
Volume 5, No. 5, May-June 2014

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 198

ISSN No. 0976-5697

Code Cloning: Types and Detection Techniques

Noble Khatra
Computer Science and Engineering Department

G.Z.S P.T.U Campus
Bathinda, India

Shaveta Rani
Computer Science and Engineering Department

G.Z.S P.T.U Campus
Bathinda, India

Paramjeet Singh

Computer Science and Engineering Department
G.Z.S P.T.U Campus

Bathinda, India

Abstract: Code clones presence is being recognised as emerging cause of concern in software industry. The presence of code
clones makes the software maintenance extremely difficult. There exist different varieties of code clone which need to be tackled
at the earliest in order to provide a smooth functioning to the industry. Code clones identification thus becomes extremely
necessary in order to avoid the problems caused by them. This paper aims to explain about the various approaches to detect code
clones as well as different types of code clones.

Keywords: Code cloning, types of code clone, code clone detection techniques.

I. INTRODUCTION

With the advancement of software industry, the IT sector is
becoming more prone to the phenomenon of software piracy.
Out of the various factors, one factor that results in software
piracy is code clones that are becoming increasingly rampant
causing harm to the IT world. Code clones cause a serious
threat to the security and legitimate rights of the customers and
the IT companies. Thus, there arises a serious need to detect
and check the various types of code clones [7].

Code clones are the sections of very similar or identical
code that are obtained by reusing of code fragments by
copying and pasting with or without any major or minor
adaptations[1]. Due to the reason of copy- and- paste
programming code clones have resulted in generating various
issues as listed below:

• Hampers code reusability and maintainability.
Long repeated sections of code are generated that
differ in only a few lines or characters.

• Hides what the specific purpose of each code section
is.

• Increases redundancy which has to be avoided.
• Increases the maintenance costs.

In a software system it has been stated that around 5% to
10% code are cloned and around 60% of the efforts of the
organization is wasted in maintaining the existing software [3,
4 and 16]. Due to this rapid increase in the code clones and the
resulting maintenance problems, more and more focus is being
shifted to the detection of the various types of code clone [2].
Paper [14] states the following:

Language dependency is a big obstacle when it comes to the
practical applicability of duplication detection. We have thus

chosen to employ a technique that is as simple as possible and
prove that it is effective in finding duplication

Figure 1: The clone detection process [12].

II. TYPES OF CODE CLONE

[8] States that there exist four types of code clones as
described below:

A. Type 1
It is also called exact copy clone. In type 1 some variations

exist in the form of change of comments or in white spaces.

Table I: Example of Type 1

Code 1 Code 2

Noble Khatra et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June, 2014,198-201

© 2010-14, IJARCS All Rights Reserved 199

//Function with multiple

equations

void equation()

{

 int a,b,c,d,e;

 c= a+b;

 e=c-d;

}

//Function with multiple

equations

void equation()

{

 int a,b,c,d,e;

 c= a+b;

 e=c-d;

}

B. Type 2
It is syntactical same copy. In type 2 literals are changed

e.g. name of variables and name of functions are changed. It is
difficult to detect as compared to type 1.

Table II: Example of Type 2

Code 1 Code 2

//Function with

multiple equations

void equation()

{

int a,b,c,d,e;

 c= a+b;

 e=c-d;

}

//Multiple equation

function

void muleqa()

{

 int aa,bb,cc,dd,ee;

 cc=aa+bb;

 ee=cc-dd;

}

C. Type 3
It is code clone in which lines are added or deleted and lines

are interchanged.

Table III: Example of Type 3

Code 1 Code 2

//Function with

multiple equations

void equation()

{

 int a,b,c,d,e;

 c= a+b;

 e=c-d;

}

//Multiple equation

function

void muleqa()

{

 int aa,bb,cc,dd,ee;

 ee=bb-dd;

 cc=aa+ee;

 }

D. Type 4
It is a code clone which is not created intentionally. These

types of clones are created un-knowingly the presence of
similar code. These are very difficult to detect.

III. RELATED WORK

Sarkar, M et al [13] presents a hybrid clone-detection
technique, consisting of metrics-based, PDG-based and AST-
based clone detection, in order to make the clone detection
process more reliable and robust. They focus on the use of
clone detection techniques for resource requirement prediction
of jobs running in a large and dynamic distributed system.

