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Abstract:  Clustering is an unsupervised method to divide data into disjoint subsets with high intra-cluster similarity and low inter-cluster 
similarity. Most of the approaches perform hard clustering, i.e., they assign each item to a single cluster. This works well when clustering 
compact and well-separated groups of data, but in many real-world situations, clusters overlap. Thus, for items that belong to two or more 
clusters, it may be more appropriate to assign them with gradual memberships to avoid coarse-grained assignments of data. The objective of k-
means clustering is formulated as a Rayleigh quotient function of the between-cluster scatter and the cluster membership matrix and further 
combined with nonlinear dimensionality reduction in Hilbert space, where heterogeneous data sources can be easily combined as kernel 
matrices. The objective to optimizing the kernel combination and the cluster memberships on unlabeled data is non-convex. To solve it, 
minimization method to optimize the cluster memberships and the kernel coefficients iteratively to convergence is to be applied. Instead of a 
single fixed kernel, multiple kernels may be used. Recent developments in multiple kernel learning have shown that the construction of a kernel 
from a number of basis kernels allows for more flexible encoding of domain knowledge from different sources or cues. We here extend the 
multiple kernel-learning paradigm to fuzzy clustering. The proposed algorithm simultaneously finds the best degrees of membership and the 
optimal kernel weights for a nonnegative combination of a set of kernels. We also embed the feature weight computation into the clustering 
procedure. The incorporation of multiple kernels and the automatic adjustment of kernel weights render MKFC more immune to unreliable 
features or kernels. It also makes combining kernels more practical, since appropriate weights are assigned automatically. 

I. INTRODUCTION 

Clustering is an unsupervised method to divide data into 
disjoint subsets with high intra-cluster similarity and low 
inter-cluster similarity. In this paper, numbers of different 
optimization methods for clustering process are reviewed. 
All these methods are compared with their complexities and 
computational time. Most of these approaches perform hard 
clustering, i.e., they assign each item to a single cluster. This 
works well when clustering compact and well-separated 
groups of data, but in many real-world situations, clusters 
overlap. Thus, for items that belong to two or more clusters, 
it may be more appropriate to assign them with gradual 
memberships to avoid coarse-grained assignments of data. 
This class of clustering methods is called soft- or fuzzy-
clustering.In this paper, Optimized data fusion for kernel k-
means clustering (OKKC) [1], clustering sentence level text 
using a novel fuzzy relational clustering (FRECCA) [2] and 
multiple kernel fuzzy clustering (MKFC) [3] algorithms are 
proposed for membership optimization. 

Clustering response is a primitive exploratory approach 
in data analysis with little or no prior knowledge. In cluster 
analysis, a group of objects is divided into a number of more 
or less homogeneous subgroups on the basis of a 
subjectively chosen measure of similarity, such that the 
similarity between objects within a subgroup is larger than 
the similarity between objects belonging to different 
subgroups. The main challenge for most of clustering 
algorithms is their necessity to know the number of clusters 
for which to look. Some researchers have tried to estimate or 
determine it automatically. This issue of obtaining the 
clusters that better fit a dataset, as well as their evaluation, 
has been the subject of almost all research efforts in this 
field. Since the clustering is an unsupervised problem, in 
most cases, the user has no prior knowledge about the actual 
number of clusters. Obviously, splitting the dataset into 
smaller or larger clusters will eventuate in merging some 

separate clusters or breaking down some compact ones. The 
problem of finding an optimal number of clusters is usually 
called cluster validity. Once the clusters are obtained by a 
clustering method, the validity function can help us to verify 
whether they accurately present the structure of the dataset 
or not. 

