
Volume 5, No. 6, July-August 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 261

ISSN No. 0976-5697

Redundant Reduced LZW (RRLZW) Technique of Lossless Data Compression

Md. Kamrul Islam

Department of Computer Science and Engineering,

Jessore University of Science and Technology

Jessore, Bangladesh

Md. Yasir Arafat
Department of Computer Science and Engineering,

Jessore University of Science and Technology,

Jessore, Bangladesh

Abstract: Technology is growing in every aspect but the basic needs to save the memory and time utilization still remains. Whenever we deal
with any kind of data, we are bound to compress the data to minimize the space utilization. Data compression can be lossy or lossless. Some
efficient lossless data compression techniques are Huffman coding, Run-length coding, Lempel- Ziv-Welch (LZW) coding. Lempel–Ziv–Welch
(LZW) is a universal lossless data compression algorithm which works best on data with repeated patterns, so the initial part s of a message will
see little compression. But LZW stores redundant string pattern which increase the number of entry of the dictionary thus increases the codeword

size and this reduces performance of LZW technique. In this paper, a Reduced Redundant LZW (RRLZW) has been proposed to remove this
redundant string pattern from the dictionary which increases the performance of LZW technique by decreasing the required memory to save data
and also increasing the dictionary capacity. Also the performances of these algorithm and proposed system are measured and compared. The
comparison shows that RRLZW performs better than LZW.

Keywords: Lossless compression, LZ77, LZ78, LZW.

I. INTRODUCTION

Compression is the art of representing the

information in a compact form rather than its original

or uncompressed form [1]. Data can be characters in a text

file, numbers, image, waveforms or sequence of numbers.
The basic technique of data compression:

Figure 1: Basic Technique of Data Compression

Data Compression technique is divided into two broad

categories lossless and lossy data compression techniques.

Lossy compression techniques reconstruct the original

message with loss of some information while lossless

compression techniques reconstruct the original without any

loss of data. These kinds of compression algorithms are

called reversible compressions since the original message is

reconstructed by the decompression process [2]. The

statistical methods of lossless data compression capture
redundancies using probabilistic methods [3] and convert

characters into variable length strings of bits based on the

frequency of use. They perform encoding by taking one

character at a time. On the other hand the dictionary based

lossless data compression encoders are also termed as

substitution coders [4]. In these methods, a dictionary of

certain length of input symbols is maintained and the

repeated strings of characters of input data stream are

replaced by the shorter code words. Both the encoder and

decoder must have same dictionaries and greater the length

of dictionary, more is the compression ratio. The entropy or
information content provides the lower limit on the number

of bits for a codeword [5]. The most popular dictionary
based lossless compression methods are the Lempel Ziv

(LZ1 or LZ77) [6] and LZ2 or LZ78 [7] class of

dictionary based coders. There are many variants of the LZ

coders namely LZSS, LZR, LZ7B, LZFG, LZT, LZW and

LZJ etc. LZW maintains a dictionary at both the encoder

and the decoder. The dictionary is continuously updated

during encoding process [12].

In this paper, a modified LZW technique has been

proposed. The proposed Redundant Reduced LZW

(RRLZW) reduces the redundancy of dictionary entry and

reducing the required bit for representing the entries in
dictionary. Also the proposed technique increases the

dictionary capacity. The next section in this paper describes

the LZW efficient lossless data compression technique. In

section III, the proposed RRLZW technique has been

described. In section IV, the performances of these two

algorithms have been examined with three samples and

section V describes the conclusion.

II. DESCRIPTION OF LZW TECHNIQUE

LZW, a variation of LZ78 is named after Abraham

Lempel, Jakob Ziv and Terry Welch [10], the scientists who

developed this compression algorithm [11][6] proposed to

remove the necessity of encoding the second element of the

pair<i,c> as like LZ78. It is a lossless „dictionary based‟

compression algorithm. Dictionary based algorithms scan

a file for sequences of data that occur more than once.
These sequences are then stored in a dictionary and within

the compressed file, references are put where-ever repetitive

data occurred. Each character has a code and index number

in dictionary. Input data which we want to compress is read

from file. Initially data is entered in buffer for searching in

dictionary to generate its code. If there is no matching

character found in dictionary. Then it will be entered as

new character in dictionary and assign a code. If

Character is in dictionary then its code will be generate.

Output codes have less number of bits than input data. Thus

…………

…………

…………

……

abcdefghijkl

abcdefghijkl

abcdefghijkl
abcdefghijkl

Compressed File

Compression

Reconstruction Original

Reconstructed

Md. Kamrul Islam et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014, 261-266

© 2010-14, IJARCS All Rights Reserved 262

LZW compression replaces strings of characters with single

codes.