Murakami, H et al [9] propose a new detection method that is
free from the influence of the presence of repeated
instructions. In the proposed method there is transformation of
every of repeated instructions into a special form, and then
using a suffix array algorithm it detects code clones.

Chanchal K. Roy and James R. Cordy [3] discussed the
different techniques of software cloning. They first discuss
various techniques and then compared these techniques with
scenario based evaluation.

Yoshiki Higo, Yasushi Ueda, [4] discussed PDG approach of
code clone detection. They developed a prototype tool, and
applied it to against open source software. The experiment
showed that the proposed method could obtain code clones
within a short timeframe and its detection result was quite
similar to the detection result of an existing PDG-based
detection tool.

Hummel et al. [1] proposed an index based code clone
detection methodology. Their method firstly replaces user
defined identifiers with special tokens in every line of the
source code. Then, hash values are calculated from them.
Next, the method stores their hash values, their line numbers,
and their files names into the database. By using the database,
lines that are duplicated with specified lines can be instantly
obtained. Multiple lines duplication can be easily constructed
by combining single-line duplication stored in the database.

IV. VARIOUS METHODS TO DETECT CODE
CLONING

A. Text Based
 It requires little or no transformation or normalization. In
this approach code slices are considered as sequences of
strings and then these are compared with each other in order to
find the same strings [6]. This approach can detect Type-1
code clone but cannot detect the structural type of clones
having different coding but same logic [8].

B. Token Based

This approach uses parser or lexer for the transformation of
source code into a sequence of tokens [5]. Then the scanning
of these sequences of tokens is done to find the same token
sequences [13, 15]. The original code slices are that are
represented by the token sequences will then be returned as
clones. This approach though more efficient than text based
approach if there exists blank spaces and comments but its
accuracy level is not satisfactory as various false positive
clones will be introduced in the code while conversion of
source code in the token sequence[8]. Type 2 code clones can
be detected using this method.

Noble Khatra et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June, 2014,198-201

© 2010-14, IJARCS All Rights Reserved 200

Table IV: Simple and Normalized Code for token based
Simple Code Normalized Code
void equation()
{
inta,b,c,d,e;
 c= a+b;
 e=c-d;
}

void $id()
{
int $id,$id,$id,$id,$id;
 $id= $id+$id;
 $id=$id-$id;
}

C. Abstract Syntax Tree Based
 In AST the clones are searched by searching for similar sub-
trees. The suspected clones returned are the original code
slices represented by the sub- trees. The level of accuracy is
considered good in this approach but it results in unstable
scalability as it depends on the algorithm that is being used to
build and compare of the trees [9].

Figure 2: Sample code and abstract syntax tree of code

D. Program Dependency Graph Based

This approach lays emphasis on data dependencies and
control flow. Isomorphic sub-graph matching algorithm is
applied once the PDG is obtained from the source code [11].
This helps in the finding of the clones. PDG- based detection
approach is very effective as it can detect non- contiguous
code clones. But it is a cumbersome and costly process to
obtain PDG for large software.

Figure 3: Sample code and dependency graph

E. Metric Based

Here metrics are used to measure clones in software after
the calculation of metrics from source code. Metric based
approach parses the source code to its AST/PDG

representation for the calculation of metric [9]. For the purpose
of calculation of metrics from source code various tools like
Columbus, Source monitor are available [8]. Metric based
approach has high accuracy and scalability level. Some
common fields used in metric based detection:
• Number of declaration statements (Decl.)
• Number of executable statements (Stmt.)
• Number of conditional statements (Cond.)
• Number of looping statements (Loop)
• Maximum nesting level of control constructs (Nest)
• Number of return statements (Ret.)
• Number of parameters (Param.)
• Number of called functions (Call)

F. Line Based

In line based techniques code is matched for each line. In
type 3 code clone the lines of code are interchanged or lines
are added or deleted. So, it is necessary to have some way to
check code line by line rather than complete matching of code.
In line based technique each line of first code is matched to
each line of other code. Line Based technique has high
accuracy [10, 13].

V. CONCLUSION

In this paper, effort has been put in to explain about code
cloning, disadvantages of presence of code clone, types of
code clones in which type 1,type 2, type 3 and type 4 code
clones are defined. Also the various types of code clone
detection techniques are explained.

