
Volume 5, No. 6, July-August 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 286

ISSN No. 0976-5697

Towards High Security and Fault Tolerant Dispersed Storage System with Optimized

Information Dispersal Algorithm

Hrishikesh Lahkar

Jain University, School of Engineering and Technology,

Kanakapura Road, Bangalore 562112, India

Manjunath C R

 Jain University, School of Engineering and Technology,

Kanakapura Road, Bangalore 562112, India

Abstract: A Robust Data Storage System is one of the classes of fault tolerant systems. It is built around protocols that enable retrieval of data
where only a subset of servers needs to be contacted. It enables efficient sharing and retrieval of data and the ability to scale to a number of
servers as needed. A Robust Data Storage System basically comprises two main considerations. Firstly, integrity and consistency of data and
secondly, security.

Keywords: IDA, CRS, RS, Dispersed Storage, AES256, SHA2.

I. INTRODUCTION

Today information dispersal algorithm is being widely

used. Data loss is the main concern in storage system and to

prevent this multiple disks are used. Storage companies such

as Cleversafe, Data Domain, Allmydata, Network Appliance

and Panasas are using information dispersal algorithm for

their product. Companies such as IBM, Microsoft and

Hewlett Packard are also doing active research on

information dispersal for storage systems.

In dispersed storage system, k + m disks are used,
where data and coding information are represented by k and

m. Codeword is calculated from the data in encoding

operation, and decoding operation recover the data from the

available disks after one or more disk failures. Storage

systems uses information dispersal algorithm, which ensure

that at least k disks should survive the failures, the data can

always be recovered.

Security is provide by dispersal system without the use

of encryption keys. Shamir’s technique [1] and Rabin’s

information dispersal is a non-systematic erasure codes [2]

is a (k, n) scheme. A client is required to have at least k
block of data out of the n blocks to reconstruct the file. It is

not possible for the client to reconstruct the file with less

than k blocks. Several of these systems use these techniques

to store the n data blocks at a different site, and assuming

that the intruder will never able to authenticate himself to k

of them does not use the encryption technique which

required to store the encryption key securely, without the

use of encryption strategies the storage system may be

vulnerable to attacks.

This paper focuses on improving the security and

performance of encoding and decoding of data which will be

dispersed across multiple servers. It does so by optimizing
the information dispersal algorithm and combining it with

all or nothing transform (AONT) [3]. In this paper we

demonstrate how to increase the security and the

performance of dispersed storage system. We compare the

encoding performance and the decoding performance of our

technique with traditional technique and show that our

scheme is significantly improves upon the traditional

scheme. Hence, we believe that our approach has great

potential in storage systems to have wide impact.

II. RELATED WORK

A. Information Dispersal Algorithm:

An information dispersal algorithm is a technique to

slice a file into n pieces in such a way that the file can be
recovered from some subsets of slices. There are many

application for Information dispersal algorithms such as

secure and reliable information storage, fault-tolerant and

efficient transmission of information in dispersed storage

systems.

Matrix-Vector product of (k, n) is a threshold scheme,

illustrated in Figure 1. The data to be dispersed is broken

into w bits length word. A generator matrix G is calculated

from the data, which has n rows and k columns. The matrix

G is multiplied by a k element vector D to generate an n-

element vector codeword C. the codeword generated will be

stored on a different storage node.

Figure 1: A basic matrix vector product.

The generator matrix for the data is created so that all

combinations of k rows produce an invertible matrices
which will gives us a method to recover D from k elements

of the codeword. Codeword element is calculated from each

row of G. We construct a new k×k matrix A from Generator

Matrix G which is from k surviving elements. Next we

Hrishikesh Lahkar et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,286-290

© 2010-14, IJARCS All Rights Reserved 287

convert matrix A to inverted matrix and multiply A−1 by the

remaining elements to produce D. The Generator matrix G

guarantees that A is invertible. Galois Field arithmetic [4],

GF (2w), is used to process the data where bitwise exclusive-

or and multiplication is implemented. So dispersal is

actually a part of well-known Reed-Solomon codes [5, 6].

B. Shamir’s Secret Sharing Algorithm:

One of the earliest algorithm for dispersal is Shamir's

secret sharing algorithm [7] where data containing w bits are

encoded in d0.The matrix used to calculate generator matrix

G for Shamir’s algorithm is Vandermonde matrix [8]. In

Vandermonde matrix gi,j = ij and n ≤ 2w. In Shamir’s
algorithm, storage requirements is nb bytes and encoding

operation for multiplication and XOR require O(knb).

Shamir's algorithm provides a very strong security for its

data.

