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Abstract: Time complexity of an algorithm is a standard test to obtain the execution time-efficient when implemented in a programming 
language. Asymptotic analysis approach uses the concept of the Big-O is one of the techniques commonly used to test the time complexity of an 
algorithm. This study will conduct a comparison test between the three clustering algorithms using time complexity analysis of primitive 
operations with the running time of applications when the algorithm is used in a programming language or an application. K-means clustering 
algorithm, Fuzzy C-Means (FCM) and the Hierarchy Agglomerative Clustering (HAC) will be compared based on the analysis of primitive 
operations and their implementation using MATLAB applications. The results showed that, HAC algorithm has running time that is much more 
stable than the K-means, although based on the analysis of Big-O, both have the same time complexity. So also between HAC and FCM, HAC is 
much more stable than the FCM algorithm for all testing using different data sets. 
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I. INTRODUCTION 

Clustering is a technique of grouping data based on 
similarity of characteristics that form a particular data clusters 
correspond to the proximity of the data from each other [1]. 
Various algorithms developed by scientists for data 
classification requirements, some of which are partitioning and 
hierarchical clustering.. 

The presence of various clustering algorithm, attracted the 
attention of scientists to conduct testing of these algorithms. 
Call it, for example, the emergence of K-means algorithm that 
is believed to have the ability to cluster computing faster for the 
case of a lot of data, but also has the disadvantage of having to 
begin by determining the center of the cluster before clustering 
is done [2] giving rise to a new variant of the algorithm that 
combines the concept of logic fuzzy K-means, and known as 
Fuzzy c-means developed by James C. Bezdek in 1981 [3]. So 
is the hierarchy agglomerative clustering algorithm, which had 
been developed in line with the tests conducted on the 
algorithm. Call it like Enhance Hierarchy Agglomerative 
Clustering variant that has a better performance than the 
previous algorithms [4], a variant Bidirectional HAC [5] and 
many more, such as incorporating the concept of HAC with 
CUDA programming [6]. Some of the tests performed, more 
focused on how the algorithm handles the data, the 
performance in handling the data and generate a data group, 
versatility and popularity algorithms are used [7], [2], yet many 
are led to the testing of algorithmic complexity, both in the 
calculation of primitive operation and its implementation in the 
programming language, or the study of the correlation between 
the two.  

The complexity here is intended to test and find out the 
time, memory and other resources needed an algorithm to solve 
computational problems [8] through several approaches, one of 
which is the asymptotic analysis using asymptotic notation or 
Big-O notation in order to analyze the time complexity of an 

algorithm. Scientists use complexity theory to examine the 
value of the cardinality of an algorithm to achieve the highest 
score, especially on evolutionary algorithm [9], [10], testing the 
computational bottleneck Nelder-Mead search algorithm with a 
single iteration [11], testing the performance of Estimation of 
Distribution Algorithm (EDA) based on its time complexity 
[12], optimization of the search order of the symbols of the 
determinant decision diagram (DDD) uses a binary decision 
diagrams [13], the data sorting algorithms using the technique 
of quick, heap, insertion and merge [14] and even for testing 
complexity of a system that has a different system in it [15]. 

This study discusses the complexity of testing three 
clustering algorithms using computation primitive operation 
then compared the results with the implementation of the 
algorithm into a program. Complexity is referred to in this 
discussion only to the complexity of running time for all four 
algorithms will be compared, namely K-means, Fuzzy c-means 
and hierarchical agglomerative clustering. 

The discussion is divided into five parts, the first part is an 
introduction that describes the background of the problem, and 
review some of the research related to the research conducted. 
The second part describes a literature review of the four 
algorithms, namely K-means, Fuzzy c-means and Hierarchical 
Agglomerative Clustering. Part three is the methodology used 
in this study and the fourth section is a discussion of research 
and discussion, and the last section concludes with a 
conclusion. 

II. LITERATURE REVIEW 

A. K-Means Clustering 
K-means clustering algorithm is a clustering technique that 

represents groups of data based on the distance between the 
object with its cluster mean. The process runs for function 
grouping criteria have not been found and continue to shape the 
new mean values for each cluster, a cluster is formed until the 
desired end. Some implementations include K-mean clustering 
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is widely used for the needs of the crops [16], the identification 
of the structure of the data [17] and image segmentation in the 
health sector [18]. Here are the steps for the completion of the 
K-means algorithm [19] (see pseudo code in Figure 1): 
1. Determine the number of clusters K and number of input 

datasets n follow the pattern of X ={x1, ... , xn}. Select initial 
centers cluster k, V(0) of a random dataset.  