The algorithm of LZW is divided into two parts

encoding and decoding. The encoder would only send the

index to the dictionary. In order to do this, the dictionary has

to be primed with all the letters of the source alphabet. The
input to the encoder is accumulated in a pattern p as long as

p is contained in the dictionary. If the addition of another

letter a results in a pattern p*a(*denotes concatenation)that

is not in the dictionary, then the index of p is transmitted to

the receiver ,the pattern p*a is added to the dictionary, and

another pattern with the letter a is started.

The LZW decompression creates the same string table

during decompression. It reads the input codeword

sequentially add them to the decompressed string and add

combining the previous string with next first string to the

dictionary. Thus the in decompression the same encoding

dictionary is constructed.

III. PROPOSED REDUNDANT REDUCED LZW

(RRLZW)

The proposed Reduced Redundant LZW (RRLZW) for
data compression is the modification of a famous data

compression technique LZW technique. It reduces the

redundant entry of the dictionary with replacing with the

next entry of the dictionary. From LZW techniques, if aba is

a new entry in the next entry in the dictionary then ab

contains in the dictionary. So ab is a redundant entry in

dictionary. The proposed method replaces the redundant

entry ab with aba and thus reduces the number of entry of

dictionary consequently reduce the codeword size. The basic

principle of RRLZW method is

In this method a special command is also used that is 0.
So the dictionary entry is started from 1. This special

command is used when αβ and αµ entered in the dictionary

or matched.

The encoding flowchart of RRLZW is given as figure 2

and the decoding flowchart is given as figure 3.

To illustrate the encoding technique, consider the

following string to be encoded.

PPPQPPQQQ

Here the alphabet = {P,Q}, so the initial dictionary is as like

Table 1

Table 1: Initial dictionary of PPPQPPQQQ

Index Entry

P 1

Q 2

The encoder first gets the letter P. This pattern is

already in the dictionary, so it concatenates the next symbol

P to obtain PP. So next entry of the dictionary is PP and

encoder output is the code of index P is 1. The dictionary

looks like as Table 2

Table 2: Constructing the 3rd entry

 Index Entry

P 1

Q 2

PP 3

The encoder output: 1

Now, the current letter of the input is P which exists in

the dictionary, so concatenate with the next letter to form PP

which is also exists in the dictionary. Now concatenate the
next letter with PP and get the pattern PPQ. But PP and PPQ

both need not be store in the dictionary because PP is a sub

string of PPQ. So according to the proposed RRLZW, PP is

replaced by PPQ and this is the 3rd entry of the dictionary.

And the dictionary looks like Table 3 and the encoder output

will be 3.

Table 3: Replacing PP with PPQ in the 3
rd

 entry

Index Entry

P 1

Q 2

PPQ 3

The encoder output: 1, 3

Now, the current letter is Q which exists in the

dictionary, so concatenate the next with the next letter to
form the pattern QP, which does not exist in the dictionary.

So it adds to the dictionary in the 4th entry. Then the

dictionary looks like Table 4 and the decoder output is 2.

Table 4: Constructing the 4
th
 entry

Index Entry

P 1

Q 2

PPQ 3

QP 4

The encoder output: 1, 3, 2

Now the current letter is P that exists in the dictionary,

then concatenate with the next letter P to form the pattern PP

which is the substring of entry 3 which start with PP, so
proceeds next to form the pattern PPQ which exists in the

dictionary, so proceeds to the next letter and concatenate

with the next letter and form the pattern PPQQ, that pattern

does not exists in the dictionary. So replace PPQ with PPQQ

in the 3rd entry. Then the dictionary looks like Table 5 and

the encoder output is 3.

Table 5: Replacing PPQ with PPQQ

Index Entry

P 1

Q 2

PPQQ 3

QP 4

Encoder output: 1, 3, 2, 3

The current letter is Q that exists in the dictionary, so

form QQ that does not in the dictionary, so add it to the next

entry
to the dictionary and encoder output is 2. Then the

dictionary is looks like as Table 6.

If α and αβ are two input sequence, then if αβ is an entry

of the dictionary, then α must be an entry in the

dictionary. So we have no need to store α. Now, we can

replace α with αβ. Here length of α must be greater than

or equal to 2.

Md. Kamrul Islam et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014, 261-266

© 2010-14, IJARCS All Rights Reserved 263

Table 6: Constructing the 5
th
 entry

Index Entry

P 1

Q 2

PPQQ 3

QP 4

QQ 5

Encoder output: 1,3,2,3,2

Now the present letter is Q this exists in the dictionary and it

is the last character in the input.

So it is encoded as 2.

