
Volume 5, No. 4, April 2014 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 53

ISSN No. 0976-5697

CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

Optimizing SPARQL queries in Linked Open Data using Heuristic approach
Gouri D. Potdar

Department of Computer Engineering
Goa College of Engineering, Farmagudi

Ponda, India
potdargouri@gmail.com

Rachel Dhanaraj
Department of Computer Engineering

Goa College of Engineering, Farmagudi
Ponda, India

racheldhanaraj@gmail.com

Abstract— As today’s world tends to rely more and more on search engines for quenching its thirst for information, search engines, today, are
expected to be faster, more accurate, more intelligent and more powerful so as to reach a wide pool of information resources. Data sources like
CKAN1, DBpedia2, GeoNames3, FOAF4 which collectively form Linked Open Data (LOD) have gained importance in this quest for better
search engines. SPARQL is the w3c recommended query language which is used to extract data from LOD sets. SPARQL queries typically
contain more joins than equivalent relational plans, and hence lead to a large join order search space. Consequently, query optimization in RDF
Stores is a challenge. The dynamic nature of LOD prevents the application of the cost based approach which requires statistics. Moreover, the
relevant correlations cannot be identified beforehand. Hence, using good heuristics for SPAQRL query optimization is an advantage.

Keywords—Linked Open Data, Heuristics, Query Optimization, SPARQL, RDF

I. INTRODUCTION

We are living in an era of modern information
technology. Huge data repositories are accessible on just a
click away in the world of web. Organizing information on
such a large scale is an important task and for structuring
data Linked Open Data (LOD) is used. LOD integrates the
various data sets available and forms the web of data. The
major issue while dealing with the dynamic and global data
space is meaningful exploitation and usage of huge amount
of semantic data. Lack of efficient and effective storage and
querying techniques is proving crucial at this juncture.

SPARQL has become really important query language.
It provides a mechanism to express constraints and facts and
the entities matching those constraints are returned to the
user. However, the syntax of SPARQL requires users to
specify the precise details of the structure of the graph being
queried in the triple pattern. To ease querying from an
infrastructural perspective, data contributors have provided
public SPARQL endpoints to query the LOD cloud datasets.
[3]

In this paper, we are proposing optimization of the
SPARQL query which is used to fetch the response from
various data sources like DBpedia and freebase. We are
working on the SPARQL queries used in the search engine.
The search engine will assist the user when he/she will start
interacting with initial query typed in search engines input
box. It will provide the autosuggestions when user will type
the initial query, also the query can be replaced or refined
for more precise query writing. When the query is submitted
to the search engine it will fetch the information from the
DBpedia and Freebase using SPARQL as a query language.
The evaluation of SPARQL queries which contains filter
(!regex) expressions degrades the performance and results in
delay. In this paper, we are focusing on producing the
execution plans with the maximum number of merge joins.
Merge joins make use of the ordering of the joining
attributes to achieve better execution times. [1]

II. LINKED OPEN DATA (LOD)

A. Rationale:
Most of the times, when we start searching for any

information, we get diverted from information which we are
seeking by irrelevant information which does not match our
expectations accurately. Due to this reason users keep
changing their initial query.

The main reason for user dissatisfaction is that the users
do not know what exactly is to be typed i.e. the users do not
know the precise query which will give the best answer to
their need. Also the speed is important factor for search
engine where optimization comes into picture.

To solve this problem the user needs some assistance
from the search engine which will help the user to get the
results faster. [4]

B. Linked Open Data (LOD):
Linked Open Data is a way of publishing data on the

Web that encourages reuse, reduces redundancy, maximizes
its (real and potential) inter-connectedness, enables network
effects to add value to data. LOD uses the RDF (Resource
Description Framework) data format for describing things
and their interrelations. [6]

a. All items of interest, such as information resources,
real-world objects, and vocabulary terms are
identified by URI references [9].

b. URI references are dereferenceable; an application
can look up a URI over the HTTP protocol and
retrieve an RDF description of the identified item.

c. Descriptions are provided using the RDF/XML
syntax.

d. Every RDF triple is conceived as a hyperlink that
links to related information from the same or a
different source and can be followed by Semantic
Web agents.

These principles are sufficient to create a Web of Data
in which anyone can publish information, link to existing
information, follow links to related information, and
consume and aggregate information without necessarily

Gouri D. Potdar et al, International Journal of Advanced Research in Computer Science, 5 (4), April 2014 (Special Issue), 53-55

© 2010-14, IJARCS All Rights Reserved 54 CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

having neither to fully understand its schema nor to learn
how to use a proprietary Web API. [5]

Whenever we are dealing with the large amount of data,
the size as well as dirty nature of the data needs Extraction,
Transformation and Loading (ETL) processes. It can easily
be translated into SPARQL queries that overwhelm the
current modern technique in RDF database systems. Such
problems typically come down to formulating joins that
produce huge results, or to RDF database systems that
calculate the wrong join order such that the intermediate
results get too large to be processed. [10]

Linked open data cloud is increasing day by day as
more number of users is publishing their data/websites using
RDF. SPARQL protocol and RDF query language, also
known as SPARQL, is used to query this linked data. This
protocol was developed and widely accepted after multiple
attempts to make SQL the query language for RDF. But due
to the dynamic structure of nodes in the cloud of connected
databases this was not possible. Thus SPARQL emerged as
the query language which can query RDF for data, using
URIs.