II. BACKGROUND 

The objective of k-means clustering is formulated as a 
Rayleigh quotient function of the between-cluster scatter 
and the cluster membership matrix and further combined 
with nonlinear dimensionality reduction in Hilbert space, 
where heterogeneous data sources can be easily combined as 
kernel matrices. The objective to optimizing the kernel 
combination and the cluster memberships on unlabeled data 
is non-convex. To solve it, an alternating minimization 
method is applied to optimize the cluster memberships and 
the kernel coefficients iteratively to convergence. When the 
cluster membership is given, the kernel coefficients as 
kernel Fisher discriminants (KFD) using least-squares 
support vector machine (LS-SVM) is to be optimized. The 
objectives of KFD and k-means are combined in a unified 
model; thus the two components optimize toward the same 
objective; therefore, the OKKC algorithm [1] solving this 
objective converges locally. The OKKC method extends the 
idea of Multiple Kernel Learning to an unsupervised 
problem. In comparison with hard clustering methods, in 
which a pattern belongs to a single cluster, fuzzy clustering 
algorithms allow patterns to belong to all clusters with 
differing degrees of membership. This is important in 
domains such as sentence clustering, since a sentence is 
likely to be related to more than one theme or topic present 
within a document or set of documents. However, because 
most sentence similarity measures do not represent 
sentences in a common metric space, conventional fuzzy 
clustering approaches based on prototypes or mixtures of 
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Gaussians are generally not applicable to sentence 
clustering. 

Clustering text at the document level is well established 
in the Information Retrieval (IR) literature, where 
documents are typically represented as data points in a high-
dimensional vector space in which each dimension 
corresponds to a unique keyword, leading to a rectangular 
representation in which rows represent documents and 
columns represent attributes of those documents (e.g., tf-idf 
values of the keywords). This type of data, which we refer to 
as “attribute data,” is amenable to clustering by a large range 
of algorithms. Since data points lie in a metric space, we can 
readily appl y prototype-based algorithms such as k-Means, 
Isodata, Fuzzy c-Means (FCM) and the closely related 
mixture model approach, all of which represent clusters in 
terms of parameters such as means and co-variances, and 
therefore assume a common metric input space. Since pair-
wise similarities or dissimilarities between data points can 
readily be calculated from the attribute data using similarity 
measures such as cosine similarity, we can also apply 
relational clustering algorithms such as Spectral Clustering 
and Affinity Propagation. To distinguish it from attribute 
data, we refer to such data as “relational data.” A broad 
range of hierarchical clustering algorithms can also be 
applied. 

A novel fuzzy relational clustering algorithm 
(FRECCA) [2] is inspired by the mixture model approach; 
model the data as a combination of components. However, 
unlike conventional mixture models, which operate in a 
Euclidean space and use a likelihood function parameterized 
by the means and co-variances of Gaussian components, 
The FRECCA algorithm abandon use of any explicit density 
model (e.g., Gaussian) for representing clusters. Instead, it 
use a graph representation in which nodes represent objects, 
and weighted edges represent the similarity between objects. 
Cluster membership values for each node represent the 
degree to which t he object represented by that node belongs 
to each of the respective clusters, and mixing coefficients 
represent the probability of an object having been generated 
from that component. By applying the PageRank algorithm 
to each cluster, and interpreting the PageRank score of an 
object within some cluster as likelihood, it can then use the 
Expectation-Maximization (EM) framework to determine 
the model parameters (i.e., cluster membership values and 
mixing coefficients). The result is a fuzzy relational 
clustering algorithm which is generic in nature, and can be 
applied to any domain in which the relationship between 
objects is expressed in terms of pair-wise similarities. 

Fuzzy c-means (FCM) is one of the most promising 
fuzzy clustering methods. In most cases, it is more flexible 
than the corresponding hard-clustering algorithms. 
Unfortunately, as with other clustering methods that are 
based on the L2 -norm distance in the observation space, it 
has been shown that while it is effective for spherical 
clusters, it does not perform well for more general clusters. 
Thus, kernel-based clustering has been pro-posed to perform 
clustering in a typically higher dimensional feature space 
spanned by embedding maps and corresponding kernel 
functions. The FCM algorithm has also been extended to the 
kernel FCM algorithm, which yields better performance. 
However, for such kernel-based methods, a crucial step is 
the combination or selection of the best kernels among an 
extensive range of possibilities. This step is often heavily 

influenced by prior knowledge about the data and by the 
patterns that we expect to discover. Unfortunately, it is 
unclear which kernels are more suitable for a particular task. 

