
��������	�
����	�
�����������

��� ��!�����"�������

�#"#�� $�%�%#��

�����&���'���������(((��)����������

© 2010, IJARCS All Rights Reserved 504

ISSN No. 0976-5697

A Crossover Probability Distribution in Genetic Algorithm Under process Scheduling

Problem

Er.Rajiv Kumar*
 PhD. Scholar Singhania University

Jhunjhunu,Rajasthan, INDIA

rajiv_kumar_gill1@yahoo.co.in

Er Sanjeev Gill
Lecturer, Civil Engg. Deptt.

Global research Institute of Management & Technology

Radaur Yamuna Nagar,Haryana

sanjeev_kumar_gill1@yahoo.co.in

Er. Ashwani Kaushik
Lecturer,Mechanical Engg Deptt.

N.C.College of Engineering Israna, Panipat

ashwanikrkaushik@rediffmail.com

Abstract: This paper describe the effect of crossover probability on the convergence of genetic algorithm. Genetic Algorithm have been

designed as general purpose optimization method. The power of the genetic algorithm is depends upon the proper use of their operators such as

selection, crossover and mutation. In this paper we apply the varying crossover probability under the operating system process scheduling

problem. The diversity of the population of the individuals are determine by the probability of crossover in the genetic algorithm. Crossover is

work as a diversifier for the population of solution in the genetic algorithm. The experiments shows that as the probability of cross over increase

more easily the GA adapt to the problem and converge to the best solution state.

Keywords: Genetic algorithm, NP-hard, Process Scheduling, Crossover

I. INTRODUCTION

Genetic Algorithms (GAs) are robust and intelligent

search method. The most important charactersitc of the GA

is its adaptability according to the problem on which it is

applied they are based on the genetic processes of biological

organisms. Over many generations, natural populations

evolve according to the principles of natural selection and

“survival of the fittest", first clearly stated by Charles

Darwin in The Origin of Species. By mimicking this

process, genetic algorithms are able to evolve" solutions to

real world problems, if they have been suitably encoded.

Then it can find out the best solution to the problem .

The principles of GAs were first laid down by

Professor Holland [1], and are well described in many texts

(e.g. [2], [3], [4], [5]) GAs simulate those processes in

natural populations which are essential to evolution. Exactly

which biological processes are essential for evolution, and

which processes have little or no role to play is still a matter

for research; but the foundations are clear. In nature,

individuals in a population compete with each other for

resources such as food, water and shelter.

Also, members of the same species often compete to

attract a mate. Those individuals which are most successful

in surviving and attracting mates will have relatively larger

numbers of offspring. Poorly performing individuals will

produce few of even no offspring at all. This means that the

genes from the highly adapted, or “fit" individuals will

spread to an increasing number of individuals in each

successive generation. The combination of good

characteristics from differrent ancestors can sometimes

produce “super fit" offspring, whose fitness is greater than

that of either parent. In this way, species evolve to become

more and better suited to their environment.

GAs use a direct analogy of natural behavior. They

work with a population of “individuals", each representing a

possible solution to a given problem. Each individual is

assigned a “fitness score" according to how good a solution

to the problem it is. The power of GAs comes from the fact

that the technique is robust, and can deal successfully with a

wide range of problem areas, including those which are

difficult for other methods to solve. GAs are not guaranteed

to find the global optimum solution to a problem, but they

are generally good at finding” acceptably good" solutions to

problems “acceptably quickly". Where specialized

techniques exist for solving particular problems, they are

likely to out-perform GAs in both speed and accuracy of the

final result. The main ground for GAs, then, is in difficult

areas where no such techniques exist. Even where existing

techniques work well, improvements have been made by

hybridizing them with a GA.

II. METHODOLOGY

A. Coding

It is assumed that a potential solution to a problem may

be represented as a set of parameters .In the process

scheduling problem we use permutation coding technique.

These parameters (known as genes) are joined together to

form a string of values (often referred to as a chromosome).

(Holland [1] first showed, and many still believe, that the

ideal is to use

Chromosome 1 1101100100110110

Chromosome 2 1101111000011110

Figure 1.

Er.Rajiv Kumar et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,504-508

© 2010, IJARCS All Rights Reserved 505

A binary alphabet for the string. For example, if our

problem is to maximize a function of three variables, F(x; y;

z), we might represent each variable by a 10-bit binary

number (suitably scaled). Our chromosome would therefore

contain three genes, and consist of 30 binary digits. In our

problem we take five jobs and they have number 1,2,3,4 and

5. Also with this job number each job is associated with

their job process time .when we arrange randomly these job

they will make a particular schedule then we apply fitness

function which find out the merit of the solution. In genetics

terms, the set of parameters represented by a particular

chromosome is referred to as a genotype.

The genotype contains the information required to

construct an organism which is referred to as the phenotype.

B. Initialization

Initially many individual solutions are randomly

generated to form an initial population. The population size

depends on the nature of the problem, but typically contains

several hundreds or thousands of possible solutions.

Traditionally, the population is generated randomly,

covering the entire range of possible solutions (the search

space). Occasionally, the solutions may be "seeded" in areas

where optimal solutions are likely to be found.

