
Volume 5, No. 5, May-June 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 170

ISSN No. 0976-5697

A Comparative Study of NoSQL Databases

Abhishek Prasad1, Bhavesh N. Gohil2
1,2S.V.National Institute of Technology,

Ichchhanath, Surat,India

Abstract:In today’s scenario, web applications are facing new challenges while serving millions of users. It can be easily understood and
appreciated that while accessing these web applications from all over the world, users expect the services to be always available with high
performance and reliability. The rate of growth of successful web services is much faster as compared to increase in the performance of
computer hardware. Therefore, after sometime a web application which attempts to provide large number of web services and support large
number of users needs the ability to scale. This study explores information on various NoSQL (Not only Structured Query Language) databases
and attempts to make a comparison between them based on different criteria. The NoSQL databases were created to offer high performance and
high availability especially for large scale and high concurrency applications at the expense of losing the ACID (Atomic, Consistent, Isolated,
Durable) properties of the traditional databases in exchange with a weaker BASE (Basic Availability, Soft state, Eventual consistency) features.

Keywords: Big Data;NoSQL; Scalability; Sharding; Replication; Comparison

I. INTRODUCTION TO NOSQL DATABASE

A. Understanding of NoSQL database:
a. What isNoSQLdatabase?:Since last 15 years or so,

interactive applications have changed dramatically
which has led to the change in the data management
requirement of those applications. Nowadays, three
interrelated megatrends: Big Data, Big Users and
Cloud Computing are driving the adoption of NoSQL
technology. Therefore, NoSQL is being increasingly
considered as a feasible alternative to relational
databases, especiallyasthey can simplify operating on
large scale providing betterresults on clusters of
standard and commodity servers.Further, it is opined
that a schema-less data model is better for the
capturing a variety of data processed today.

b. Why NoSQL hasLargeUsers?:Today, with the rise in
global Internet use, there has been considerable
increase in the number of users and the time theyspend
online. Smartphones and tablets have started gaining
popularity, as internet is easily accessible anywhere
through these easy-to-handle devices.

It is important to support large numbers of concurrent
users.At the same time it is also significant to dynamically
support rapidly growing (or shrinking) number of concurrent
users.

To support large number of users in addition to the
dynamic nature of application usage patterns, there is a need
for more easily scalable database technology. With
relational technologies, it is difficult to get dynamic
scalability while maintaining the performance users demand
for their application.
c. NoSQL can handle vast data:With the advent of ever

growing technology, it is easier to capture data by
accessing third parties sources such as Facebook. With
a single click one can capture personal user
information, geo location data, social graphs, machine
logging data, and sensor-generated data. Data is very
huge and ever-expanding.Use of the data can rapidly

change the nature of communication, shopping,
advertising, entertainment, and relationship
management. It may also happen that applications
which don’t leverage it quickly and timely will lag
behind in no time.

d. NoSQLbetter suited for cloud computing:Presently,
most new applications use three-tier Internet
architecture. These applications run in a public or
private cloud, and support large number of users.In
three-tier architecture, applications are accessed
through a web browser or mobile application
connected to the Internet. In the cloud, a load balancer
directs the incoming traffic to a scale-out tier of web or
application servers that processes the logic of the
application.

Traditionallyrelational databases were the popular
choice for database tier. These relational databases
arecreating a lot of problem. But these are still used, because
they havepeculiar features of being centralized, share-
everything technology that scales up rather than scalingout.
They are not fit for applications that require easy and
dynamic scalability. NoSQL databases are more suited in
such applications since they provide distributed, scale-out
technologies.Therefore,NoSQLis a better option for highly
distributed nature of the three-tier Internet architecture.

B. Common Characteristics of NoSQL:
NoSQL databases share a common set of characteristics

as mentioned below:
a. No Schema required:Data can be inserted into

NoSQL database without first defining a rigid database
schema. Also, the format of the data being inserted can
be changed at any time, without disrupting the
application. This characteristic provides immense
application flexibility.

b. Auto-sharding:A NoSQL database automatically
spreads data across servers, without requiring
applications to participate. Servers can be added or
removed from the data layer without application
downtime, with data automatically spread across the
servers. Most NoSQL databases also support data

Bhavesh N. Gohil et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June,2014,170-176

© 2010-14, IJARCS All Rights Reserved 171

replication, storing multiple copies of samedata across
the cluster and even across data centers to ensure high-
availability and support disaster recovery.

