
Volume 5, No. 5, May-June 2014 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010-14, IJARCS All Rights Reserved                                                                                                                                                                                            242 

ISSN No. 0976-5697 

Competent Load Rebalancing For Distributed File Systems In Cloud 

M.Bala Ganesh1, P.Sankari2 
Associate Professor /Department of CSE1, PG Scholar /Department of CSE2 

1,2Sembodai Rukmani Varatharajan Engg College 
Vedaraniam, India 

Affiliated by Anna University, Chennai, India 
 

Abstract— Distributed file systems are fundamental factors for cloud computing applications using MapReduce Technique [1]. MapReduce 
algorithms are used to do searching, sorting and other operations in efficient and parallel way [2]. In distributed file systems, nodes are used for 
storage and computing functions. Usually file is divided into n number of chunks and chunks will be allocated to n number of nodes in cloud 
environment. So that MapReduce can perform between the nodes in parallel manner. However, in cloud computing environment failure may 
occur at any time and nodes may upgrade, add or replaced in the system. Files can also be dynamically deleted, appended and created [1]. This 
leads to load inequity among the nodes in a distributed system. That is file chunks may not equally distribute across the nodes. Existing 
distributed file system in clouds implemented based on central load balancer for chunk reallocations [1]. This dependency is completely 
insufficient in large scale dynamic and data intensive clouds, failure prone environment because of the overload of the central load balancer. 
CLRDFC against centralized load rebalance technique [1] and strongly recommends distributed load rebalancing algorithm, which taking care 
of load rebalancing among the nodes. So that load rebalancing task can share across multiple nodes and can avoid total system failure at a time 
[1]. Replication results indicate that CLRDFC is as good as with the existing central node approach and significantly doing fine than prior 
distributed algorithm in terms of movement cost, load imbalance factor and algorithmic operational cost. 
 
Keywords- Distributed file systems, Load balancing, Cloud environment , chunk , node

I. INTRODUCTION 

Cloud computing is a fast growing technology [1]. The 
technology behind the distributed file systems are internet 
and distributed file systems.  In Cloud environment users 
will get storage area and other computer related resources 
based on their necessity. Our mail services are best 
examples for cloud computing environments [3]. Just we are 
having internet access and mail account to access our mails 
without worrying about storage capacity and hardware 
requirements. All the mail servers provide storage space for 
our mail and we are not bothered about hardware and 
software requirement for mail service, this mail service is a 
best example for cloud computing [3]. Just we need internet 
connection and browser to connect our email. Technologies 
and algorithm behind   the cloud computing are MapReduce 
algorithm, distributed file system, distributed hash table 
concepts and virtualization[4]. Usually in a cloud computing 
environment files will be partitioned into n number of 
chunks and that chunks would be allocated to different 
nodes called chunk server. This will make Mapreduce tasks 
easier among different node in a parallel way. For example 
[1], consider a word occurrences calculation application 
which counts the number of occurrences of words in a large 
file. The files are divided as n number of chunks and 
assigned among the chunk servers. In such a system each 
chunk server can calculate the word occurrences by 
scanning the respective chunks in a parallel manner. 
Uniform distribution of load among different nodes, can 
drastically increase performance of MapReduce applications 
[4].  

II. RELATED WORK 

CLRDFC goal is distribute the file chunks among the 
nodes as possible equally between different nodes. So that 

none of the node will handle more number of chunks. 
Considering geography region of the node greatly reduce the 
network traffic while load rebalancing [1]. Sometimes nodes 
may share load between two different very faraway nodes 
even if there is a possibility to share load with the neighbor 
node. This may leads to network traffic. Utilizing nodes in 
efficient way to improve the performance is demanded [1]. 
CLRDFC recommends splitting the load rebalance task to 
the individual nodes by having separate DHT’s for n number 
of nodes. Location of a chunk can easily find by simply 
referring a Distributed Hash Table (DHT) with a key value.  

DHT will be having unique key for each and every file 
chunks in the distributed environment. [1] DHT provides 
self node management and re adjust mechanism while there 
is an imbalance in the load due to addition and removal of 
chunks from the node. Implementation of load rebalance has 
done by influencing DHT’s algorithm for distributed file 
chunks to improve the uniform balance of the node as much 
as possible. So that nodes are able to handling load 
rebalance spontaneously without global knowledge and 
synchronization. All other existing systems are based on 
centralized node approach to manage metadata of files and 
balancing loads of the nodes based on the metadata [2].  