C. Rabin’s Information Dispersal Algorithm:

Rabin's algorithms [2] improves the storage efficiency
and performance whereas security provided is very less. D

which contains the data and message earlier now contains a

word of data. So if we use Rabin's scheme, it require nb/k

bytes of storage. Which will definitely improves the storage

efficiency and the encoding performance. Since security

guarantee is less, Rabin come up with a solution to encrypt

the codeword with external encryption key but that does not

solve our problem.

D. Reed Solomon (RS) Codes:

To implement Reed Solomon Code [5, 6] we are

considering a storage system which is composed of n disks

array, each disk is of the same size. Each of n disks contains

data and coding information. We can say that n=k+m where

k hold the data and m hold the coding information often

called as parity and is calculated from the data. Data disks

are represented as D0, . . . ,Dk−1 and the parity disks as C0, . .

. ,Cm−1. Since we are mainly interested in Maximum
Distance Separable code [5] which is used to reconstruct the

original data if m disk out of n disk fails. Encoding process

partitions disk in to fix size strips. Each data disk contain

one strip which is used to encode each parity strip. Stripe is

the collection of k+m strips.

In Reed Solomon Code, Strip is a w bit word where w

should satisfy the condition n ≤ 2w+1 and w < {8,16,32,64}.

In RS code the value of w can be chosen by the user if n ≤

2w+1. Galois Filed arithmetic (GF (2w)) is used to operate on

each word w and the value of w is a number between 0-2w-

1. Since most system has fewer than 256 disk and to
perform best, w=8 is largely used for implementation.

Galois Filed arithmetic performs different addition,

multiplication and division operation on each word so that

the system perform to its best. The encoding and decoding

operation of RS Code is a simple linear algebra. In RS code

first we have to construct the Generator or Dispersal matrix

G. Vandermonde matrix is used to construct the Generator

matrix G. To create the codeword we multiply the

Vandermonde matrix by k dataword. Now the codeword

will be combination of k data and m code word. In Figure 2

a basic RS Code encoding is illustrated.

Figure 2: Reed Solomon Encoding

When k disk out of n disk fails, we are going to take the
transpose of the Generator matrix (GT) which will be

inverted and multiplied by the surviving k disk to

reconstruct the original data. RS code perform different

addition and multiplication operation in (GF (2w)) and

addition is equivalent to exclusive-or and the multiplication

operation is more complex, hence RS code are considered as

more expensive.

III. PROPOSED METHOD

In this paper, Rabin’s scheme is further modified to

achieve improved computational performance, security and

integrity by combining the All-Or-Nothing Transform with

Optimized Cauchy Reed-Solomon code. We used a

modified version of Rivest’s All-or-nothing Transform as a

preprocessing operation over the data. This operation we can

say that is a (s+1, s+1) threshold scheme and data is

composed of s words of size wA. None of the original words
could be decoded because data is encoded into s+1 different

words, unless all encoded words (s+1) are available. The

key use in this technique is encoded with the data. By

employing the AONT technique we achieve numerous

benefits such as no external keys are required, performance

is better than traditional scheme and storage requirement is

very less.

In modification of Rivest’s All or Nothing Transform

we show how the data is first encoded before sending it to

the information dispersal algorithm and also how the data

will be decoded after reconstructing the data by the
information dispersal algorithm. In Figure 3 and Figure 4

illustrate how the data is sliced and reconstructed from the

subset of slices.

Figure 3: Dispersal of AONT package using CRS

Hrishikesh Lahkar et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,286-290

© 2010-14, IJARCS All Rights Reserved 288

Figure 4: AONT is recovered from Surviving Slices

To perform the All or Nothing Transform, the data is

first composed of s words d0,......ds-1, each word is of WA

bits in length. Each codeword ci is calculated using a

random key K.

Where we used a encryption algorithm such as AES256

[9], a key-based algorithm. Codeword, ck, will be calculated

from the function of K and a hash value from the other

codewords so it will be not possible for an attacker to guess

K from any word or data. Along with the data we add an

extra data ds called canary [10]. The canary has a fixed and

known value so that we can check the integrity of data

during decoding operation. Next we calculate the hash value

h of s+1 codeword using SHA-256 [11] hash algorithm
along with it we generate c0,….cs as described above.

Our proposed work is depict by several diagrams along

with AONT and Cauchy Reed-Solomon coding. In Figure 3,

data is first passed to the AONT package where a canary is

added to the data, and a random key is used to encrypt the

data and canary. Now from this encrypted data a hash value

is computed and a difference is calculated by combining the

hash value and the random key by bitwise exclusive-or. The

AONT package is formed by appended the difference to the

encrypted data. The result of the AONT package is then use

as an input to the Information Dispersal Algorithm as show

in the Figure 4.