c. Distributed query support:“Sharding” relational
databases can reduce the ability to perform complex
data queries operation. NoSQL database systems retain
their full query expressive power even when data is
distributed across huge number of servers.

d. Integrated caching:To increase thedata throughput
and reduce latency, advancedNoSQL database
technologies transparently cache data in system
memory.

e. Reliability (Fault Tolerance):If some machines within
the system crash, the rest of the machines remain
unaffected and work continues without any stoppage.

f. Scalability:In distributed computing, more machines
can be easily added to the system according to the
requirements of the user and the application.

g. Sharing of resource:Similar to data or resources
shared in distributed system, other resources can be
also shared like expensive printers.

h. Speed: A distributed computing system can provide
more computing power. It can provide parallel
computations.

i. Performance: The collection of processors in the
system can provide higher performance than a
centralized computer. This also gives better
price/performance ratio.

C. High Level Comparison with SQL Databases:
Table 1: Comparison between SQL and NoSQL database [4]

 SQL Databases NoSQL Databases

Types

One type with minor
variations between them.

Many different types of
databases including key-
value, wide-column,
document databases, and
graph databases.

Data Storage
Model

Records are stored as rows
and columns where each
column stores specific
data about that record.
Separate data types are
stored in separate tables
which are joined together
when complex queries are
executed.

Varies based on type of
database. For example,
key-value, Document
databases store all
relevant data together in
single "document" in
JSON, XML, or another
format, which can nest
values hierarchically.

Scaling

Vertical scaling: a single
server is made
increasingly powerful to
meet the increased
demand. It is possible to
spread SQL databases
over many servers, but
requires significant
additional engineering.

Horizontal scaling:
simply add more
commodity servers or
cloud instances to
increase capacity. The
database automatically
spreads data across
servers as necessary

Supports
Transactions

Yes, updates can be
configured to complete
entirely or not at all.

In certain circumstances
and at certain levels (e.g.,
document level vs.
database level)

Data
Manipulation

Structured query language
using Select, Insert, and
Update statements,

Through object-
oriented APIs

Consistency

Can be configured for
strong consistency.

Depends on product.
Some provide strong
consistency (e.g.,
MongoDB) whereas
others offer eventual
consistency (e.g.,
Cassandra)

II. REVIEW OF NOSQL DATABASES

A. SimpleDB:
Amazon provides a web services in the form of Simple

DB and distributed data base. SimpleDB does not need any
rigid structure and is easy to use. Since, SimpleDB a
structure free , it decides of its own about the requirement of
indexes and accordingly provides a simple SQL like query
interface. [2]

In SimpleDB , to ensure the safety of data and also to
increase the performance, all data are replicated onto
different machines in different datacenters. Because of this
special feature, there is no possibility of automatic sharding
.It leads to safeguarding of data from scaling. Scaling is
possible only in default where in the application layer has
performed the data partitioning by itself. [2]

Some of the salient features of Simple DB which
encourages /discourages its use are as mentioned below:
a. Consistency: SimpleDB provides eventual consistency

but does not provide MVCC due to which conflicts
cannot be detected on the client side.

b. Limitations:Like any system, SimpleDB also has
some limitations in term of capacity of domains,
inquiry time, and quantity of domains it can handle.
These limits are not rigid and are likely to change as
long as system is in use. Some of restrictions are as
tabulated below:

Table 2: Parameter and limitations of Simple DB [2]
Parameter Limitation
Domain Size 10 GB per domain / 1

billion attributes per
domain

Domains per Account 100
Attribute value length 1024 bytes
Maximum items in Select response 2500
Maximum query execution time 5s
Maximum response size for one Select
statement

1MB

B. Dynamo:
Amazon uses Dynamo for the purpose of its own

internal application .Dynamo is a distributed key-value
storage system. While performing its function Dynamo
provides an inquiry API, thus allowing customers to recover
a value for a unique key and to put key-value pairs into the
storage with values less than one megabyte. [2]

In Dynamo, the work load is dispersed based on the
capacity of the nodes. Irrespective of position, each load
performs same task. To safe guard the complete data centre
from any catastrophe,every key-value pair is duplicated with
a geological distribution over several data-centers
throughout the world. [2]

Dynamo can provide availability, consistency, cost-
effectiveness and performance. Dynamo uses optimistic
replication with multi-version concurrency control (MVCC)
to achieve a type of ultimate stability. It has properties of
both databases and distributed hash tables (DHTs).
a. Sharding:Dynamo uses various types of consistent

hashing to partition data. Virtual nodes are created by
sub dividing each node, and finally these virtual nodes
are linked with a random position in the key space.
One can define key space as a group of numbers into
which every key can be mapped with a hash function.