When the size of the data increased and number of 
frequent access to the files increase, central node approach 
may leads to underperformance due to load congestion 
problem [1]. In a large scale cloud central approach may 
lead to load imbalance and total failure of entire system. In a 
large scale environment cloud can have hundreds of 
thousands of nodes. [1] Existing load rebalancing DHT 
algorithms implemented without consideration of physical 
region of the node and heterogeneity of the node. All DHT’s 
are helping to balance the node generally by maintain node 
details and adjusting load between the respective nearest 
nodes [1]. First, the typical unsystematic selection of node to 
store data leads to load inequity among nodes. Some nodes 
may end up with a huge load data and some may end up 



P.Sankari et al, International Journal of Advanced Research In Computer Science, 5 (5), May–June,2014, 242-245 

© 2010-14, IJARCS All Rights Reserved                                                                                                                                                                                             243 

with very less load of data. An important factor among 
DHTs is load-balance among the nodes with even 
distribution of items (or equal load share) to nodes in the 
DHT. [1] By leveraging the geographical position of node 
information and also utilizing the capable nodes help us to 
improve the overall system performance and additionally 
reduce the complication of DHT algorithm as much as 
possible [1]. Simulation of the results indicates, proposal is 
as good as than the existing central node approach and 
significantly performs fine than prior distributed algorithm 
in terms of   data transportation cost, load imbalance factor 
and algorithmic operational cost [1]. 
 

 

Figure 1. Architecture Diagram of CLRDFC 

The above architecture diagram [1] demonstrates the 
distributed DHT’s instead centralized DHT approach to 
maintain well balanced load across the nodes. 

III.PROPOSED WORK 

In [1] the proposed system distributed load rebalancing 
algorithm taking care of load rebalance among the nodes. So 
that load rebalancing task can share across multiple nodes 
and can avoid dependency on single node. Decentralized [5] 
DHT algorithm is compared against a centralized approach 
in a production system and a better than any other existing 
solution in the cloud environment in terms of load balance 
and performance factor. Proposed work strongly 
recommends distributed hash table nodes against centralized 
node and also considering other key factors like physical 
location of the node and algorithmic overhead [1]. 

A. Balancing Chunks: 
For example [1], consider set of nodes V is present in 

the distributed environment and the cardinality of the V is 
|V| = n. typically n can be hundred or thousand or whatever 
maybe. In system files are stored in a number of nodes. Set 
of files represented as F. Each [1] file f € F is split into 
number of same size chunks represent by Cf. Usually load 
of the chunks proportional to the number of chunks hosted 
by the server. 
 

                        
(a)                    (b) 

                        
(c)               (d) 

Figure 2. Load rebalancing problem illustration 

The above figure example [1] illustrates the load 
rebalancing problem, where (a) an initially allotment of 
chunks of 6 files C1, C2, C3, C4, C5, and C6 in three nodes 
Node1, Node2, and Node3, (b) files C2 and C5 are deleted, 
(c) C6 is appended, and (d) node Node4 joins. The nodes in 
(b), (c), and (d) are not in a load balanced state. However, 
[1] in cloud computing environment node failure may occur 
at any time and nodes may added, upgrade or replaced in the 
system. Files [1] can also be dynamically deleted, appended 
and created. So files in the F dynamically created deleted 
and modified. The result of these operations leads to load 
imbalance problem in a system. Objective here is 
implementing algorithm to rebalance a load (i.e. distributing 
chunks equivalently as much as possible among the nodes). 
Transport cost is nothing but migrating a chunks to different 
locations to balance the load between the nodes.  

B. Chunk Rebalancing Factors & Principle: 
CLRDFC proposed n number of DHT instead of one 

centralized DHT to avoid bottleneck problem [1]. Generally 
a file will be split into n number of equal size chunks and 
each chunk has a unique identifier generated by SHA1 [4] 
hash function algorithm. So in DHT nodes details are stored 
as key and respective physical address of a node is stored as 
value. So that DHTs can have all the details about the node. 
DHTs [6] will have details about all the nodes and chunks 
present in the nodes and respective load details of nodes. 
dynamic [1] addition, modification and deletion of chunks  
lead to load imbalance and bring down performance of 
MapReduce tasks in a large cloud environment. So [8] 
whenever load imbalance is happening beyond the threshold 
level, load balancing task must be taken place to manage 
effective cloud operations.  