The problem is aggravated for many real-world 
clustering applications, in which there are multiple 
potentially useful cues. For such applications, to apply 
kernel-based clustering, it is often necessary to aggregate 
features from different sources into a single aggregated 
feature. However, these features are often not equally 
relevant to clustering; some are irrelevant, and some are less 
important than others. 

A multiple kernel fuzzy c-means (MKFC) [3] algorithm 
that extends the fuzzy c-means algorithm with a multiple 
kernel-learning setting finds the best degrees of membership 
and the optimal kernel weights for a nonnegative 
combination of a set of kernels. By incorporating multiple 
kernels and automatically adjusting the kernel weights, 
MKFC is more immune to ineffective kernels and irrelevant 
features. This makes the choice of kernels less crucial. 

Instead of a single fixed kernel, multiple kernels may be 
used. Recent developments in multiple kernel learning have 
shown that the construction of a kernel from a number of 
basis kernels allows for more flexible encoding of domain 
knowledge from different sources or cues. 

The rest of this paper is organized as follows. In Section 
3, we discuss previous work done on various methodologies, 
and in Section 4, we discuss the analysis and discussion. We 
present the proposed methodology in Section 5, and we 
present possible outcome and results in Section 6. We 
conclude this paper in Section 7. 

III. PREVIOUS WORK 

Over the past decades, many clustering algorithms have 
been proposed, including k-means clustering, mixture 
models, spectral clustering, locality-sensitive hashing, and 
maximum margin clustering. Most of these approaches 
perform hard clustering, i.e., they assign each item to a 
single cluster. This works well when clustering compact and 
well-separated groups of data, but in many real-world 
situations, clusters overlap.  

To learn the optimal combination of multiple 
information sources as similarity matrices (kernel matrices), 
Lange and Buhmann’s algorithm is proposed. Lange and 
Buhmann’s algorithm uses non negative matrix factorization 
to maximize posteriori estimates of data point assignments 
to partitions. To combine the similarity matrices, a cross-
entropy objective is minimized to seek good factorization 
and the weights assigned on similarity matrices are 
optimized. 

The OKKC algorithm [1] is related to the Nonlinear 
Adaptive Metric Learning (NAML) algorithm proposed for 
clustering. Although NAML is also based on multiple kernel 
extension of k-means clustering, the mathematical objective 
and the solution are different from OKKC. In NAML, the 
metric of k-means is constructed based on the Mahalanobis 
distance. NAML optimizes the objective iteratively at three 
levels: the cluster assignments, the kernel coefficients, and 
the projection in the Representer Theorem. The k-means 
objective in OKKC approach is constructed in Euclidean 
space and the algorithm optimizes the cluster assignments 
and kernel coefficients in a bi-level procedure. 

The first successful fuzzy relational clustering model is 
generally considered to be Hathaway et al.’s Relational 
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Fuzzy c-Means (RFCM) algorithm. However, RFCM is a 
variant of Fuzzy c-Means, and is implicitly based on the 
notion of prototype. Thus, while RFCM operates on 
relational data input, it still requires that the relation 
expressed by this data be Euclidean (i.e., it assumes that 
there exists a set of data points in some space such that the 
squared Euclidean distance between points in this space 
match those in the dissimilarity relation). Non-Euclidean 
relations can be transformed into Euclidean ones by a 
transformation that adds a positive number to all off-
diagonal elements of the dissimilarity matrix, but the 
problem is to determine an appropriate value for such that 
this Euclidean condition is met without leading to excessive 
loss of cluster information. 