Bhavesh N. Gohil et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June,2014,170-176

© 2010-14, IJARCS All Rights Reserved 172

A node is accountable for all keys positioned between
itself and its predecessor. [2]

b. Replication:The working pattern of Dynamo is that it
dictates number of replicas a key should have with the
number. Concerned node for k replicates k to its N-1th
successors. Then MVCC is used for letting the
asynchronous synchronization between the replicas.
Every time, a new revision is created. Vector clocks
are used for implementing the revision control of
Dynamo. [2]

c. Consistency:Dynamo uses a configurable quorum like
approach. The client can specify the number of
replicas R, a key must be read and number of replicas
W must be produced during a write. With R + W > N,
would be equivalent to a quorum system with strong
consistency. With R+W < N, would be in favor of
latency and availability over consistency. [2]

C. MongoDB:
MongoDB is a structure free, cross-platform document

oriented database developed by 10gen. It has an open source
neighborhood [5]. The name MongoDB has originated from
"humongous". The database is meant to be scalable and
fast. Mongodb is written in C++. Large binary files like
images and videos can be stored and distributed by using
MongoDB . Each document is assigned an ID field, which
acts as a primary key. MongoDB stores documents as
BSON (Binary JSON) objects, which are binary encoded
JSON like objects[6]. MongoDB can also be effectively
used for indexing over embedded objects and arrays.
a. Replication:Repica set can be defined as a group of

Mongod occurrences that host the same data set. One
mongod, the primary receives all write operations. All
other occurrences, secondaries apply operations from
the primary so that they have the same data set. The
primary accepts all write operations from customers.
Replica set can have only one primary. Replica sets
provide rigid stability. The primary logs all changes to
its data sets in its oplog to support replication.

b. Sharding:MongoDButilisesautosharding, which takes
care of irritants normally created during manual
sharding. The cluster handles division of data and
rebalances automatically.

A MongoDB cluster has three components; Shard
nodes, configuration servers and routing services known as
mongos. Mongos are independent and therefore can be
employed to function in parallel
c. Consistency:To facilitate reading an old version of an

executed update operation, MongoDB provides
concluding consistency to the respective process. [2].
MongoDB has no version concurrency control and no
transaction management.

d. Failure Handling:MongoDB is designed in such a
way that texts are written to the journal within 100
milliseconds [5]. The written text is “resilient”
meaning that the data will still be recoverable even
after a pull-plug-from-wall and a hard restart. Inspite
of the fact that the journal commit is nearly
instantaneous, MongoDB takes time to write the data
files. Normally, by default MongoDB may take a
minute to write data to the data files [5]. The slow
speed of MangoDB does not affect stability because
the journal has adequate material to ensure recovery
from sudden loss[5]. Depending upon requirement, it

is possible to alter the time gap for writing to the data
files.

D. CouchDB:
CouchDB is a non-structured document dependent

database with a favourable replication mechanism. The
project is written in Erlang and is part of the Apache
Foundation [2]. CouchDB is a NoSQL database which uses
JSON to store data, JavaScript its query language using
MapReduce, and HTTP for an API. It has a unique feature
of multi-master replication. In CouchDB a unique identifier
is used for its document. In CouchDB, updating process is
carried out on whole documents. Revision id is used in
concurrency control of the document. One other interesting
feature in CouchDB is the option to specify a validation
functions in JavaScript. Couch DB has a unique feature
which enables it to specify validation functions in
JavaScript.
a. Replication:In replication process, CouchDB compares

the database of source and the destination to determine
the difference of documents between the source and the
destination. Destination documents of same revision
which already exist are not transferred.
A replication task will finish once it has reached the end

of the changes fed in the system. If its continuous property
is set to correct figure, it will wait for new changes to appear
or the task is abandoned. Replication tasks also generate
check point documents on the destination.

Both nodes can be used for writing and reading in a
master-master setup. Such a setup will not have effect on
partition. It is possible to synchronize CouchDB with more
than one other database [2].

The shortcoming of optimistic replication is its inability
to handle conflicts between different revisions of the same
object [2].