The new proposal recommends load balance among the 
same region nodes instead of faraway nodes, it will 
drastically reduce the load transfer cost while load 
rebalancing. So each and every time DHT [1] will search for 
a nearest capable node to share the load within their limited 
knowledge of DHT table. Suppose if DHT does not find a 
capable node within their limited entries of key value pairs 
then it will send random adhoc request to the nearest DHTs 
to get capable nodes to share load. Once if it gets responses 
from the DHTs then it will decide and choose the capable 
nodes to share load based on their geographical region, 
distance, node capacity and chunk size. Heterogeneity [7] of 
the nodes    (i.e. different nature of the nodes) also important 
considerable factor while load rebalance. Whenever load 
imbalance occurs DHTs will try to balance the load within 
their limited knowledge. Suppose if it does not able to 
accommodate among the nodes which comes under same 
DHT then it will try to accommodate the load in balanced 
state by sharing load with nearest capable nodes. DHTs [2] 
will find nearest capable nodes by sending random request 
to the nodes which present under same region and then 
based on the response, it will decide the capable nodes.  



P.Sankari et al, International Journal of Advanced Research In Computer Science, 5 (5), May–June,2014, 242-245 

© 2010-14, IJARCS All Rights Reserved                                                                                                                                                                                             244 

Capable node selections are always based on node 
heterogeneity [1] , geographical location of the nodes and 
node capacity and capability. All the above factors made 
load rebalance as very effective. In large scale cloud 
environment if the loads are evenly distributed among nodes 
then MapReduce [9] tasks can perform very effectively and 
performance of the cloud also will be very high. The nodes 
used to run load rebalancing algorithm periodically, to 
maintain the balanced state of the nodes. Load rebalance has 
achieved without global awareness of DHT [1] and it would 
greatly reduce the network traffic and movement cost.  

C. Utilizing Network Addresses: 
In an existing [1] system physical locality of the nodes 

did not considered as factor, So that there may be a chance 
of migrating chunks between two faraway regions is very 
high even though there is possibility of sharing loads among 
the same region nodes. It leads to unnecessary network 
traffic and performance problem sometimes. Consideration 
of geographical [1] location of the nodes before it starts 
sharing the load among nodes is very effective. Same region 
nodes should have highest probability to share load among 
them. Always same region node would give highest priority 
to share the load. Message round-trip delay method has been 
used to find nearest node. Physical locality called as 
network address maintained in the DHT [1] along with 
chunk server Id and status. Usually nodes from the same 
geographical locations named with the numerically nearby 
Id’s. For example [1] n, n+1, n+2 and so on. So that nearest 
node can easily choose by seeing naming convention. Nodes 
present in the distributed system are may heterogeneous(i.e. 
number of file chunks can occupy by each node may vary 
due to heterogeneity of the nodes). Each nodes average 
capacity of the load in a balanced state described as average 
threshold level of the node. Typically [1] load of the node is 
proportional to the file chunks counts in the node.  

D. Replica Management: 
Generally in distributed file systems the same file 

chunks may be replicated in different nodes to handle node 
failure [1] and to improve availability of data. In existing 
system backup are not managed properly and two three 
backup  of same chunks may placed under the same node. 
Replicas [10] are used to serve faster and better way for 
most frequently accessed data. Each light weight node may 
samples the number of nodes and each node having 
probability of 1/n to share their loads. Here n is the number 
of nodes. Consider n replicas for each chunk where the 
chance of n replicas [1] is stored in the same node due to 
transfer of chunks is independent of their starting location. 
For example [1] in the file system with thousand nodes and 
n =3 (that is 3 replicas for single node) then the probability 
of storing two replica in the same node is 1/1000000 and 
storing three replicas in the same node is 1/1000000000.  
For Example [1] Directory-based scheme has been used to 
find the k replicas in a distributed system. Usually file chunk 
is mingled with n-1 pointers that keep track of the n-1 
replicas to store in randomly selected chunk servers. For 
Example [1] redundant replicas in a system in this approach 
are comparatively very less than existing approaches. 
Statistically [1] for replica n = 2, n = 4 there is no redundant 
replicas in a node but for the case n =8, there would be more 
possibility of redundant node. Statistically 2% of the nodes 
may have redundant replicas for n=8. 

IV. PERFORMANCE EVALUATION 

In Distributed environment loads of the nodes are 
rebalanced spontaneously [1] by the nodes.  Which greatly 
decrease the time and increase the performance due to this 
reliability and scalability [4] and performance of the system 
would be significantly enhanced. Localities of the chunks 
are physical address [1] of the chunks which stored. Finding 
region address of the chunks to share loads among nearest 
nodes can greatly reduce the traffic of the network and 
increase the performance of the cloud. Heterogeneity [2] of 
the network deals and considers the factor of different 
chunks sizes in the network also used to avoid unnecessary 
network traffic and making enough space to increase the 
network performance. Reproduction system is nothing 
keeping backup copies of chunks to handle failure of nodes 
and sometimes high frequently accessed data would keep in 
different places for fast serving purposes. 