C. Selection

Main article: Selection (genetic algorithm) during each

successive generation, a proportion of the existing

population is selected to breed a new generation. Individual

solutions are selected through a fitness-based process, where

fitter solutions (as measured by a fitness function) are

typically more likely to be selected. Certain selection

methods rate the fitness of each solution and preferentially

select the best solutions. Other methods rate only a random

sample of the population, as this process may be very time-

consuming. Most functions are stochastic and designed so

that a small proportion of less fit solutions are selected. This

helps keep the diversity of the population large, preventing

premature convergence on poor solutions. Popular and well-

studied selection methods include roulette wheel selection

and tournament selection.

D. Reproduction

During the reproductive phase of the GA, individuals

are selected from the population and recombined, producing

offspring which will comprise the next generation. Parents

are selected randomly from the population using a scheme

which favors the more _t individuals. Good individuals will

probably be selected several times in a generation; poor ones

may not be at all. Having selected two parents, their

chromosomes are recombined, typically using the

mechanisms of crossover and mutation. The most basic

forms of these operators are as follows:

Crossover takes two individuals, and cuts their

chromosome strings at some randomly chosen position, to

produce two \head" segments, and two “tail" segments. The

tail segments are then swapped over to produce two new full

length chromosomes (see Figure 2). The two offspring each

inherit some genes from each parent. This is known as

single point crossover. Crossover is not usually applied to

all pairs of individuals selected for mating.

Figure 2. Single Point Crossover

 A random choice is made, where the likelihood of

crossover being applied is typically between 0.6 and 1.0. If

crossover is not applied, offspring are produced simply by

duplicating the parents. This gives each individual a chance

of passing on its genes without the disruption of crossover.

Mutation is applied to each child individually after

crossover. It randomly alters each gene with a small

probability (typically 0.001). Figure 3 shows the fifth gene

of the chromosome being mutated. The traditional view is

that crossover is the more important of the two techniques

for rapidly exploring a search space. Mutation provides a

small amount of random search, and helps ensure that no

point in the search

Figure 3. A single Mutation

E. Convergence

The fitness of the best and the average individual in

each generation increases towards a global optimum.

Convergence is the progression towards increasing

uniformity. A gene is said to have converged when 95% of

the population share the same value. The population is said

to have converged when all of the genes have converged. As

the population converges, the average fitness will approach

that of the best individual. A GA will always be subject to

stochastic errors. One such problem is that of genetic drift.

Even in the absence of any selection pressure (i.e. a constant

fitness function), members of the population will still

converge to some point in the solution space.

F. Termination

This generational process is repeated until a termination

condition has been reached. Common terminating conditions

are:

Er.Rajiv Kumar et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,504-508

© 2010, IJARCS All Rights Reserved 506

(a] A solution is found that satisfies minimum criteria

Fixed number of generations reached

(b) Allocated budget (computation time/money)

 reached.

(c) The highest ranking solution's fitness is reaching or has

 Reached a plateau such that successive iterations no

 Longer produce better results

(d) Manual inspection

(e) Combinations of the above.

G. Pseudo Code

 Simple generational genetic algorithm pseudo code

[a] Choose the initial population of individuals

[b] Evaluate the fitness of each individual in that

population

[c] Repeat on this generation until termination: (time limit,

sufficient fitness achieved, etc.)

[i] Select the best-fit individuals for reproduction.

[ii] Breed new individuals through crossover and mutation

operations to give birth to offspring .

[iii] Evaluate the individual fitness of new individuals.

[iv] Replace least-fit population with new individuals.

H. The Building Block Hypothesis

Genetic algorithms are simple to implement, but their

behavior is difficult to understand. In particular it is difficult

to understand why these algorithms frequently succeed at

generating solutions of high fitness when applied to

practical problems. The building block hypothesis (BBH)

consists of:

[a] A description of a heuristic that performs adaptation by

identifying and recombining "building blocks", i.e. low

order, low defining-length schemata with above average

fitness.

[b] A hypothesis that a genetic algorithm performs

adaptation by implicitly and efficiently implementing

this heuristic.

Goldberg describes the heuristic as follows: "Short,

low order, and highly fit schemata are sampled, recombined

[crossed over], and resampled to form strings of potentially

higher fitness. In a way, by working with these particular

schemata [the building blocks], we have reduced the

complexity of our problem; instead of building high-

performance strings by trying every conceivable

combination, we construct better and better strings from the

best partial solutions of past samplings.

"Because highly fit schemata of low defining length and

low order play such an important role in the action of

genetic algorithms, we have already given them a special

name: building blocks. Just as a child creates magnificent

fortresses through the arrangement of simple blocks of

wood, so does a genetic algorithm seek near optimal

performance through the juxtaposition of short, low-order,

high-performance schemata, or building blocks[6]

III. EXPERIMENT DESCRIPTION

First we generate the random population of individual

.in this paper we consider the process scheduling problem

.we have five jobs with their corresponding service time.

The parameter setting include inversion probability is

.001and cross over probability is changed from 0.1 to 1.0.