CouchDB uses the benefit of hash histories to identify
duplicate versions of the same document; this means that an
update of a document only changes the revisionid [2].
b. Sharding:CouchDB does not have its own built in

sharding mechanism yet, but at present there are two
projects which provide sharding support for CouchDB.

The first project is The Lounge [2], a tool set that
contains proxies, which can dispense the data to different
CouchDB instances. The Lounge is developed and used by
Meebo.com.

The Cloudant[2] is another project that provides data
partitioning for CouchDB .The Cloudant provides a hosting
service with automatic sharding functionalities for
CouchDB databases.
c. Consistency: CouchDB database consistency is

dependent on how CouchDB is used. CouchDB
provides eventual consistency if its built in replication
feature is used in a master-master configuration. But
the replication can also be used in a master-slave
setup, which would provide strong consistency. [2]

d. Failure Handling:CouchDB has no method to deal
with failures of nodes. Currently it only provides the
replication mechanism. CouchDB uses an append only
B+Tree as file structure to be strong against power
disruptions and to minimize the number of seek
operations of the hard drive while writing into the
database. The copy-on-write characteristic of
CouchDB makes sure that the files on the disk are
always in a constant state, even if a power failure

http://docs.mongodb.org/manual/reference/program/mongod/#bin.mongod�
http://docs.mongodb.org/manual/reference/program/mongod/#bin.mongod�

Bhavesh N. Gohil et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June,2014,170-176

© 2010-14, IJARCS All Rights Reserved 173

occurs. Because of this, CouchDB does not need a
transaction log file and can always be disrupted
without the risk of damaging the database files. [2]

E. BigTable:
BigTable is one of Google's techniques to deal with its

vast amount of data. It is built on top of Google's distributed
file system GFS[2] and is used by Google for several
applications with different demands on the latency of the
database.

BigTable is tolerant to hardware failures as it is
designed to be scalable, distributable and therefore Google's
own implementation is not available to everyone, besides
the usage inside Google's App Engine.
a. Sharding:The tables within a BigTable databases are

divided by their row-key into several key-ranges,
which are called tablets .Every tablet is allocated to
only one tablet server at any instant. A master server
stores the meta information regarding the existing
assignment of each tablet and allocates the currently
unassigned tablets to currently available tablet
servers.[2]

b. Replication:BigTable does not directly replicate the
database because one tablet can only be assigned to
one tablet server at a time, but it uses Google's
distributed file system GFS[2] for the storage of the
tablets and log files, which handles the replication on
the file level.

c. Consistency:BigTable can provide robust consistency
because its each tablet is assigned only to a single
tablet server. This limits the availability due to the
eventual limited accessibility of tablets during the
recovery from the loss of a tablet server. BigTable
permits creation of atomic operations on one row and
also offer the ability to make transaction inside a row.
It is not possible in BigTable to make transactions over
multiple rows.[2]

d. Failure Handling:In BigTable, log files are used for
all write operations which are akin to the transaction
log files of relational databases. Each tablet server
writes its own log file to GFS. Therefore, during the
recovery phase each tablet server of a previously lost
tablet server has to read its log file and search it for
write operations on the tablets.
There could be another failure scenario where in the

master fails. In such situation, tablet servers choose a new
master server using the Chubby service and restore the
meta-data tablets. This is carried out by using the root tablet
file in the Chubby service. Five servers are there to ensure
the availability of the Chubby service, and at least three of
them are required to get an exclusive lock on a Chubby
file.[2]

F. Cassandra:
Cassandra is basically a hybrid between a key-value and

a tabular database.
A column family is similar to a table in an RDBMS.

Unlike a table in an RDBMS, different rows in the same
column family do not have to share the same set of columns.
Further a column may be added to one or multiple rows at
any time.[7]

In Cassandra, each key corresponds to a value which is
an entity. Each key has values as columns, and columns are
clustered together into sets called column families. Then,

these column families could be regarded as tables. A table in
Cassandra is a distributed multi-dimensional map indexed
by a key.[7]

Furthermore, applications can identify the sort order of
columns within a Super Column or Simple Column family.
a. Replication:Replication is used in Cassandra to

achieve high availability and durability. Cassandra
offers the client with various alternatives as to how
data needs to be replicated. Application decides
replicas which are chosen based on the Replication
policy. Cassandra system elects a leader amongst its
nodes using a system called Zookeeper[8]. A node is
responsible for certain ranges of metadata which is
cached locally at each node and in a flawless manner
inside Zookeeper. In this manner if a node which has
crashed and retrieved subsequently is aware of ranges
it was responsible for.