2. Determine the shortest distance between the clusters closest to 
the dataset. For each data xi, count membership of m(Cj | xi) for 
each cluster of Cj. Membership function of m(Cj | xi) shows that 
xi part of cluster Cj. K-means algorithm using hard membership 
function where m(Cj | xi) ∈ {0,1}. If dataset xi close to cluster Cj 
(i.e, the distance of xi to cluster Cj is the minimal distance), then 
m(Cj | xi)=1, otherwise m(Cj | xi)=0. 

3. Recalculate the cluster cancroids point k to search for a new 
cluster center vj using (1) and calculate the value of square error 
E using (2) as follows : 

       (1) 

 
              (2) 

4. Repeat steps 2 and 3 until the clustering found. Iterations stop if 
the dataset is no longer form a new cluster, change the value of 
square error E below its threshold value or a predetermined 
number of iterations has been reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  K-means pseudocode 

B. Fuzzy C-Means 
Fuzzy C-means is an unsupervised clustering algorithm and has been 
widely used for a variety of needs analysis in various fields, such as 
agriculture, astronomy, chemistry, geology, health diagnostics and so 
forth [20], image data analysis [21]. Here are the steps to completion 
of FCM [22] (see pseudo code FCM in Figure 2) : 

1. Input data to be clustered X, a matrix of size n x m (n = number 
of sample data, m = attribute of each data), where Xij are i-th 
dataset  (i=1,2,3,..,n), and j-th attribute (j=1,2,..,m). 

2. ext, specify the initial values of such calculation, the number of 
clusters, rank, maximum iterations, the smallest expected error 
(ξ), initial objective function and iteration. 

3. Generate random values in the matrix elements form the initial 
partition U (µik, i=1,2,..,n; k=1,2,..,c). 

4. Calculate the k-th cluster center; Vkj, where k=1,2,...,c; and 
j=1,2,...,m, using (3) as follows : 

 

(3) 

5. Next, calculate the value of the objective function at iteration t 
(Pt), using (4) as follows : 

 

(4) 

6. Calculate the change in the partition matrix U, using (5) as 
follows : 

 

(5) 

 

Where i=1,2,...,n; and k=1,2,...,c; 

7. The final step is to check the condition of stops, with the 
following conditions: 

a. If (|Pt – Pt-1| < ξ or (t > max iter) then stop 

b. Otherwise, then t=t+1 and repeat step 4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.   Fuzzy C-means pseudocode 

C. Hierarchy Aglomerative Clustering 
Hierarchy Agglomerative Clustering (HAC) is a technique 

of grouping the data into the category hierarchy, in which the 
process of the formation of groups of data are performed 
sequentially forming a nested hierarchy from the bottom up. 
For n samples, the algorithm begins by forming n clusters 
where each cluster contains a single sample or a point. Then the 
two clusters will be joined so that the similarity between the 
two is getting close to the number of clusters that are formed 
into a 1 or according to a predetermined. The following are the 
steps to resolve the clustering using HAC [23] (see HAC 
pseudo code in Figure 3):  
1. Start with n clusters and a single sample that indicates a cluster.. 

2. Find clusters Ci and Cj that have closest similarity, then combine 
the two into a cluster. 

3. Repeat step 2 until the number of clusters into a single cluster, or 
as desired. 

K-means Algorithm: 
Input : X = {x1, ... , xN} ∈ RD (N x D input data set) 

Output : C = {c1, ... , cJ} ∈ RD (J cluster centers) 
 

1. Select a random subset C of X as the initial set of 
Cluster center; 

2. While termination criterion is not met do 
3.        For (i=1;i≤ N; i=i+1) do 
4.             Assign xi to the nearest cluster; 
5.            m[i] = argmin ||xi – cj ||2 (where j ∈ {1,.. ,J}; 
6.        End 
7.        Recalculate the clusteer centers; 
8.        For (k=1; k ≤ J; k = k+1) do 
9.            Cluste Sk contains the set of points xi that are  

           nearest to the center ck; 
10.            Sk = {xi | m[i] = k }; 
11.            Calculate the new center ck as the mean of the     

            points that belong to Sk; 
12.            ck = 1/|Sk| * (Σ xi | xi ∈ Sk) 
13.         End 
14. End 

FCM Algorithm : 
Input : θ (k,l), N 
Output U*FCM, V*FCM 
1. Initialize Partition U(0) randomly 
2. for i = 1 to n 
3.     for k = 1 to c 
4.          Repeat for j = 1, 2, 3, ... 
5.            Update centroid V(0) with U(j-1) Using (3) 
6.            Compute Distance D(j) with V(j) 
7.            Update Partition Matrix U(j) with D(j) using (5) 
8.         Until ||U(j) – U(j-1)|| < ∈ 
9.    end 
10. end 
11. Return U*FCM  U(j) and V*FCM  V(j) 
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There are several ways that can be used to find the distance 
between each pair making it possible for the merged cluster, 
including the use of methods of Single Linkage, Complete 
Linkage and Average Linkage. Here is pseudocode for the 
algorithm of HAC [24] : 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.   HAC pseudocode 