 
Figure. 3.  Load distribution chart 

Based on above   Load distribution chart workload of 
the nodes evenly distributed across the multiple nodes and 
its leads to increase the performance of Map reduce tasks in 
the cloud. 

The above simulated chart explains and compares how 
effectively load has been rebalanced in our system than 
existing load balancing system. Simulation results prove the 
effectiveness of the distributed load rebalancing concepts. 
The simulation result clearly shows the effectiveness of the 
proposed system compare with existing system. 
 

 
Figure. 4.  Movement cost chart 



P.Sankari et al, International Journal of Advanced Research In Computer Science, 5 (5), May–June,2014, 242-245 

© 2010-14, IJARCS All Rights Reserved                                                                                                                                                                                             245 

Comparison of load movement cost has been 
demonstrated in the above chart. Simulation results 
noticeably shows the effectiveness of considering 
geographical location of the node while load rebalancing. 

V. CONCLUSION 

Based on the study and conclusion our approach for the 
load rebalance through distributed hashtable among the 
nodes delivering very high performance and well balanced 
node maintenance. Consideration of the geographical 
location [1] of a node greatly reduces the movement cost 
and network traffic. This approach leads to balance the 
masses of nodes and bring down the movement cost [1], 
whereas taking advantage of physical network environs and 
node non uniformity (heterogeneity). Load rebalance 
algorithm [1] and Replica management concepts are greatly 
enhanced and significantly performs well than existing 
system.  

VI. REFERENCES 

[1]. Hung-Chang Hsiao,Hsueh-Yi Chung, Haiying Shen and Yu-
Chang Chao, “Load Rebalancing for Distributed File 
Systems in Clouds” , Proc. IEEE Transactions on parallel 
and distributed systems, Vol. 24, No. 5, May 2013 

[2]. Bharambe A,  Agrawal A and  Seshan (2004) ‘Mercury: 
Supporting Scalable Multi Attribute Range Queries’ Proc. 
ACM SIGCOMM ’04, pp. 353-366.   

[3]. Eastlake D and Jones P (2001) ‘US Secure Hash Algorithm 1 
(SHA1),’ RFC 3174, Sept. 2001.   

[4]. Ganesan P, Bawa M and  Garcia-Molina H (2004) ‘Online 
Balancing of Range Partitioned Data with applications’ Proc. 
13th Int’l Conf. Very Large Data Bases (VLDB ’04),pp.444-
455, Sept 2004 

[5]. Ghemawat S, Gobioff H and Leung (2003) ‘The Google File 
System,’ Proc. 19th ACM Symp. Operating Systems 
Principles (SOSP’03), pp. 29-43, Oct. 2003. 

[6]. Gudadhe P.D, Gawande A.D and  Gautham L.K  (2009) 
‘Enhance the performance of Hadoop distributed file system 
for random file access using increased block size’. Proc.  
ACM SIGCOMM ’09, pp. 63-74,.  

[7]. Hairong Kuang and Robert Chansler 2012) ‘Enhanced 
Hadoop Distributed File Sys’ vol. 63, no. 6, pp. 217-240, 
Mar. 2012  

[8]. Manku G.S (2004) ‘Balanced Binary Trees for ID 
Management and Load Balance in Distributed Hash Tables,’ 
Proc. 23rd ACM Symp. Principles Distributed Computing 
(PODC ’04), pp. 197-205, July 2004. 

[9]. Rowstron A and Druschel P (2001) ‘Pastry: Scalable, 
Distributed Object Location and Routing for Large-Scale 
Peer-to-Peer Systems,’ Proc. IFIP/ACM Int’l Conf. 
Distributed Systems Platforms Heidelberg, pp. 161-172, 
Nov. 2001.  

[10]. John Howard, Michael Kazar, Sherri Menees, Robert   
Sidebotham, and Michael West. Scale and performance in a 
distributed file system. ACM Transactions on Computer Sys, 
6(1):51–81, Feb 1988.     

 

http://www.aosabook.org/en/intro1.html#kuang-hairong�
http://www.aosabook.org/en/intro1.html#chansler-robert�

	RELATED WORK
	Figure 1. Architecture Diagram of CLRDFC
	PROPOSED WORK
	PERFORMANCE EVALUATION
	CONCLUSION
	REFERENCES