By relaxing the quorum requirements, Cassandra offers
durability assurance in case of node failures and network
partitions. Malfunctioning of data center may happen due to
power disruptions, cooling failures, network failures, and
natural disasters. Preference list of a key are actually
constructed in such a manner that the storage nodes are
extended across multiple datacenters.
b. Consistency:Cassandra can be everything from a strict

consistent data store to a highly eventual consistent
system. In the case of a strict consistent data store
every read requests always gets the latest data where
as in the case of a highly eventual consistent system
old data is sometimes provided for a huge gain in
availability and performance. Any configuration where
R+W > N is considered strong consistent. Here, R is
the amount of replicas which are inquired for a read
operation, W is for writes and N is the replication
count.[1]

c. Sharding: Cassandra has an exclusive design feature
where in it has the ability to scale incrementally. This
requires the ability to dynamically partition the data
over the set of nodes (i.e., storage hosts) in the cluster.
Cassandra uses consistent hashing to partition data
across the cluster. In such a case, it uses an order
preserving hash function for this purpose.[8]

The basic algorithm is oblivious to the heterogeneity in
the performance of nodes. This issue can be addressed in
two ways .In first method, nodes are assigned to multiple
positions in the circle (like in Dynamo).In second method,
load information on the ring are required to be analyzed and
lightly loaded nodes are moved on the ring to ease heavily
loaded nodes. Cassandra prefers second method as it makes
the design and implementation very easy and helps to make
clear cut choices about load balancing.[8]

G. Riak:
Riak was written byAkamai5 engineers and is published

both as a feature to reduce open source version and a full
featured commercial version. The company "Bashoo"
markets the commercial version along with support,
maintains and writes almost all of the source code. In
majority of cases, Riak is written in Erlang while some parts
are also written in JavaScript. Clients are at liberty to
correspond with Riak using a REST-API or via Google's
Protocol Buffers. [1]

Bhavesh N. Gohil et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June,2014,170-176

© 2010-14, IJARCS All Rights Reserved 174

a. Sharding:Riak scales linearly with the addition of
nodes. This results in improvement in terms of
reliability, performance and throughput with larger
clusters. It is recommended to deploy five nodes or
greater to provide a base for high performance and
growth as the cluster size increases. When a new node
is added to Riak cluster, the data is rebalanced
automatically without any downtime. A user does not
have to deal with underlying complexity of data
location as any node can accept or route requests. [9]

b. Replication:Riak Enterprise provides multi datacenter
replication, monitoring and 24×7 support. Raik
enterprise is an extension to riak to replicate data
across availability zones. Users can use multi
datacenter replication to serve global traffic, run
secondary analytics clusters or meet disaster recovery
and regulatory requirements and maintain active
backups. Multi datacenter replication can be used in
more than one site. Riak Enterprise provides two ways
for multi datacenter replication: 1) full sync; 2) real-
time sync. In case of full sync, data is replicated at
scheduled intervals between two clusters. Default is
six hours. In case of real-time sync, Updating of
primary data center triggers replication to the
secondary data center. After writing an object to the
primary cluster, writes are sent to the secondary cluster
via post commit hook. All multi datacenter replication
take place over TCP connection and supports SSL.[9]

c. Consistency:Raik supports eventual consistency.
d. Failure Handling:Data is not lost when access to

many nodes are lost due to network partition or
hardware failure loses. Riak replicates key/value stores
across a cluster of nodes with a default n_val of three.
Data can be written to a neighboring node beyond the
initial three, and read-back due to its “masterless”
peer-to-peer architecture in case the node outages due
to network partition or hardware failures, [10].

H. Apache Hbase:
The first release of Hbase was made in 2007. It was the

part of Apache Hadoop project. It became an Apache top
level project in 2010 and was released independently from
hadoop.

Most of the concepts and services used in Big Table is
similar to HBase, such as GFS, data model and Chubby. All
HBase modules are written in Java language. Testing of
Hbase modules are performed on Linux-Systems and not on
Windows.
a. Replication:Asynchronous replication is used in

Hbase where clusters can be geographically distant
from each other, the links between the clusters can be
offline for some time and rows inserted on the master
cluster won’t be immediately available on the slave
clusters. This is also called as eventual consistency.