In future, some new technique can be proposed to detect
code clone with high accuracy or some techniques can be
mixed to create a hybrid approach of code clone detection.

VI. REFERENCES

[1] B. Hummel, E. Juergens, et al. “Index-Based Code Clone
Detection: Incremental, Distributed, Scalable”, In Proc. of the 26th
IEEE International Conference on Software Maintenance, pp 1–
9. 2010.

[2] B. Stefan, K. Rainer, et al., “ Comparison and Evaluation of
Clone Detection Tools”, IEEE Transactions on Software
Engineering, pp.577–591, vol.33, no.9, 2007.

[3] C.K. Roy and J.R. Cordy. “A Survey on Software Clone
Detection Research. School of Computing TR”, Queen’s
University, pp 1-115 . 2007.

[4] H. Yoshiki, U. Yasushi, et al., “Incremental Code Clone
Detection: A PDG-based Approach”, IEEE18th Working
Conference on Reverse Engineering. pp 3 – 12, 2011.

[5] I.Mai,O. Shunsuke and N. Takuo, “Token-based Code Clone
Detection Technique in a Student’s Programming Exercise” ,
2012 Seventh International Conference on broadband, Wireless
Computing, Communication and Applications, Victoria, BC, pp.
650-655. 2012.

[6] J. Krinke. , “Is Cloned Code more stable than Non- Cloned
Code?”, In Proc. of the 8th IEEE International Working
Conference on Source Code Analysis and Manipulation, pp.
57–66, Oct. 2008.

[7] J. Krinke, “Identifying Similar Code with Program Dependence
Graphs”, Working Conference on Reverse Engineering. pp. 301-
309, 2001.

[8] K. Rainer. Raimar, F. Pierre, “Clone Detection Using Abstract
Syntax Suffix Trees”, Working Conference on Reverse
Engineering, pp 253-262. 2006.

Noble Khatra et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June, 2014,198-201

© 2010-14, IJARCS All Rights Reserved 201

[9] M. Hiroaki, H. Keisuke et al. , “Folding Repeated Instructions
for Improving Token-based Code Clone Detection”,2012 IEEE
12th International Working Conference on Source Code
Analysis and Manipulation, Trento, pp. 64 – 73. 2012.

[10] M. Kazuaki, “An Extended Line-Based Approach to Detect
Code Clones Using Syntactic and Lexical Information”,
IEEESeventh International Conference on Information
Technology, Vegas, NV, pp.1237 – 1240, 2010.

[11] Nguyen H.A., Nguyen T.T. et.al,"Clone Management for
Evolving Software", IEEE transactions on software engineering,
vol 38 no 5, pp 1008-1026. 2012.

[12] Salwa K. Abd-El-Hafiz ,A Metrics-Based Data Mining
Approach for Software Clone Detection,2012 IEEE 36th
International Conference on Computer Software and
Applications, pp35-41,Izmir. 2012.

[13] Sarkar, M.; Chudamani, S. ; Roy, S. ; Mukherjee, N. et al, “A
hybrid clone detection technique for estimation of resource
requirements of a job”, Third International Conference on
Advanced Computing & Communication Technologies, Rohtak,
pp. 174-181. 2013.

[14] S. Ducasse, M. Rieger, and Serge Demeyer, A Language
Independent Approach for Detecting Duplicated Code, 15th
IEEE International Conference on Software Maintenance,
pp.109–118.1999.

[15] T. Kamiya, S. Kusumoto, and K. Inoue. “CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for
Large Scale Source Code”, IEEE Transactions on Software
Engineering, vol. 28, no.7 pp 654-670. 2002.

[16] Zibran M.F. and Roy C. K.,"Conflict-aware optimal scheduling
of prioritised code clone refactoring", IETSoftw, vol 7 no 3, pp
167-186,2013.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sarkar,%20M..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chudamani,%20S..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Roy,%20S..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mukherjee,%20N..QT.&newsearch=true�

	Introduction
	TYPES of CODE CLONE
	Type 1
	Type 2
	Type 3
	Type 4

	RELATED WORK
	VARIOUS METHODS to DETECT CODE CLONING
	conclusion
	References

