in

Computer Science and Engineering department, has 10

years of experience in Teaching. Her area of interest is

Network Security and Formal Languages.

