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Abstract:  This paper investigates the nonlinear observer design for the Lienard system. Explicitly, Sundarapandian’s theorem (2002) for 

observer design for nonlinear systems is used to solve the problem of local exponential observer design for the Lienard system. Lienard system 

is a classical example in Stability Theory of an asymptotically stable nonlinear system. In this paper, we derive results for exponential observer 

design for the Lienard system. As a special case, we also construct local exponential observer for the Van der Pol system. Numerical examples 

and simulations of nonlinear observer design for Lienard system are shown to illustrate the results and validate the proposed observer design for 

the Lienard system. 
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I. INTRODUCTION  

In the control systems design, it is often necessary to 

construct estimates of state variables, which are not available 

for direct measurement. In such cases, the state vector of the 

control system can be approximately reconstructed by building 

an observer which is driven by the available outputs and inputs 

of the original control system. Local observer design for 

nonlinear control systems is one of the central problems in the 

control systems literature.  

The problem of designing observers for linear control 

systems was first introduced by Luenberger ([1], 1966) and that 

for nonlinear control systems was proposed by Thau ([2], 

1973). Over the past three decades, significant attention has 

been paid in the control systems literature to the construction of 

observers for nonlinear control systems. 

A necessary condition for the existence of an exponential 

observer for nonlinear control systems was obtained by Xia and 

Gao ([3], 1988). Explicitly, in [3], Xia and Gao showed that an 

exponential observer exists for the nonlinear system only if the 

linearization of the nonlinear system is detectable. 

On the other hand, sufficient conditions for nonlinear 

observers have been obtained in the control systems literature 

from an impressive variety of points of view. Kou, Elliott and 

Tarn ([4], 1975) obtained conditions for the existence of 

exponential observers using Lyapunov-like method. In ([5]-

[10]), suitable coordinate transformations were found under 

which a nonlinear control system is transferred into a canonical 

form, where the observer design is carried out. In [11], 

Kazantzis and Kravaris obtained results on nonlinear observer 

design using Lyapunov auxiliary theorem. In ([12]-[13]), 

Tsinias derived sufficient Lyapunov-like conditions for the 

existence of asymptotic observers for nonlinear systems. A 

harmonic analysis approach was proposed by Celle et al. ([14], 

1989) for the synthesis of nonlinear observers. 

Necessary and sufficient conditions for the existence of 

local exponential observers for nonlinear control systems were 

obtained using differential geometric techniques by 

Sundarapandian ([15], 2002). Krener and Kang ([16], 2003) 

introduced a new method for the design of observers for 

nonlinear systems using backstepping. 

In this paper, we shall use Sundarapandian’s theorem 

(2002) for observer design for nonlinear systems to solve the 

problem of designing observers for the undamped oscillator, 

which is an important model of stable systems in mechanical 

engineering.   

This paper is organized as follows. Section II reviews the 

definition of nonlinear observers and the results of 

observability and observers. Section III details the stability 

result and examples for the Lienard system. Section IV details 

the design of nonlinear observers for the Lienard system. As a 

special case, we also consider the nonlinear observer design for 

the Van der Pol equation. Numerical examples of nonlinear 

observer design for the Lienard system are also contained in 

this section. Finally, Section V provides the conclusions of this 

paper.   

II. REVIEW OF OBSERVERS FOR NONLINEAR SYSTEMS 

By the concept of a state observer or state estimator for a 

nonlinear system, it is meant that from the observation of 

certain states of the system considered as outputs or indicators, 

it is desired to estimate the state of the whole system as a 

function of time. Mathematically, observers for nonlinear 

systems are defined as follows. 

Consider the nonlinear system described by 

       ( )x f x=�                                                           (1a) 

       ( )y h x=                                                            (1b) 

where 
n

x ∈� is the state and 
p

y ∈� the output.  It is 

assumed that : ,n n
f →� �  : n p

h →� � are 
1
� maps and 

for some ,nx∗ ∈� the following hold: 

              ( ) 0,  ( ) 0.f x h x
∗ ∗= =  
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Note that the solutions x∗
of the equation         

( ) 0f x = are called the equilibrium points of  (1a). 