The k-Medoid family of algorithms are based on the 
observation that in k-Means (and most other prototype-
based algorithms), the only step that involves calculating 
Euclidean distances is the minimization step, in which 
cluster means and co-variances are updated. By restricting 
prototypes to being data points, k-Medoid algorithms avoid 
the need to calculate distances, since all calculations can be 
performed on the basis of pair wise relations. This idea 
forms the basis of the Partitioning Around Medoids (PAM) 
algorithm, which performs hard (or crisp) clustering. Fuzzy 
versions of k-Medoids have also been proposed. Like k-
Means, methods based on k-Medoids are highly sensitive to 
the initial (random) selection of centroids, and in practice it 
is often necessary to run the algorithm several times from 
different initializations. To overcome these problems, Frey 
& Dueck proposed Affinity Propagation, a technique which 
simultaneously considers all data points as potential 
centroids. Frey and Dueck have shown how Affinity 
Propagation can be applied to the problem of extracting 
representative sentences from text. A fuzzy variant of 
Affinity Propagation was recently proposed in Gewiniger. 

A novel fuzzy relational clustering algorithm [2] is 
inspired by the mixture model approach, it model the data as 
a combination of components. The result is a fuzzy 
relational clustering algorithm which is generic in nature, 
and can be applied to any domain in which the relationship 
between objects is expressed in terms of pair wise 
similarities. 

The problem is aggravated for many real-world 
clustering applications, in which there are multiple 
potentially useful cues. For such applications, to apply 
kernel-based clustering, it is often necessary to aggregate 
features from different sources into a single aggregated 
feature. However, these features are often not equally 
relevant to clustering; some are irrelevant, and some are less 
important than others. As most clustering methods do not 
embed a feature selection capability, such feature 
imbalances often necessitate an additional process of feature 
selection, or feature fusion, before clustering. Instead of a 
single fixed kernel, multiple kernels may be used. Recent 
developments in multiple kernel learning have shown that 
the construction of a kernel from a number of basis kernels 
allows for more flexible encoding of domain knowledge 
from different sources or cues. However, as observed by 
Zhao et al., previous multiple kernel-learning approaches 
have focused on supervised and semi-supervised learning. A 
notable exception is their work on multiple kernel maximum 
margins clustering, which is designed for hard clustering.  
 

IV. ANALYSIS AND DISCUSSION 

A. Optimized Data Fusion for Kernel k-means 
Clustering: 

a. Objective Of K-Means Clustering: 
In k-means clustering, a number of k prototypes are 

used to characterize the data, and the partitions {Cj} j=1….k 
are determined by minimizing the distortion as 

 
Where  is the ith data sample,  is the prototype 

(mean) of the jth partition Cj, k is the number of partitions 
(usually predefined). It is known that above equation is 
equivalent to the trace maximization of the between-cluster 
scatter Sb 

 
Where aij is the hard cluster assignment 

 
And 

 
Where   is the global mean, nj =  is the number 

of samples in Cj. Without loss of generality, we assume that 
the data X ϵ IRM×N has been centered such that the global 
mean is . To express  in terms of X, we denote a 
discrete cluster membership matrix A ϵ IRN×K as 

 
Then ATA = Ik and the objective of k-means can be 

equivalently written as 

 
The discrete constraint in above equation makes the 

problem NP-hard to solve.  
The k-means objective extended to Hilbert space F and 

multiple data sets are incorporated, given by 
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b. Bi-level optimization of k-means on multiple 
kernels: 

The objective in above equation is difficult to optimize 
analytically because the data are unlabeled; moreover, the 
discrete cluster memberships make the problem NP hard. 
Our strategy is to optimize the two parameters iteratively. 

a) Optimizing the Kernel Coefficients as Simplified 
KFD: Given a single data set and labels of two 
classes, to find the linear discriminant in F we need to 
maximize 

 
 

b) The Role of Cluster Assignment: It is worth 
clarifying the transformations of cluster assignment in 
the proposed algorithm. 

c) Solving the Simplified KFD as LS-SVM Using 
Multiple Kernels: The pseudo code to solve the LS-
SVM MKL is presented in Algorithm1: 

 

 
Algorithm1. SIP-LS-SVM-MKL (G1…….Gp, F) 

c. Optimized data fusion for kernel k-means 
clustering: 

The main characteristic is that the cluster assignments 
and the coefficients of kernels are optimized iteratively and 
adaptively until convergence. The coefficients assigned to 
multiple kernel matrices leverage the effect of different 
kernels in data integration to optimize the objective of 
clustering. 