Generally SPARQL end points are defined by data
providers so that users do not have to know the complete
graph of links and just query the data using the available
information. The query execution would take place by
gathering up all the resources at one point and then
executing the query on that point. This may not be possible
every time with the increase in density of the Linked open
data cloud. Thus the need of optimization techniques
became imminent. [11]

III. THE PROPOSED APPROACH

A. RDF (Resource Description Framework):
RDF is an essence of triple format namely subject,

predicate and object. [7]

Figure 1Triple Format Representation

The Resource Description Framework (RDF) is a
language for representing information about resources in the
World Wide Web. It is particularly intended for representing
metadata about Web resources, such as the title, author, and
modification date of a Web page, copyright and licensing
information about a Web document, or the availability
schedule for some shared resource.

However, by generalizing the concept of a "Web
resource", RDF can also be used to represent information
about things that can be identified on the Web, even when
they cannot be directly retrieved on the Web.

RDF is based on the idea of identifying things using
Web identifiers (called Uniform Resource Identifiers,
or URIs), and describing resources in terms of simple
properties and property values. This enables RDF to
represent simple statements about resources as a graph of
nodes and arcs representing the resources, and their
properties and values.

The group of statements "there is a Person identified by
http://www.w3.org/People/EM/contact#me, whose name is
Eric Miller, whose email address is em@w3.org, and whose
title is Dr." could be represented as the RDF graph in Figure
2:

Figure 2 illustrates that RDF uses URIs to identify:
a) individuals, e.g., Eric Miller, identified

by http://www.w3.org/People/EM/contact#me
b) kinds of things, e.g., Person, identified

by http://www.w3.org/2000/10/swap/pim/contact#
Person

c) properties of those things, e.g., mailbox, identified
by http://www.w3.org/2000/10/swap/pim/contact#
mailbox

d) values of those properties,
e.g. mailto:em@w3.org as the value of the mailbox
property (RDF also uses character strings such as
"Eric Miller", and values from other data types
such as integers and dates, as the values of
properties)

Figure 2 An RDF Graph Describing Eric Miller [8]

B. Methodology using Heuristics:
Due to the fine-grained nature of RDF data – where a

triple is just a narrow tuple with three attributes – SPARQL
queries involve a large number of joins. Such joins dominate
the query execution time. In addition, RDF data does not
come with schema or integrity constraints; therefore, a query
optimizer cannot take advantage of such information to
produce an efficient query plan. Another approach for query
optimization is needed, one based on the observation that
the syntactical form of a SPARQL query reveals
information about the data to be accessed. We advocate the
use of heuristics to determine the query execution plan,
instead of maintaining costly statistics for the stored data.
Due to the highly distributed, volatile, and ever-changing
nature of semantic data, a cost-based optimizer is likely to
under-perform more often because of outdated statistics.

A SPARQL join query consists of numerous costly
joins. The first and foremost important goal is to maximize
the number of merge joins in the query plan. A merge join in
this context is most commonly a sort-merge join, or any
other join that takes advantage of the existence of an index.

A SPARQL join query consists of numerous costly
joins. The first and foremost important goal is to maximize
the number of merge joins in the query plan. A merge join in
this context is most commonly a sort-merge join, or any
other join that takes advantage of the existence of an index.

An equally important goal is to minimize intermediate
results in order to minimize the memory footprint during

Gouri D. Potdar et al, International Journal of Advanced Research in Computer Science, 5 (4), April 2014 (Special Issue), 53-55

© 2010-14, IJARCS All Rights Reserved 55 CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

query execution. This is achieved by choosing the most
selective triple patterns to evaluate first. Traditionally,
deciding which triple patterns are more selective relies on
statistics.

Here are the heuristics which we are applying for
optimizing SPARQL queries. [2]

HEURISTIC 1 (Triple pattern order). Given the
position and the number of variables in a triple pattern one
can derive the following order, starting from the most
selective, i.e., the one that is likely to produce less
intermediate results, to the least selective.
(s, p, o) ≺ (s, ?, o) ≺ (?, p, o) ≺ (s, p, ?) ≺
≺ (?, ?, o) ≺ (s, ?, ?) ≺ (?, p, ?) ≺ (?, ?, ?)

The above ordering is based on the observation that
given a subject and an object there are only very few, if not
only one, properties that can satisfy the triple pattern.
Similarly, it is very rare that a combination of a subject and
property has more than one object value. In the same line of
thinking we derive the rest of the orders. There can only be
few subjects that have the same value for a property, while
there are more many subjects with the same property no
matter the object value. Finally, if a query pattern has 2
variables, then objects are more selective than subjects, and
subjects more selective than properties. An exception to this
rule is when the property has the value rdf:type, since that is
a very common property and thus these triples should not be
considered as selective.

