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Abstract:  This paper describe the effect of crossover probability on the convergence of genetic algorithm. Genetic Algorithm have been 

designed as general purpose optimization method. The power of the genetic algorithm is depends upon the proper use of their operators such as 

selection, crossover and mutation. In this paper we apply the varying crossover probability under the operating system process scheduling 

problem. The diversity of the population of the individuals are determine by the probability of crossover in the genetic algorithm. Crossover is 

work as a diversifier for the population of solution in the genetic algorithm. The experiments shows that as the probability of cross over increase 

more easily the   GA adapt to the problem and converge to the best solution state. 

 

Keywords:  Genetic algorithm, NP-hard, Process Scheduling, Crossover 

I. INTRODUCTION 

Genetic Algorithms (GAs) are robust and intelligent 

search method. The most important charactersitc of the GA 

is its adaptability according to the problem on which it is 

applied they are based on the genetic processes of biological 

organisms. Over many generations, natural populations 

evolve according to the principles of natural selection and 

“survival of the fittest", first clearly stated by Charles 

Darwin in The Origin of Species. By mimicking this 

process, genetic algorithms are able to evolve" solutions to 

real world problems, if they have been suitably encoded. 

Then it can find out the  best solution to the problem . 

The principles of GAs were first laid down by  

Professor Holland [1], and are well described in many texts 

(e.g. [2], [3], [4], [5]) GAs simulate those processes in 

natural populations which are essential to evolution. Exactly 

which biological processes are essential for evolution, and 

which processes have little or no role to play is still a matter 

for research; but the foundations are clear. In nature, 

individuals in a population compete with each other for 

resources such as food, water and shelter. 

Also, members of the same species often compete to 

attract a mate. Those individuals which are most successful 

in surviving and attracting mates will have relatively larger 

numbers of offspring. Poorly performing individuals will 

produce few of even no offspring at all. This means that the 

genes from the highly adapted, or “fit" individuals will 

spread to an increasing number of individuals in each 

successive generation. The combination of good 

characteristics from differrent ancestors can sometimes 

produce “super fit" offspring, whose fitness is greater than 

that of either parent. In this way, species evolve to become 

more and better suited to their environment. 

 

GAs use a direct analogy of natural behavior. They 

work with a population of “individuals", each representing a 

possible solution to a given problem. Each individual is 

assigned a “fitness score" according to how good a solution 

to the problem it is. The power of GAs comes from the fact 

that the technique is robust, and can deal successfully with a 

wide range of problem areas, including those which are 

difficult for other methods to solve. GAs are not guaranteed 

to find the global optimum solution to a problem, but they 

are generally good at finding” acceptably good" solutions to 

problems “acceptably quickly". Where specialized 

techniques exist for solving particular problems, they are 

likely to out-perform GAs in both speed and accuracy of the 

final result. The main ground for GAs, then, is in difficult 

areas where no such techniques exist. Even where existing 

techniques work well, improvements have been made by 

hybridizing them with a GA. 

II. METHODOLOGY 

A. Coding 

It is assumed that a potential solution to a problem may 

be represented as a set of parameters .In the process 

scheduling problem we use permutation coding technique. 

These parameters (known as genes) are joined together to 

form a string of values (often referred to as a chromosome). 

(Holland [1]  first showed, and many still believe, that  the 

ideal is to use  

Chromosome 1 1101100100110110 

Chromosome 2 1101111000011110 

 
Figure  1. 
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A binary alphabet for the string.  For example, if our 

problem is to maximize a function of three variables, F(x; y; 

z), we might represent each variable by a 10-bit binary 

number (suitably scaled). Our chromosome would therefore 

contain three genes, and consist of 30 binary digits. In our 

problem we take five jobs and they have number 1,2,3,4 and 

5. Also with this job number each job is associated with 

their job process time .when we arrange randomly these job 

they will make a particular schedule then we apply fitness 

function which find out the merit of the solution. In genetics 

terms, the set of parameters represented by a particular 

chromosome is referred to as a genotype. 

The genotype contains the information required to 

construct an organism which is referred to as the phenotype. 