Definition 1. The nonlinear system (1) is called locally 

observable at the equilibrium x
∗

over a given time interval 

[0, ],T if there exists 0ε > such that for any two different 

solutions ( )x t and ( )x t of the system (1a) with 

     | ( ) |x t x ε∗− < and | ( ) |x t x ε∗− <  for [0, ],t T∈  

the observed functions h x�  and h x� are different, i.e. there 

exists some [0, ]Tτ ∈ such that  

         ( )( ) ( )( ).h x h xτ τ≠� �            

For the formulation of a sufficient condition for local 

observability of the nonlinear system (1), consider the 

linearization of (1) at the equilibrium x∗
given by 

      x Ax=�                                                               (2a) 

      y Cx=                                                               (2b) 

where  

         

x x

f
A

x ∗=

∂� �
= � �∂� �

   and  .
x x

h
C

x ∗=

∂� �
= � �∂� �

 

Theorem 1. (Lee and Markus, [17], 1971) 

If the observability matrix for the linear system (2) given by 

              

1

( , )

n

C

CA
C A

CA −

� �
� �
� �=
� �
� �
� �

�
�  

has rank ,n then the nonlinear system (1) is locally observable 

at .x
∗

     

Definition 2. (Hurwitz Matrices) 

An n n× matrix A  is called Hurwitz if all eigenvalues of 

A  have negative real parts.          

Next, the definition of nonlinear observers for the given 

nonlinear system (1) is given. Basically, an observer for a 

nonlinear system is a state estimator. 

Definition 3. (Sundarapandian, [15], 2002) 

A 
1
�  dynamical system described by 

    ( , ),z g z y=�            (
n

z ∈� )                           (3) 

is a local asymptotic (respectively, exponential) observer for 

the nonlinear system (1) if the composite system (1) and (3) 

satisfies the following two requirements: 

(i)  If (0) (0),z x= then ( ) ( ),    0.z t x t t= ∀ ≥  

(ii) There exists a neighbourhood V of the equilibrium x
∗
  

            of 
n
�  such that for all (0), (0) ,z x V∈ the error 

           ( ) ( ) ( )e t z t x t= −  decays asymptotically (resp. 

         , exponentially) to zero.  

Theorem 2. (Sundarapandian, [15], 2002) 

Suppose that the nonlinear system (1) is Lyapunov stable at 

the equilibrium x
∗
 and that there exists a matrix K  such that 

A KC−  is Hurwitz. Then the dynamical system defined by 

   [ ]( ) ( )z f z K y h z= + −�                                      (4) 

is a local exponential observer for the nonlinear system (1). 

Remark 1. If the estimation error e  is defined as   

           ,e z x= −  

then the estimation error is governed by the dynamics 

       [ ]( ) ( ) ( ) ( )e f x e f x K h x e h x= + − − + −�        (5) 

Linearizing the error dynamics (5) at ,x
∗

 we obtain the 

linear system 

    ,e Ee=�                where  .E A KC= −               (6) 

If ( , )C A is observable, ie. if the observability matrix 

( , )O C A has full rank, then the eigenvalues of E A KC= −  

can be arbitrarily assigned in the complex plane. Since the 

linearization of  the error dynamics (5) is governed by the 

system matrix ,E A KC= − it follows that when ( , )C A is 

observable, then a local exponential observer of the form (4) 

can be always found so that the transient response of the error 

decays quickly with any desired speed of convergence.  

III. STABILITY RESULT AND EXAMPLES FOR THE 

LIENARD SYSTEM 

In this section, we discuss the model and stability result for 

the Lienard equation [18], which is a classical example of an 

asymptotically stable system in Mechanical Engineering. 