Figure 3: Encoding of AONT package

Our second modification is to implement a variant of

RS Code. Since RS code are expensive due to the use of

Vandermonde matrix, we will replace Vandermonde matrix
with Cauchy matrix [12] to from Cauchy Reed Solomon

[13] (CRS) Code. Modification of RS code is perform in

two ways. First Cauchy matrix will be used to generate the

Generator matrix instead of Vandermonde matrix. Secondly

the complex multiplication operation of RS code will be

replaced by XOR operation.

Figure 4: Decoding of AONT package

In Reed Solomon Code single words are used for
computation but CRS uses entire strip or data packet instead

of word where each strip is represented as w packet. So now

only XOR operation are performed for coding operation and

complex multiplication are eliminated. We perform the

XOR operation on all data packets to construct the code

packet. Each row of Transpose Generator matrix GT has

coding packet which contain 1 bit of data. Figure 5 illustrate

the matrix vector product of Cauchy Reed Solomon Code.

Figure 5: CRS example for k = 4 and m = 2

Here the packet size are multiple of the systems word

size which will make XOR more efficient. Also since w is

not related to word size hence w times packet size gives us

the strip size and we can take any value of w instead of

{8,16,32,64} as long as n ≤ 2w. Decoding operation in

Cauchy Reed Solomon is same as RS Code. Rows of the GT

which are correspond to those data packets that are found in

failed disk are deleted. The matrix GT is then inverted and
multiplied with the data packets of the surviving disk to

reconstruct the original data. The IDA computes n−k coding

slices by splitting the input into k slices and store them in

separate locations. The data slices are retrieved from these

location. In CRS we can specify the threshold number of

slices and without the threshold slices it is not possible to

recover the AONT packages. After recovering the AONT

package, next step is to reverse the AONT operation. In

reversing operation we have to first calculate the hash value

(h) of the data which is encrypted using AES256 algorithm.

The last block of our AONT package contain k⨁ h which

Hrishikesh Lahkar et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,286-290

© 2010-14, IJARCS All Rights Reserved 289

gives us the value of h. By performing exclusive-or

operation on the last block we can calculate the (k⨁ h⨁ h)

which will give us the random key k since h⨁ h equals zero.

Next we have to use this key to decrypt the encrypted data

and to check the corruption in data we use the canary.

IV. SECURITY EVALUATION

Our model for security evaluation is one where servers

belong to different domains. Servers may fail due to power

failure or water damage which are nonsecurity related
events, or the security of the system may be compromised;

for example an attacker can steal data form the servers. All

the techniques which we mentioned has a good level of

security. Without having all k slices it is not possible to

decode the data. However, if an attacker has less than k-1

slices and has some idea of what data he is looking, then

those technique differ greatly. So we will see how the

different algorithm behaves in security evaluation.

Shamir has great security called information theoretic

security where it is not possible for attackers to get any

information from less than k. In Shamir’s algorithm d0 has
2

w
 potential values that can generate k-1 slices of size w. To

determine the actual value of slices one need the kth slice.

In Rabin's algorithm, missing slices can be easily

guessed if the attacker knows the generator matrix and the

recognizable pattern of the data. Attacker can get the k

recognizable word from the k-1 slices using the 2w

possibilities for each words.

In our proposed method to decode any of the data, one

should have all of the encrypted data to decode it because to

discover k we need all the data. However attacker can easily

verify the predetermined value of D if he has K and one
slice, which is same as Rabin. But in our method attacker

will find it difficult to figure out the value of K, suppose the

attacker has the first slice where D's first encoded data is

present that means d0+E(K,1). To discover K, enumeration

is the only way, so to discover its real value 2w
A values must

be tested which is not possible because it will require trillion

computers to test trillion keys per second and it will take

more than thousand years.

V. PERFORMANCE EVALUATION

For evaluating the performance of our proposed system,

we considered the performance of encoding and decoding of

our method and compare it with the existing method. When

evaluating the encoding operation we took a large data file

partitioned in to n pieces each of which contain k+m

data/coding. Each of the n pieces are stored in different disk

and calculate the encoding performance. Due to limited
amount of memory of most computer and experimenting on

large file requires two fix size buffer, Data Buffer and

Coding Buffer. We then partitioned the Data and Coding

Buffer into k and m blocks. The encoder reads the data, of

size of the Data Buffer, from the large file and then perform

the encoding operation and stored it in the Coding Buffer.