So finally the encoder output is: 1,3,2,3,2,2

Figure 2: RRLZW encoding flowchart

Take sequence of

Dictionary index

Not end

Partially

Add to output index (w)

Convert to binary code word
base on the highest index of

Dictionary

Output=

Binary stream &

Initial Dictionary

End

(wc)Contains in

Dictionary?
Set w=wc

Full or Partial match(start

with wc)

No

Replace (w) with (wc) Set w=c

Start

Make initial Dictionary

Set initial char w as empty string

Read Text char by

char as c while

not end.

If end

Set wc=w+c

(w) contained

partially or

fully?

Length(w)

>=2?

Fully

Add to output command, index of

w, Length of w.

Add (wc) to the Dictionary

as a new entry

Set w=c

Add to output index (w)

Add (wc) to the Dictionary

as a new entry

Set w=c

No

Yes

Md. Kamrul Islam et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014, 261-266

© 2010-14, IJARCS All Rights Reserved 264

For the above example, the decoding technique works as

follows

 Decoder input is: 1,3,2,3,2,2

Decoder uses the same initial dictionary as like:

Table 7: Decoder initial dictionary

Index Entry

P 1

Q 2

Now the decoder first input is 1 which corresponds to P

which is exists in the dictionary, so decoder output is: P and

the next input is 3 that is under construction but its first

character is known that is P, so we concatenate them to form

the pattern PP that is not exists in the dictionary, so add it to

the dictionary to the next entry. Then the dictionary looks
like as Table 8.

Table 8: Constructing 3
rd

 entry while decoding

Index Entry

P 1

Q 2

PP 3

Decoder output: P

Current input is 3 which is exists in the dictionary that

corresponds to the pattern PP, so add it to the decoder output

and concatenate with the next input corresponding value Q,

formed PPQ and Replace the existing previous entry PP.

then the dictionary is looks like Table 9.

Table 9: Replacing PP with PPQ in the 3
rd

 entry while decoding

Index Entry

P 1

Q 2

PPQ 3

Decoder output: PPP

Now the input is 2, corresponds to Q, that exists in the

dictionary next input is 3 corresponds PPQ, now

concatenating P to Q form the pattern QP that does not

exists in the dictionary, so it is the next entry to the

dictionary and decoded as Q, then the dictionary is looks

like Table 10

Table 10: Constructing the 4
th
 entry

Index Entry

P 1

Q 2

PPQ 3

QP 4

Decoder output: PPPQ

Now the present entry is 3 corresponds to PPQ exists in

the dictionary, and next input is 2 corresponds to Q, next

entry would be PPQQ, that does not exists in the dictionary,

so replace PPQ with PPQQ in the 3rd entry and decoded

PPQ. Then the dictionary looks like as Table 11.

Table 11: Replacing PPQ with PPQQ

Index Entry

P 1

Q 2

PPQQ 3

QP 4

Decoder output: PPPQPPQ

Now the present entry is 2 corresponds to Q, and next

entry is 2 corresponds to Q, concatenating we get the pattern

QQ, that is the next entry to the dictionary. Then the

dictionary would be as following Table 12

Table 12: Constructing the 5
th
 entry while decoding

 Index Entry

 P 1

 Q 2

 PPQQ 3

 QP 4

 QQ 5

Decoder output: PPPQPPQQ

Now the input is 2 and this is the last entry of input and it

corresponds to Q. so the decoder final output is as like

which is the same as encoder input string.

PPPQQPPQQQ

Md. Kamrul Islam et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014, 261-266

© 2010-14, IJARCS All Rights Reserved 265

Figure 3: RRLZW decoding flowchart

IV. PERFORMANCE ANALYSIS

The performance of a data compression technique is

measured here in terms of the encoded data rate using the
following equation [11].

Performance =

=

From the above equation it is clear that if the reduction

of required space is so high, the performance is also high.

To compare the performance of , the universal

technique LZW and the proposed method RRLZW the

following samples have been taken.

Sample 1:

wabba@wabba@wabba@wabba@woo@woo@woo

Sample2:

abcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabc

defghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij
abcdefghij

Is index

value=0?

Add w to output

Is index

contains in

dictionary?

No

Not End

Set entry = index value Set entry = w+w[0]

w.length<2?

Read Next index

and string length

Set entry = Sub String

Add w to output

w.length<2?

Start

Add initial Dictionary

Set w = string of first index

Read compress

file until end.