Then we compare the results of GA with variable cross over

probability.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of Cases

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
.)

GA 0.1 GA 0.2 GA 0.3 GA 0.4 GA 0.5

Figure 4 Comparison of result

Er.Rajiv Kumar et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,504-508

© 2010, IJARCS All Rights Reserved 507

Table 1. GA with CP (P=0.1 TO 0.5)

Sr.No Burst Time of Jobs GAc0.1

GAc0.2

GAc0.3

GAc0.4

GAc0.5

J1 J2 J3 J4 J5 Execution

time in sec.

Execution

time in sec.

Execution

time in sec.

Execution

time in sec.

Execution

time in sec.

1 6 3 4 10 10 15 12 5 4 3

2 20 6 11 13 14 14 13 5 5 4

3 15 7 18 19 20 12 15 10 6 1

4 13 9 22 41 33 13 10 3 5 4

5 28 11 43 35 26 12 5 6 5 3

6 19 13 8 19 18 11 10 6 4 4

7 27 15 16 13 14 24 11 5 3 2

8 24 4 25 20 22 25 9 4 4 4

9 13 23 11 21 33 11 6 9 6 4

10 12 33 34 13 34 11 8 4 5 5

11 11 8 15 20 23 11 7 4 5 2

12 17 24 18 19 20 19 9 6 4 4

13 9 21 13 14 16 25 11 5 2 3

14 8 19 20 11 22 13 7 3 2 4

15 1 23 18 9 10 12 8 5 5 5

16 16 14 15 16 8 14 7 5 5 2

17 17 19 25 16 27 11 6 6 3 2

18 6 33 14 25 16 12 7 6 4 4

19 7 18 19 20 21 15 9 6 3 3

20 20 8 20 11 15 13 5 6 3 2

TOTAL E _ TIME
s=

 s=

1

20

= � ES

293 175 109 83 65

MEAN E_ TIME s=

 s=

1

20

=

� ES

20

14.65 8.75 5.45 4.15 3.25

Table 2. GA with CP (P=0.5 TO 0.6)

Sr.No Burst Time of Jobs GA0.6

GA0.7

GA0.8

GA0.9

GA1.0

J1 J2 J3 J4 J5 Execution

time in sec.

Execution

time in sec.

Execution

time in sec.

Execution

time in sec.

Execution

time in sec.

1 6 3 4 10 10 1 1 2 1 1

2 20 6 11 13 14 2 2 3 2 2

3 15 7 18 19 20 4 3 2 2 1

4 13 9 22 41 33 3 2 2 2 2

5 28 11 43 35 26 2 1 1 2 2

6 19 13 8 19 18 3 4 2 2 3

7 27 15 16 13 14 3 3 2 2 3

8 24 4 25 20 22 1 1 2 2 2

9 13 23 11 21 33 4 2 2 2 2

10 12 33 34 13 34 5 4 3 3 3

11 11 8 15 20 23 2 3 1 1 2

12 17 24 18 19 20 2 2 1 2 2

13 9 21 13 14 16 4 2 3 3 2

14 8 19 20 11 22 2 3 2 2 2

15 1 23 18 9 10 3 3 4 2 2

16 16 14 15 16 8 2 2 2 2 3

17 17 19 25 16 27 5 2 3 2 1

18 6 33 14 25 16 3 4 3 3 2

19 7 18 19 20 21 3 1 2 4 2

20 20 8 20 11 15 4 3 3 2 3

TOTAL E _ TIME

s=

 s=

1

20

= � ES

58 48 45 43 42

MEAN E_ TIME s=

 s=

1

20

=

� ES

20

2.9 2.4 2.25 2.15 2.1

Er.Rajiv Kumar et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,504-508

© 2010, IJARCS All Rights Reserved 508

IV. CONCLUSION AND FUTURE WORK

The Genetic algorithm is robust, flexible search method

to optimize the scheduling problem. We examine that when

the probability of crossover increase the execution time for

job scheduling is decrease. i.e the GA converge to nearest

optimal solution. Also the diversity of the Population

increase .we can expand this work with variable mutation

probability. The efficient parameter setting is required for

the GA.

V. REFERENCES

[1] J.H. Holland. Adaptation in Natural and Artificial

Systems. MIT Press, 1975.

[2] L. Davis. Genetic Algorithms and Simulated Annealing.

Pitman, 1987.

[3] L. Davis. Handbook of Genetic Algorithms. Van

Nostrand Reinhold, 1991.

[4] J.J. Grefenstette. Optimization of control parameters for

genetic algorithms. IEEE Trans SMC, 16:122{128,

1986.

[5] J.J. Grefenstette. Genetic algorithms and their

applications. In A. Kent and J.G. Williams, editors,

Encyclopaedia of Computer Science and Technology,

pages 139{152. Marcel Dekker, 1990.

[6] Goldberg, David E. (1989). Genetic Algorithms in

Search Optimization and Machine Learning. Addison

Wesley. pp. 41.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No.of Cases

E
x
e
c
u

ti
o

n
 T

im
e
(S

e
c
.)

GA 0.6 GA 0.7 GA 0.8 GA 0.9 GA 1.0