The optimized kernel k-means clustering (OKKC) 
algorithm is presented in Algorithm2: 

 
Algorithm2. OKKC (G1, G2… Gp, k) 

B. Clustering Sentence-Level Text Using a Novel 
Fuzzy Relational Clustering Algorithm: 

The fuzzy relational clustering algorithm uses the 
PageRank score of an object within a cluster as a measure of 
its centrality to that cluster. These PageRank values are then 
treated as likelihoods. Since there is no parameterized 
likelihood function as such, the only parameters that need to 
be determined are the cluster membership values and mixing 
coefficients.  

a. Initialization: Assume here that cluster membership 
values are initialized randomly, and normalized such 
that cluster membership for an object sums to unity 
over all clusters. Mixing coefficients are initialized 
such that priors for all clusters are equal. 

b. Expectation step: The E-step calculates the 
PageRank value for each object in each cluster. 
PageRank values for each cluster are calculated  
with the affinity matrix weights Wij obtained by 
scaling the similarities by their cluster membership 
values; 

 
c. Maximization step: Since there is no parameterized 

likelihood function, the maximization step involves 
only the single step of updating the mixing 
coefficients based on membership values calculated 
in the Expectation Step. 

C. Multiple Kernels Fuzzy Clustering Algorithm: 
A brief comparison of optimized kernel k-means 

clustering (OKKC), novel fuzzy relational clustering 
(FRECCA) and multiple kernel k-means clustering (MKFC) 
algorithms are as shown in Table 1. 
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Table 1: Comparison between OKKC, FRECCA and MKFC Algorithm 
Clustering 
methods 

Advantages Disadvantages 

optimized 
kernel k-means 
clustering 
(OKKC) 

1.Its simple 
optimization procedure 
and low computational 
complexity. 
2.OKKC is 
comparable to the best 
candidates in 
comparison, which 
improves the 
performance. 
3.The optimization 
procedure of OKKC is 
bi-level, which is 
simpler than the tri-
level architecture of 
the NAML algorithm. 
 

1.For clustering of pen 
digit and journal data, large 
amount of memory is 
required. 
2.Performance of OKKC 
depends on nature of data, 
performance on disease 
data degrades significantly. 

fuzzy relational 
clustering 
(FRECCA) 

1.The FRECCA 
algorithm is able to 
achieve superior 
performance to 
benchmark Spectral 
Clustering and k-
Medoids algorithms 
when externally 
evaluated in hard 
clustering mode on a 
challenging data set. 
2.The FRECCA 
algorithm is capable of 
identifying 
overlapping clusters of 
semantically related 
sentences. 

1.The major disadvantage 
of the FRECCA algorithm 
is its time complexity. 
Since Page Rank must be 
applied to each cluster in 
each EM cycle and this can 
lead to long convergence 
times if the problem 
involves a large number of 
objects and/or clusters. 
 

multiple kernel 
k-means 
clustering 
(MKFC) 

1.MKFC performs 
feature selection 
automatically and 
provides better 
clustering results. 
2.MKFC requires less 
iteration than the 
average of the KFCs. 
This indicates that 
MKFC converges 
more quickly. 
5.MKFC is easy to 
implement. 

1.MKFC was slightly 
slower than MKKM. 
2.MKFC is not ranked 1 
for each individual dataset; 
hence kernel combination 
does not yield the best 
performance in every 
single case. 
 

V. PROPOSED METHODOLOGY 

While fuzzy c-means is a popular soft-clustering 
method, its effectiveness is largely limited to spherical 
clusters. 

By applying kernel tricks, the kernel fuzzy c-means 
algorithm attempts to address this problem by mapping data 
with nonlinear relationships to appropriate feature spaces. 
Kernel combination, or selection, is crucial for effective 
kernel clustering. Unfortunately, for most applications, it is 
uneasy to find the right combination. 