The Lienard equation is described by the second-order 

differential equation      

            ( ) ( ) 0u u u uα β+ + =�� �                                  (7) 

where u is the displacement of a moving object. Here, 

( )u uα � is a frictional force that is linear in velocity and 

( )uβ is the restoring force. Throughout this paper, we shall 

assume that the functions   ,α β are continuously 

differentiable on u−∞ < < ∞ and that  the functions ,α β  

satisfy the following two assumptions:   

                  ( ) 0uα >        for 0u ≠                                 (8) 

and that 

                  ( ) 0u uβ >      for 0u ≠                                (9) 

For our analysis, it is convenient to express the second-

order differential equation (7) as a system of two differential 

equations. This is carried out by defining the phase variables 

            
1

2

x u

x u

=

= �
                                                           (10) 

Note that (7) is equivalent to the system of differential 

equations given by 

            
1 2

2 1 2 1( ) ( )

x x

x x x xα β

=

= − −

�

�
                             (11) 

Next, we state the following result, which is well-known in 

Lyapunov stability theory [18]. 

Theorem 3. [18] The Lienard system (11) has an 

asymptotically stable equilibrium at 0.x =   

Proof.  We consider the energy function as a candidate 

Lyapunov function, viz. 
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1

2

1 2 2

0

1
( , ) ( )

2

x

V x x d xβ τ τ= +�                              (12) 

We shall establish the asymptotic stability of the 

equilibrium 0x = by showing that V is a Lyapunov function 

for the system (10).  

First, we note that V is a positive definite function on 
2.R  

Next, differentiating V along the state trajectories of (11), 

we obtain  

      
2

1 2( ) ( ) 0V x x xα= − ≤�                                       (13) 

which shows that V� is a negative semi-definite function on 
2.R   

Thus, by Lyapunov stability theory [18], it follows that 

0x = is a Lyapunov stable equilibrium of the Lienard system 

(11). 

Next, by LaSalle’s invariance principle [18], we know that 

the solutions of the Lienard system (11) approach 

asymptotically the largest invariant set S contained in   

   { }2

1 2 1 2( , ) : ( , ) 0 .x x R V x x∈ =�  

Note that 0V =� if either 1( ) 0xα = or 2 0.x =  

By assumption (8),  

1( ) 0xα > if 1 0.x ≠   

Also, if 2 ( ) 0,x t = then 2 0,x =� which implies that   

   2 1 2 1( ) ( ) 0.x x x xα β= − − =�  

This yields 

       1 1( ( )) 0  ( ) 0.x t x tβ ≡ � ≡  

Thus, V� vanishes only at the trivial solution 0.x =  

Hence, {(0,0)}.S =  

Thus, by LaSalle’s Invariance Principle, all solutions of the 

Lienard system (11) approach asymptotically the set S or 

equivalently that the equilibrium 0x = of the Lienard System 

(11) is asymptotically stable. 

Hence, we have shown that the Lienard system (11) is 

asymptotically stable at the equilibrium 0.x =    

 

Example 1.   Consider the second-order differential equation 

described by 

                 
3 0u au u+ + =�� �            ( 0a > )                   (14) 

Comparing (14) with the Lienard equation (7), we get 

      ( )u aα =   and  
3( )u uβ =                                 (15) 

Clearly, ( ) 0u aα = > and 
4( ) 0u u uβ = > for 0.u ≠  

Thus, it is immediate that (14) is indeed a Lienard’s 

equation. Next, we express this as a system by defining the 

state variables as 

  1x u=   and 2 .x u= �                                                 (16) 

Hence, we obtain the Lienard system 

     
1 2

3

2 2 1

x x

x ax x

=

= − −

�

�
                                                   (17) 

By Theorem 3, it is immediate that 0x = is an 

asymptotically stable equilibrium of the system (17). 

       For numerical simulation, we take 2.a = .  

The state orbits of the Lienard equation (16) are depicted in 

Figure 1.  

From Figure 1, it is evident that all the state orbits of the 

given Lienard’s system (17) approach the equilibrium at 

0x = as .t → ∞  Hence, the Lienard system (17) is  

asymptotically stable at the equilibrium  0.x =  

 
Figure 1. State Orbits of the Lienard System (17) 

Example 2 (Van der Pol’s Equation) 

Consider the Van der Pol’s equation given by 

             
2(1 ) 0.u u u uε+ − + =�� �                                (18) 

Van der Pol’s equation was the fruitful result of the Dutch 

electrical engineer, Balthazar Van der Pol during the 1920s 

and 1930s. 