Next it takes the content of Data and Coding Buffer and

store it to k+m files. This process is repeated until all the file

is encoded and record the encoding and the total time.

A. Encoding Performance:

To test the performance of our proposed method we

encode a file for w<=32. We select the best packet which we

consider here is [12, 4] configuration shown in Figure 6.

The result for [12, 4] is displayed in Figure with comparison

between RS and CRS codes. From the figure we can

conclude that CRS has the best performance compared to

the RS. Encoding speed of CRS is 260MB/sec as compared

to 50MB/sec of Reed Solomon because generator matrix is
not optimized in Reed Solomon code and hence XOR

operation increases which affects the encoding speed.

Figure 6: Encoding Performance for [12, 4].

B. Decoding Performance:

Decoding performance tested by converting the

encoding program to perform decoding. Here m random

data drives are chosen by the decoder. It sets the buffer

value of those encoded drives and perform the decoding

operation. Data drives are decoded because the decoding is

the one of the hardest in data drive. In Figure 7 we shown

the performance of [12, 4] for decoding operation. The

performance of RS decoder identical to RS encoder because

encoding process is optimized and uses standard RS

decoding. In decoding also CRS performs much better than
RS code as shown in Figure. The RS code decode at a speed

of 50Mb/sec whereas CRS perform at a speed of

166Mb/sec.

Figure 7: Decoding Performance for [12, 4]

Hrishikesh Lahkar et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,286-290

© 2010-14, IJARCS All Rights Reserved 290

VI. CONCLUSION

Dispersed storage system are widely used for reliability,
scalability and availability. Security in dispersed storage

system is provided by k, n threshold scheme along with the

secure storage of encryption key.

In this paper we described a new dispersal algorithm

where AONT is combined with the Cauchy Reed Solomon

codes to achieve a high level of security. We also compared

the performance of Cauchy Reed Solomon codes with Reed

Solomon codes. The performance of CRS coding is much

better than RS coding because we can chose w as small as

possible. During encoding and decoding dense matrix

should not be used for generator matrix. While this is very

useful but more work should be done. First, to improve the
result, multiple machine should be used to test our method.

Second, In CRS code, since multiple XOR operation are

performed, those operation can be scheduled in different

possible ways to yield improvements in performance.

VII. REFERENCES

[1] SHAMIR, A. How to share a secret. Communications of

the ACM 22, 11 (November 1979), 612–613.

[2] RABIN, M. O. Efficient dispersal of information for

security, load balancing, and fault tolerance. Journal of the

Association for Computing Machinery 36, 2 (April 1989),

335–348.

[3] RIVEST, R. All-or-nothing encryption and the package

transform. In 4th International Workshop on Fast Software

Encryption (1997), pp. 210–218.

[4] RIZZO, L. Erasure codes based on Vandermonde matrices.

Gzipped tar file posted at http://planete-bcast.inrialpes.fr/

rubrique.php3?id rubrique=10, 1998.

[5] MACWILLIAMS, F. J., AND SLOANE, N. J. A. The

Theory of Error-Correcting Codes, Part I. North-Holland

Publishing Company, Amsterdam, New York, Oxford,

1977.

[6] REED, I. S., AND SOLOMON, G. Polynomial codes over

certain finite fields. Journal of the Society for Industrial and

Applied Mathematics 8 (1960), 300–304.

[7] SHAMIR, A. How to share a secret. Communications of

the ACM 22, 11 (November 1979), 612–613.

[8] SHAMIR, A. How to share a secret. Communications of

the ACM 22, 11 (November 1979), 612–613.

[9] DAEMEN, J., AND RIJMEN, V. The Design of Rijndael,

AES—The Advanced Encryption Standard. Springer-

Verlag, New York, 2002.

[10] AYCOCK, J. Computer Viruses and Malware (Advances in

Information Security). Springer-Verlag, New York, 2006.

[11] WANZHONG, HONGPENG. Design and optimized

implementation of the SHA-2 hash algorithms. ASIC, 2007.

ASICON '07.

[12] LUBY, M. Code for Cauchy Reed-Solomon coding.

Uuencoded tar file:

http://www.icsi.berkeley.edu/luby/cauchy.tar.uu , 1997.

[13] PLANK, J. S., AND XU, L. Optimizing Cauchy Reed-

Solomon codes for fault-tolerant network storage

applications. In NCA-06: 5th IEEE International

Symposium on Network Computing Applications

(Cambridge, MA, July 2006).

http://planete-bcast.inrialpes.fr/
http://www.icsi.berkeley.edu/luby/cauchy.tar.uu