The proposed method based on the three stages as 
objective function, optimizing membership and optimizing 
weight. 

A. Objective function: 
To discover nonlinear relationships among data, kernel 

methods use embedding mappings that map features of the 
data to new feature spaces. 

 
 

B. Optimizing membership: 
The goal of proposed algorithm is to simultaneously 

find combination weights w, memberships U, and cluster 
centers V, which minimize the objective function. 

C. Optimizing weight: 
It can be seen that when the weights w and cluster 

centers V are fixed, the optimal memberships U can be 
obtained. Now, let us assume that the memberships are 
fixed. We seek to derive the optimal centers and weights to 
combine the kernels. 
 

 
Figure 1. Framework of membership optimization for clustering 

VI. POSSIBLE OUTCOMES AND RESULT 

A. Performance Measures: 
Membership degrees make it possible for us to measure 

the performance of these algorithms using either hard-
clustering measures or soft-clustering measures. 
a. Hard-Clustering Measures: Most clustering measures 

are designed for the evaluation of the results of hard 
clustering, in which each data item is assigned to a 
single class.To use this kind of measure for soft 
clustering, one must convert the membership degrees 
to hard assignments. We take the conventional 
approach for such assignments, i.e., we assign each 
data item to the cluster with the highest membership 
degree. Hard-clusterings measures can be roughly 
categorized into pair-counting-based measures (e.g., 
Rand index (RI) and adjusted Rand index (ARI), set 
matching-based measures (e.g., H criterion), and 
information theoretic- based measures (e.g., mutual 
information and normalized mutual information 
(NMI). 

b. Soft-Clustering Measures: The casting of soft 
clustering to hard clustering often fails to faithfully 
reflect the performance of soft-clustering algorithms. 
For example, different fuzzy partitions (with 
potentially widely divergent spatial distributions) may 
result in the same crisp partition; accordingly, both 
will have the same hard-clustering measure. This loss 
of information, caused by the disposal of the fuzzy 
membership values, makes the hard clustering 
measures unable to discriminate between overlapped 
and nonoverlapped clusters. As such, these hard-
clustering measures might not be appropriate for the 
assessment of fuzzy clustering algorithms. To get 
around these drawbacks, Campello proposed a fuzzy 
extension of the RI and other related indexes. The 
extended index is obtained by first rewriting the 
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formulation of the RI in a fully equivalent form using 
basic concepts from set theory. 

VII. CONCLUSION 

This paper exhausted different clustering algorithm for 
optimizing procedure and provide low computational 
complexity. The results of these clustering algorithm show 
that the algorithm is able to achieve superior performance. 
Most of the approaches perform hard clustering, i.e., they 
assign each item to a single cluster. This works well when 
clustering compact and well-separated groups of data, but in 
many real-world situations, clusters overlap. In FRECCA 
algorithm is capable of identifying overlapping clusters of 
semantically related sentences. It is also mentioned that 
feature selection automatically and provides better 
clustering results. 

In many applications such as bioinformatics, a gene or 
protein may be simultaneously related to several biomedical 
concepts so it is necessary to have a “soft clustering” 
algorithm to combine multiple data sources. A generic fuzzy 
clustering algorithm that can be applied to any relational 
clustering problem and application to several non sentence 
data sets has shown its performance to be comparable to 
Spectral Clustering and k-Medoid benchmarks. It can also 
be used within more general text mining settings such as 
query-directed text mining. 

 
 
 
 

VIII. FUTURE SCOPE 

Graph-based methods are an exciting area of research 
within the pattern recognition community. All These 
clustering methods can be extending to perform hierarchical 
clustering. The concept in natural language documents 
usually display some type of hierarchical structure, where as 
these proposed algorithm identifies only flat clusters. The 
future objective is to extend these ideas to the development 
of a hierarchical fuzzy relational clustering algorithm. In the 
future, it is useful in open topics, such as strategies for 
setting the fuzzification degree or choosing the basis 
kernels. 
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