Comparing (18) with the Lienard equation (7), we get 

       
2( ) (1 )u uα ε= −   and  ( )u uβ =                     (19) 

Clearly,   

       
2( ) (1 ) 0u uα ε= − >  for | | 1u <  

and 

      
2( ) 0u u uβ = > for 0.u ≠  

Thus, it is immediate that (18) is indeed a Lienard’s 

equation.  

Next, we express this as a differential system by defining 

the state variables as 

  1x u=   and 2 .x u= �                                                 (20) 

Hence, we obtain the Van der Pol system given by 

     
( )

1 2

2

2 1 1 21

x x

x x x xε

=

= − − −

�

�
                                    (21) 

By Theorem 3, it is immediate that 0x = is an 

asymptotically stable equilibrium of the system (21). 

       For numerical simulation, we take 2.ε = .  

The state orbits of the Van der Pol system (21) are depicted 

in Figure 2.  
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From Figure 2, it is evident that all the state orbits of the 

given Van der Pol system (21) near the equilibrium 

0x = approach the equilibrium as .t → ∞   

Hence, the Van der Pol equation (21) is locally 

asymptotically stable at the equilibrium  0.x =  

 
Figure 2. State Orbits of the Van der Pol’s Equation 

III. NONLINEAR OBSERVER DESIGN FOR THE LIENARD 

EQUATION 

In this section, we discuss the nonlinear observer design for 

the Lienard equation [18], which is a classical example of an 

asymptotically stable system in Mechanical Engineering. 

The Lienard equation is described by the dynamics 

           
1 2

2 1 2 1( ) ( )

x x

x x x xα β

=

= − −

�

�
                              (22) 

where the functions   ,α β are continuously differentiable on 

u−∞ < < ∞ and that  the functions ,α β  satisfy the 

following two assumptions:   

                  ( ) 0uα >        for 0u ≠                              (23) 

and that 

                  ( ) 0u uβ >      for 0u ≠                              (24) 

Suppose that the displacement u is available for 

measurement, i.e. the output function for the Lienard equation 

(22) is given by 

          1y x=                                                               (25) 

By Theorem 1, the Lienard equation is asymptotically stable 

at the equilibrium 0.x =  

Thus, we can apply Sundarapandian’s theorem (2002) to 

construct nonlinear observers for the Lienard equation given 

by (22). 

Linearizing the Lienard equation (22) and the output 

function (25) at 0,x = we obtain the system matrices 

          [ ]
0 1

,  1 0A C
r

� �
= =� �− ∗� �

 

where  (0).r β= �  

Thus, the observability matrix is obtained as 

     
1 0

( , )
0 1

C
C A

CA

� � � �
= =� � � �
� � � �

O  

which has full rank.  

Thus, by Kalman’s rank condition [19], the pair ( , )C A is 

observable.  

Thus, we can always find a gain matrix K such that the 

eigenvalues of the error matrix E A KC= − is Hurwitz. 

Hence, by Theorem 2 (Sundarapandian, 2002), we obtain 

the following result. 

Theorem 4. A local exponential observer for the Lienard 

equation (22) is described by the dynamics 

       [ ]1 2

1

2 1 2 1( ) ( )

z z
K y z

z z z zα β

� � � �
= + −� � � �− −� � � �

�

�
         (26)                             

where K is a gain matrix chosen so that A KC− is Hurwitz. 

Since ( , )C A  is observable, a gain matrix K can be found so 

that the error matrix E A KC= − has arbitrarily assigned set 

of eigenvalues with negative real parts.    

Example 3. Here, we describe the construction of local 

exponential observer for the Lienard system described in 

Example 1 with 2.a =  

Thus, we consider the nonlinear system 

       

1 2

3

2 2 1

1

2

 

x x

x x x

y x

=

= − −

=

�

�                                                   (27) 

The nonlinear system (27) has the linearization pair 

    [ ]
0 1

,     1 0
0 2

A C
� �

= =� �−� �
 

Clearly, the pair ( , )C A  is observable. 