HEURISTIC 2 (Distinct position of joins). The different
positions in which the same variable appears in a set of
triple patterns captures the number of different joins this
variable participates in. A variable that appears always in
the same position in all triple patterns, for example as
subject, entails many self joins with low selectivity. On the
other hand, if it appears both as object and property, chances
are the join result will be smaller. The following precedence
relation captures this preference:
p ⋈ o < s⋈ p < s ⋈ o < o ⋈ o < s ⋈ s < p ⋈ p

Where s, p, o refer to the subject, property, and object
position of the variable in the triple pattern. This ordering
stems from our observations while studying RDF data
graphs. RDF data graphs tend to be sparse with a small
diameter, while there are hub nodes, usually subjects. As a
result, query graph patterns that form linear paths are more
selective.

HEURISTIC 3 (Triples with most literals/URIs). This
heuristic is a special subcase of HEURISTIC 1 but can be
used independently. Triple patterns that have the most
number of literals and URIs – or symmetrically less
variables – are more selective. This heuristic is similar to the
bound as easier heuristic of relational query processing ,
according to which, the more bound components a triple
pattern has, the more selective it will be.

HEURISTIC 4 (Triples with literals in the object). An
object of a triple pattern may be a literal or a URI. In such
case, a literal is more selective than a URI. This is true for
RDF data because in many cases if a URI is used as an
object, it is used by many triples.

HEURISTIC 5 (Triple patterns with less projections).
This heuristic allows us to consider as late as possible the
triple patterns that contain projection variables. In the case
in which the compared sets of triple patterns have the same
set of projection variables, we prefer the set with the

maximum number of unused variables that are not
projection variables.

The above heuristics can be used in combination or
separately for determining the order in which triple patterns
should be evaluated, and thus achieving smaller
intermediate results. These heuristics are suitable for
different planning approaches, such as distributed
environment, or hybrid optimizers where a cost model and
heuristics work together.

IV. CONCLUSION

We have studied about the SPARQL and Linked Open
Data. The emerging trends in search engine demands better
results in less time, to fulfill this requirement a high speed
search engine with large scale data set is needed. To achieve
this goal we will implement the GUI having services like
query suggestion/refinement. This will naturally elevate the
standard of search engine. Also the SPARQL queries will be
optimized using heuristics presented above.

V. REFERENCES

[1]. Ioannis Papadakis a and Ioannis Apostolatos , LOD-based
query construction/refinement service for web search
engines, , Undefined 1 (2013) 1–10 IOS Press.

[2]. Petros Tsialiamanis, Lefteris Sidirourgos, Lefteris
Sidirourgos, Heuristics-based Query Optimisation for
SPARQL ,EDBT 2012, March 26–30, 2012, Berlin,
Germany. Copyright 2012 ACM 978-1-4503-0790-1/12/03.

[3]. Prateek Jain, Kunal Vermay, Peter Z. Yehy, Pascal Hitzler
and Amit P. Sheth, LOQUS: Linked Open Data SPARQL
Querying System, 2010.

[4]. I. Apostolatos, I. Papadakis, GContext: Context-based
search powered by Wikipedia, AI Mashup Challenge,
Extended Semantic Web Conference - ESWC 2012, 5th
finalist

[5]. Proceedings of the 3nd International Workshop on
Scripting for the Semantic Web (SFSW 2007) Co-located
with 4rd European Semantic Web Conference June 3-7,
2007, Innsbruck, Austria.

[6]. http://tomheath.com/slides/2009-02-austin-linkeddata-
tutorial.pdf

[7]. Queries R.Gomathi1, C.Sathya2 , D.Sharmila , Efficient
Optimization of Multiple SPARQL, e-issn: 2278-0661, p-
issn: 2278-8727volume 8, issue 6 (jan. - feb. 2013), pp 97-
101

[8]. http://www.w3.org/TR/rdf-primer/#figure1

[9]. Dietzold, S.: Basic vocabulary to use LDAP data in RDF.
OWL ontology (2005) http://purl.org/net/ldap.

[10]. Spyros Kotoulas, Jacopo Urbani, Peter Boncz, and Peter
Mika, Robust Runtime Optimization and Skew-Resistant
Execution of Analytical SPARQL Queries on Pi, The
Semantic Web–ISWC 2012, 2012 – Springer.

[11]. Prof. Bhaumik Nagar, Prof. Ashwin Makwana , Chirag
Pandya Optimizing Query execution over Linked Data,
International Journal of Emerging Technology and
Advanced Engineering Website: www.ijetae.com (ISSN
2250-2459, Volume 2, Issue 3, March 2012)

	INTRODUCTION
	LINKED OPEN DATA (LOD)
	Rationale:
	Linked Open Data (LOD):

	THE PROPOSED APPROACH
	RDF (Resource Description Framework):
	Methodology using Heuristics:

	CONCLUSION
	REFERENCES