HBase replication on each region server is based on
HLogs. These HLogs are stored in HDFS to replicate data to
any slave cluster.

The size of clusters participating in replication can be
asymmetric and the master cluster puts its best to balance
the stream of replication on the slave clusters by using a
concept of randomization.
b. Scaling Mechanisms:In HBase concept of replication

count is not there. Each row of a table is stored on
exactly one Region Server. The setup can be scaled by

adding more number of nodes to the cluster. This helps
in reducing load on the servers and provides additional
space. Adding more nodes speeds up both read and
write operations on the cluster. The performance of the
HDFS is dependent on the performance and
availability of HBase. [1]

c. Consistency:HBase can guarantee strong consistency
using its single Master setup. As all read and write
operations are immediately visible to all the clients
connected to master node no outdated data is returned.
Both the Region Servers and the Master have single
points of failures. If one fails, some part or the
complete data is unavailable for a short period of time
until that node is replaced by the new node. [1]

d. Failure Handling:There are two different types of
errors that can occur on aHBase system.

a) Master Fails: A new Master can be elected. No
downtime is required using Automatic failover.

b) Region Server Fails: A new node is assigned to that
region by the Master. This new machine will read the
data image and the commit logs from HDFS and can
then take over.[1]

I. Redis:
Redis made its first release as open source project in

2008 written in C language. The main idea was to provide a
key value store. Redis provides a simple interface where
different data types can be assigned to a key. Later on, the
data can be requested again using the key. For improving the
performance Redis tries to maintain all the data in the
systems main memory. If enough space is not available then
some parts can be swapped to disk using a virtual memory
system.
a. Scaling Techniques:Redis is designed as a single node

system with some extensions to make the system
scalable.

b. Replication:Redis supports unidirectional replication.
The slave replicates all the data from the master node
asynchronously and the slave is outdated for some
time. This makes the slave a read-only node. Multiple
slaves can be set up for each master node. A multi-
level replication can also be set up by replicating the
nodes again. In Replication all data is copied and
therefore no selective replication on a subset of the
data.[1]

c. Sharding: Sharding can be used to reduce load from a
Redis setup or to store more data that cannot be
handled by a single node. Sharded cluster can be setup
by dividing the key space into same number of parts as
there are nodes on the cluster. To ensure availability,
additional nodes can be deployed and set up as replicas
of the primary nodes.[1]

III. NOSQL DATABASE COMPARISON

All examined NoSQL Databases share the same
restrictions, which are derived from their distributed
architecture. All of them are victims of the CAP theorem
and therefore can either only provide eventual consistency
or sacrifice some amount of availability.

The examined NoSQL databases have small but very
significant differences.

Bhavesh N. Gohil et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June,2014,170-176

© 2010-14, IJARCS All Rights Reserved 175

A. Generalcomparison.

Table 3: General Comparisons of the system which were examined

8 Programming language License First Release Platform

SimpleDB - Propriety 2007 Linux, Mac OS X, Windows
Dynamo Java Part of AWS - Linux
Apache Cassandra Java Apache License 2 July 2008 Linux, Mac OS X, Windows
Basho Riak JavaScript Apache License 2 2009 Linux, Mac OS X, Unix
Apache HBase Java Apache License 2 2007 Linux, Mac OS X, Windows
Redis C New BSD March 2009 Linux, Mac OS X, Windows
CouchDB JavaScript Apache License 2 2005 Linux, Mac OS X, Windows
MongoDB C++ GNU AGPL v3.0 2008 Linux, Mac OS X, Windows
Google Big Table C, C++ Propriety 2005 Linux, Mac OS X, Windows

B. Features based comparison:

Table 4: Features based comparison of the systems

 Replication Sharding Consistency PartialTolerance
SimpleDB Yes Yes(at application layer) No No
Dynamo Yes Yes Yes No
Cassandra Yes Yes No Yes
Riak Yes Yes No Yes
HBase By underlying DFS Yes Yes Yes
MongoDB Yes Yes Yes Yes
Redis Yes (unidirectional) Using external tools Yes Yes
CouchDB Yes (bidirectional) Using external tools No Yes
BigTable Yes Yes Yes Yes

C. Summary:

Table 5: Based On Major Users, Storage Type, Best Use and Key Points

 Major Users Storage Type Best Use Key Points
SimpleDB - Document Solutions for simple databases Provides Amazon support and documentation.