Sequence of output string is

decompress file

End

End

Yes

Yes

Yes

Yes

No

No
No

Add w+entry[0] as new

entry to dictionary

Repalce w by

w+entry[0]

Set w= entry

Add w+entry[0] as new

entry to dictionary

Repalce w by

w+entry[0]

Set w= entry

Md. Kamrul Islam et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014, 261-266

© 2010-14, IJARCS All Rights Reserved 266

Sample 3:

asdfghjklasdfghjklasdfghjklasdfghjklasdfghjklasdfghjkl

asdfghjklasdfghjklasdfghjklasdfghjklasdfghjklasdfghjklasdf

ghjklasdfghjklasdfghjklasdfghjklasdfghjklasdfghjklasdfghjk

lasdfghjkl

Sample 4:
Qwertyuioppoiuytreqqwertyuiopasdfghjklqwertyuiopas

dfghjklzxcvbnmasdfghjklqwertyuiopzxcvbnmqwertyuiopaas

dfghjklaaaaaawwwwwweeeeeeqwertyuiopasdfghjklzxcvbn

maaaaaaaaasssssasdfghjklasdfghjklqwertyuiopzxcvbnmqwe

rtasdfghjklzxcv

Then the performance of three compression techniques

Huffman coding, LZW, RRLZW is measured for the above

four samples. In Table 13 the performance data has been

given.

Table 13: Performance data for the above samples

C
o

m
p

ressio
n

 T
ech

n
iq

u
e

Performance

S
am

p
le 1

S
am

p
le 2

S
am

p
le 3

S
am

p
le 4

LZW 48.21 55.00 65.56 16.29

RRLZW 52.86 67.71 75.90 27.15

From the above Table 10, it is seen that in all samples

the performance RRLZW is higher than LZW.

To realize this fact in the table, the following
performance histogram is drawn

Figure 4: Performance histograms of LZW and RRLZW for the above

samples

From this histogram graph it can be concluded that the

proposed method (RRLZW) performs better than the

standard LZW in terms of compression ratio.

V. CONCLUSION

Lossless data compression is a class of data

compression algorithms that allows the exact original data to

be reconstructed from the compressed data. LZW is one of

the most popular and efficient technique for lossless data

compression. But the technique suffers from redundancy in

its dictionary. In this paper, a modified LZW called

Redundant Reduced (RRLZW) has been proposed which

reduces the redundant entry from the dictionary and thus

reduce the code word size. This method also increases the

capacity of its dictionary. To measure the performance of

proposed RRLZW technique, four samples have been taken
in section IV. For these samples, the performance of LZW

and RRLZW have been measured which are recorded in the

Table 13. From Figure 4, it is seen that the performance of

the proposed technique RRLZW is greater than LZW. So it

can be concluded here, the proposed RRLZW works better

than formal LZW by reducing the redundant entry in its

dictionary. If the complexity is increased than LZW but it

would not be burden because our modern hardware speed is

increased rapidly.

VI. REFERENCES

[1]. Bentley J.L., Sleator D.D., Tarjan R.E., and Wei V.K. “A

Locally Adaptive Data Compression Scheme.”,

Communications of ACM 29, pp. 320-330, April 1986.

[2]. Jung B., Burleson W. P., “A VLSI Systolic Array

Architectures for Lempel_Ziv Based Data Compression”,

Proceedings of IEEE Symposium on Circuits and

Systems, 1994.

[3]. Milward M., Nunez-Yanez J. L. and Mulvaney D. ,

“Lossless Paralle Compression Systems”, Electronic

Systems and Control Division Research Department of

Electronic and Electrical Engineering, Loughborough

University, LE11 3TU, UK, 2003.

[4]. Welsh T., “A Technique for high-Performance Data

Compression”, IEEE Computer, vol. 17, pp 8-19, June 1984.

[5]. Huang D. T., “Fast and Efficient Algorithms for Text

and Video Compression”, A PhD. Dissertation, Brown

University, Rhode Island, 1997

[6]. Ziv J and Lempel A., “A universal algorithm for sequential

data compression", IEEE Transactions on Information

Theory, vol.-23, no. 3, pp. 337–343, Mar.1977.

[7]. Ziv J. and Lempel A., “Compression of Individual

Sequences via Variable-Rate Coding", IEEE Transactions on

Information Theory, vol.-23, no. 3, pp. 337–343, Mar.1978.

[8]. Yin Z. and Leung V. C.M., “A Proxy Architecture to

Enhance the Performance of WAP 2.0 by Data

Compression” , EURASIP Journal on Wireless

Communications, 2005.

[9]. SAYOOD K., “Introduction to Data Compression”,

Academic Press, SanDiego, CA, 2000.

[10]. Shannon C. E. , “A Mathematical Theory of

Communication”, The Bell System Technical Journal,

Vol. 27, pp. 379–423, 623–656, July-October, 1948.

[11]. Daitx F.F., Rosa, V.S., Costa, E., Flores, P., Bampi, S.,

“VHDL Generation of Optimized FIR Filetrs”, 2nd

International Conference on Signals, Circuits and Systems,

pp(s) 1 – 5,7-9 Nov, 2008.