III. RESEARCH METHODOLOGY 

This study begins with the collection of literature related to 
the algorithm that will be compared and primitive operation 
analysis using Big-O for all three algorithms, namely K-means, 
FCM and HAC. The next step is to analyze the time complexity 
using the approach of the Big-O to see the time owned the 
complexity of each algorithm. After that, every agoritma then 
tested on MATLAB applications using a number of test data 
sets to see the running time required of each algorithm. Tests 
performed five times by dividing the data set into several parts, 
and each test performed three times for a total measurement 
tests performed 15 times. Results of testing running time, then 
analyzed to obtain information relationships between the Big-O 
analysis with running time of each algorithm. 

IV. RESULT AND DISCUSSING 

A. Primitive Operation Analysis 
This section discusses how each algorithm's time 

complexity is calculated using the asymptotic approach to 
analysis using Big-O notation. In this study, we tried to analyze 
the classical K-means clustering algorithm, Fuzzy C-Means 
and Agglomerative Clustering Hierarchy (HAC) based pseudo 
code structure obtained from the literature according to the 
programming logic when the algorithm will be made into a 
programming language. Pseudo code that appear in the image 
1-3, is seen as closer to the real implementation of the program 
will be made in the form of any programming language. It is 
also the foundation of our to recalculate the time complexity of 
the algorithm K-means, Fuzzy C-Means and Agglomerative 
Clustering to further clarify owned complexity of each 
algorithm according to pseudo code approach. The following is 
a discussion of each algorithm. 

1) K-means Algorithm 
Referring to figure 1 above, the line (1) shows the process 

of selecting initial cluster centers of the data set is set X. At 

least on this line requires a random search n times, so the time 
complexity is owned line (1) is O(n). 

In line (2) to (14), each time checking if the cluster has met 
the search criteria or not, at least do a search as many (n-1) 
times the loop body in it. Each time line (2) is executed, it will 
at least run two looping in it, ie on the line to (3) and line (8). 
The same, applies to each iteration that are in line (3) and (8), 
each iteration in it will run n times at each iteration body. So 
for looping the line (3) has a time complexity of O(n), as well 
as looping the line (8) has a time complexity of O(n).  

Thus, the total time complexity is owned by K-means 
clustering algorithm based on the above pseudocode is O(n) + 
(n-1).(O(n) + O(n)) = O(n) + (n-1).(max(O(n),O(n)) = O(n) + 
(n-1).O(n) = O(n) + O(n2) – O(n) = O(n2). 

 
2) Fuzzy C-means Algorithm 

In figure 2 for FCM algorithm, it can be seen that this 
algorithm runs in iteration with three instructions. Line to 5 to 
8, indicate that this line has a time complexity of (n-1). O(1) or 
in other words of O(n-1). While the looping line 2, each time it 
is run, will spend as much time on the body n times iteration, 
and n times the time spent on the body of the loop line to 3 
each time the loop is executed on the first line. In other words, 
the total time for the use of kompleksita FCM algorithm is 
n.O(n).O(n-1) = O(n2).O(n-1) = O(n3)-O(n) = O(n3).  

 
3) Hierarchy Agglomerative Clustering Algorithm. 

Pseudocode in Figure 3, shows that in line 1 has a time 
complexity of O(1), required for O(n) to choose R0 as initial 
cluster of a number of existing data sets. In the third row, 
required by (n-1) times the amount of complexity that exist in 
the body of the loop of lines 5-8. At line (5), required at least 
O(n) time to search the nearest cluster of Rt-1. So is the line (8) 
need for O(n) time to form a new cluster Rt. Thus the total time 
complexity hierarchy which is owned by the agglomerative 
clustering algorithm is O(1) + O(n) + (n-1).(O(n) + O(n)) = 
O(1) + O(n) + (n-1).(max(O(n),O(n)) = O(1) + O(n) + (n-
1).O(n) = O(1) + O(n) + O(n2)-O(n) = O(n2). 

B. Running Time Analysis 
This section discusses the implementation of each 

algorithm in MATLAB to test the application running time of 
every algorithm. Tests carried out using sample data taken from 
John Rasp's Website Statistics, Stetson University - Florida 
(Stetson). The data sample consists of 16 parameters clustering 
and forming as many as 252 dataset [25]. This data is a 
collection of a percentage of body size measurements are based 
on 16 parameters. The test is divided into five stages, and 
divide the data set into multiples of two, starting with the 50 
data sets, 100, 150, 200 and 252. Each test is divided into three 
times running time measurements to ensure the accuracy of the 
running time, which is owned by each algorithm in handling a 
number of different data. Here is a table of test results (see 
Table 1-3). 