Limits on domain size and query time.
Dynamo - Key-Value large to big db sol. -
Cassandra Facebook, Twitter,

Digg
Column write often, read less A cross between BigTable and Dynamo. High

availability.
Riak Mozilla, Comcast,

AOL
Key-Value high availability Riak is a truly fault-tolerant system which has

no single point of failure
HBase Facebook Column random read write to large

database
Capable of storing huge quantities of data –
Modeled after Big Data

MongoDB Craigslist,
Foursquare,
Shutterfly, Intuit

Document Statistical Data rarely read,
frequently written and Dynamic
queries

Retains some properties of SQL such as index
and query

Redis StackOverflow Key-Value Statistical Data rarely read,
rapidly changing data, frequently
written

Very Fast

CouchDB LotsOfWords
.com

Document Changing data with pre-defined
queries

DB consistency, easy to use

Google
BigTable

Google Column Scale across thousands of
machines

Currently not used or distributed outside of
Google, but can access through Google App
Engine

IV. CONCLUSION

Different NoSQL databases were compared based on
different aspects. Different properties such as Replication,

Sharding, Consistency and Failure handling were discussed
for different NoSQL databases. The best NoSQL database
for each of the features was selected and shown below.

Table 6: Best NOSQL databases for different features

Aspects Best Database
High availability Riak, Cassandra, Google Big Table, Couch DB
Partition Tolerance MongoDB, Cassandra, Google Big table, CouchDB, Riak, Hbase
High Scalability Google Big table
Consistency MongoDB, Google Big Table, Redis, Hbase
Auto-Sharding MongoDB
Write Frequently, Read Less MongoDB, Redis, Cassandra
Fault Tolerant (No Single Point Of Failure) Riak
Concurrency Control (MVCC) Riak, Dynamo, CouchDB, Cassandra, Google Big Table
Concurrency Control (Locks) MongoDB, Redis, Google Big Table

Bhavesh N. Gohil et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June,2014,170-176

© 2010-14, IJARCS All Rights Reserved 176

V. ACKNOWLEDGMENTS

It has been a great experience while undertaking
research on “A Comparative Study of NoSQL Databases”
because it gave me an opportunity for immense learning,
value addition and also enriches my knowledge.

I take the opportunity to express my profound gratitude
and deep regards to Mr. Bhavesh N. Gohil, my mentor for
his keen and sustained interest. He kept guiding, monitoring
and continuously encouraging for qualitative completion of
this assignment.

VI. REFERENCES

[1]. Dominik Bruhn, “Comparison of Distribution Technologies
in Different NoSQL Database Systems”, Institute of Applied
Informatics and Formal Description Methods (AIFB),
Karlsruhe Institute of Technology (KIT).

[2]. Kai Orend, “Analysis and Classification of NoSQL
Databases and Evaluation of their Ability to Replace an

Object-relational Persistence Layer”, Master Thesis,
Technical University of Munich, Munich,2010

[3]. http://nosql.findthebest.com/ [Online; accessed 10-April-
2014]

[4]. Mongodb, http://www.mongodb.com/nosql-explained
[Online; accessed 14-April-2014]

[5]. 10gen.com: Home - MongoDB. http://mongodb.org/
[Online; accessed 6-April-2014]

[6]. 10gen.com: BSON - MongoDB.
http://www.mongodb.org/display/DOCS/BSON, 2009,
[Online; accessed 10-April-2014]

[7]. Wikipedia:`en.wikipedia.org/wiki/Apache_Cassandra[Online
; accessed 20-March-2014]

[8]. http://www.datastax.com/documentation/articles/cassandra/c
assandrathenandnow.html[Online; accessed 25-March-2014]

[9]. Brian Holcomb, NoSQL Database in the Cloud: Riak on
AWS, June 2013

[10]. Wikipedia: en.wikipedia.org/wiki/Riak[Online; accessed 5-
April-2014]

http://nosql.findthebest.com/�
http://www.mongodb.com/nosql-explained�
http://mongodb.org/�
http://www.datastax.com/documentation/articles/cassandra/cassandrathenandnow.html�
http://www.datastax.com/documentation/articles/cassandra/cassandrathenandnow.html�

	Why NoSQL hasLargeUsers?:Today, with the rise in global Internet use, there has been considerable increase in the number of users and the time theyspend online. Smartphones and tablets have started gaining popularity, as internet is easily accessible ...
	ACKNOWLEDGMENTS