Using the Ackermann formula for the observer gain matrix 

([20], p.822), we can choose the gain matrix K so that the 

error matrix 

E A KC= −  

has the stable eigenvalues  

       { }4, 4 .− −  

A simple calculation using MATLAB yields 

        
6

.
4

K
� �

= � �
� �

 

By Theorem 4, a local exponential observer for the Lienard 

system (27) near the equilibrium 0x = is given by 

    [ ]1 2

13

2 2 1

6

2 4

z z
y z

z z z

� � � � � �
= + −� � � � � �− − � �� � � �

�

�
            (28) 

If we define the estimation error as  

                 
1 1 1 1 1

2 2 2 2 2

,
e z x z x

e z x z x

−� � � � � � � �
= − =� � � � � � � �−� � � � � � � �

 

then 1( ) 0e t → and 2 ( ) 0e t → exponentially as .t → ∞  

    For simulation, we take the initial conditions as 
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2.0

(0)
1.5

x
� �

= � �
� �

   and   
0.8

(0) .
1.5

z
� �

= � �
� �

 

Figure 3 depicts the exponential convergence of the error 

trajectories for the observer design of the Lienard system (27). 

 
Figure 3. Observer for the Lienard System (27) 

Example 4. Here, we describe the construction of local 

exponential observer for the Van der Pol system described in 

Example 2 with  2.ε =  

Thus, we consider the Van der Pol system given by 

        ( )
1 2

2

2 1 1 2

1

2 1

 

x x

x x x x

y x

=

= − − −

=

�

�                                (29)                         

 The Van der Pol system (29) has the linearization pair 

    [ ]
0 1

,     1 0
1 2

A C
� �

= =� �− −� �
 

Clearly, the pair ( , )C A  is observable. 

Using the Ackermann formula for the observer gain matrix 

([20], p.822), we can choose the gain matrix K so that the 

error matrix 

   E A KC= −  

has the stable eigenvalues  

       { }2, 2 .− −  

A simple calculation using MATLAB yields 

        
2

.
1

K
� �

= � �−� �
 

By Theorem 4, a local exponential observer for the Van der 

Pol system (29) near the equilibrium 0x = is given by 

 
( )

[ ]
21

12

1 1 22

2

2 1 1

zz
y z

z z zz

� �� � � �
= + −� �� � � �− − − −� �� � � �� �

�

�
        (30) 

If we define the estimation error as  

                 
1 1 1 1 1

2 2 2 2 2

,
e z x z x

e z x z x

−� � � � � � � �
= − =� � � � � � � �−� � � � � � � �

 

then 1( ) 0e t → and 2 ( ) 0e t → exponentially as .t → ∞  

    For simulation, we take the initial conditions as 

             
1.0

(0)
0.5

x
� �

= � �
� �

   and   
0.6

(0) .
1.0

z
� �

= � �
� �

 

Figure 4 depicts the exponential convergence of the error 

trajectories for the observer design of the system (33). 

   

 
Figure 4. Observer for the Van der Pol System (29) 

IV. CONCLUSIONS  

For many real problems of science and engineering, the 

Lienard system is a classical mechanical system which is 

asymptotically stable. It has important applications in several 

stability problems arising in Mechanics and Electrical 

Engineering. In this paper, we first established a stability result 

for the Lienard system using the concept of energy function 

and LaSalle’s Invariance Theorem from the Lyapunov stability 

theory. Explicitly, we showed that Lienard system has an 

asymptotically stable equilibrium at the origin. We also 

deduced the famous Van der Pol system as a special case of 

the Lienard system. Next, we applied Sundarapandian’s 

theorem (2002) on nonlinear observer design to construct local 

exponential observers for the Lienard system. We had also 

derived local exponential observer for the special case of Van 

der Pol oscillator. Numerical examples have been worked out 

in detail for the construction of local exponential observers for 

the Lienard systems. 
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