Table I.   The first measurement  

Alg. Sample Data set 

50 100 150 200 252 
K-means 0,2620 0,2840 0,3546 0,3737 0,3653 

FCM 0,1289 0,1388 0,2170 0,2212 0,4984 

HAC 0,1016 0,0938 0,1051 0,1398 0,1347 

 
Table 1-3 shows the measurement results for all tests on 

data sets that have been shared. The reading of the results is 

Hierarchy Agglomerative Clustering: 
 

1. t = 0 
2. choose R0 = [Ci = xi, i = 1, ... N] as initial clustering 
3. repeat 
4.       t = t + 1 
5.       Find the closest cluster Ci,Cj in the existing cluster  

      Rt-1 such that 
6.           g(Ci,Cj) = maxr,s(Cr,Cs) if g is similarity function 
7.            g(Ci,Cj) = minr,s(Cr,Cs) if g is dissimilarity function 
8.       Define Cq = Ci∪Cj and produce the new  

      clustering Rt = [Rt-1 – Ci – Cj]∪Cq 
9. Until only one cluster is left 
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done from left to right, where, K-means clustering algorithm on 
the first measurement time running time has increased each 
time tested by the number of different data sets. The more data 
sets, the running time required by the K-means clustering 
algorithm increases. So also with the results of the second and 
third measurements. (see Figure 1 for a comparison chart 
running time of each algorithm on the first measurement). 

 
 

Table II.   The second measurement 

Alg. Sample Data set 

50 100 150 200 252 
K-means 0,2533 0,2863 0,3411 0,3493 0,3669 

FCM 0,1294 0,1481 0,1972 0,5436 0,5028 

HAC 0,0808 0,0939 0,1021 0,1172 0,1327 

Table III.  The third measurement 

Alg. Sample Data set 

50 100 150 200 252 
K-means 0,2657 0,2763 0,3414 0,3467 0,3667 

FCM 0,1292 0,4468 0,4401 0,2112 0,7141 

HAC 0,0804 0,0927 0,1035 0,1160 0,1329 

 

 

 

 

 

 

 

 

 

 

Figure 4.   First running time measurement chart  

As for the FCM algorithm, both on the first measurement, 
second and third (see table 1-3), the running time required 
fluctuated, however, globally, an increase in running time 
requirements for large data sets resulted in the use of a large 
running time anyway . (See Figure 2 for a comparison chart 
running time on the second measurement). 

Unlike the HAC algorithm, although seen increased use of 
running time according to the number of data sets used, HAC 
still has the smallest running time comparison between the two 
algorithms. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.   Second running time measurement chart 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.   Third running time measurement chart 

Table IV.   The average of running time 

Algorithm 1st Meas 2nd Meas 3rd Meas 

K-means 0,32791 0,31939 0,31936 
FCM 0,24086 0,30423 0,38829 
HAC 0,11500 0,10535 0,10512 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.   The average of running time chart 

Judging from the average running time first to third measurement 
results (see Table 4) in this case, it was clear that, FCM algorithm has 
a running time rate continues to climb along with the increasing data 
sets. Unlike the K-means clustering algorithm which decreased 
running time although not significantly, as does the HAC algorithm. 
However, among the three, HAC algorithm has a level smaller running 
time (see figure 7). 
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C. Comparative analysis of Primitive Operation and 
Running Time 
The results of the analysis indicate that primitive 

operations, the level of complexity of the FCM algorithm is 
bigger than the other two algorithms, in other words, the Big-O 
analysis results indicate that the HAC < FCM > K-Means. 
Three relationships were then tested using MATLAB 
application to see the correlation between the time complexity 
analysis of the actual running time. As a result, the HAC 
algorithm has running time rate is much smaller than the K-
means, although according to the Big-O analysis, both have the 
same time complexity. But in this case, the HAC has a running 
time that is much smaller than the FCM and K-means, even the 
value of its running time so far when compared with FCM 
algorithm (see figure 7). 

V. CONLUSION 

Based on the results of tests performed, either using an 
approach based on the concept of a primitive operation Big-O, 
as well as the analysis of the running time, it can be seen that, 
in general, running time analysis proves the existence of a 
correlation between the Big-O analysis is based on the average 
value of the running time of the three algorithms. However, in 
this case, both K-means and HAC, although both have the same 
time complexity, in fact has a much different running time, 
which, HAC can be said to be more stable in terms of the use of 
running time because the changes are not too significant 
compared with K-means clustering for each data set tested. In 
addition, the analysis shows that the running time, K-means has 
a running time of three times that of HAC. 
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