B. Initialization 

Initially many individual solutions are randomly 

generated to form an initial population. The population size 

depends on the nature of the problem, but typically contains 

several hundreds or thousands of possible solutions. 

Traditionally, the population is generated randomly, 

covering the entire range of possible solutions (the search 

space). Occasionally, the solutions may be "seeded" in areas 

where optimal solutions are likely to be found. 

C. Selection 

Main article: Selection (genetic algorithm) during each 

successive generation, a proportion of the existing 

population is selected to breed a new generation. Individual 

solutions are selected through a fitness-based process, where 

fitter solutions (as measured by a fitness function) are 

typically more likely to be selected. Certain selection 

methods rate the fitness of each solution and preferentially 

select the best solutions. Other methods rate only a random 

sample of the population, as this process may be very time-

consuming. Most functions are stochastic and designed so 

that a small proportion of less fit solutions are selected. This 

helps keep the diversity of the population large, preventing 

premature convergence on poor solutions. Popular and well-

studied selection methods include roulette wheel selection 

and tournament selection. 

D. Reproduction 

During the reproductive phase of the GA, individuals 

are selected from the population and recombined, producing 

offspring which will comprise the next generation. Parents 

are selected randomly from the population using a scheme 

which favors the more _t individuals. Good individuals will 

probably be selected several times in a generation; poor ones 

may not be at all. Having selected two parents, their 

chromosomes are recombined, typically using the 

mechanisms of crossover and mutation. The most basic 

forms of these operators are as follows:  

Crossover takes two individuals, and cuts their 

chromosome strings at some randomly chosen position, to 

produce two \head" segments, and two “tail" segments. The 

tail segments are then swapped over to produce two new full 

length chromosomes (see Figure 2). The two offspring each 

inherit some genes from each parent. This is known as 

single point crossover. Crossover is not usually applied to 

all pairs of individuals selected for mating. 

 

Figure 2. Single Point Crossover 

 A random choice is made, where the likelihood of 

crossover being applied is typically between 0.6 and 1.0. If 

crossover is not applied, offspring are produced simply by 

duplicating the parents. This gives each individual a chance 

of passing on its genes without the disruption of crossover. 

Mutation is applied to each child individually after 

crossover. It randomly alters each gene with a small 

probability (typically 0.001). Figure 3 shows the fifth gene 

of the chromosome being mutated. The traditional view is 

that crossover is the more important of the two techniques 

for rapidly exploring a search space. Mutation provides a 

small amount of random search, and helps ensure that no 

point in the search 

 

 
         

Figure 3. A single Mutation 

 

E. Convergence 

The fitness of the best and the average individual in 

each generation increases towards a global optimum. 

Convergence is the progression towards increasing 

uniformity. A gene is said to have converged when 95% of 

the population share the same value. The population is said 

to have converged when all of the genes have converged. As 

the population converges, the average fitness will approach 

that of the best individual. A GA will always be subject to 

stochastic errors. One such problem is that of genetic drift. 

Even in the absence of any selection pressure (i.e. a constant 

fitness function), members of the population will still 

converge to some point in the solution space. 

F. Termination 

This generational process is repeated until a termination 

condition has been reached. Common terminating conditions 

are:   
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(a] A solution is found that satisfies minimum criteria    

Fixed number of generations reached   

(b)  Allocated budget (computation time/money)  

 reached. 

(c) The highest ranking solution's fitness is reaching or has  

        Reached a plateau such that successive iterations no  

        Longer produce better results  

(d) Manual inspection   

(e)  Combinations of the above. 

G. Pseudo Code 

 Simple generational genetic algorithm pseudo code  

[a] Choose the initial population of individuals   

[b] Evaluate the fitness of each individual in that 

population  

[c] Repeat on this generation until termination: (time limit, 

sufficient fitness achieved, etc.)   

[i] Select the best-fit individuals for reproduction.   

[ii] Breed new individuals through crossover and mutation 

operations to give birth to offspring . 

[iii]  Evaluate the individual fitness of new individuals.  

[iv]  Replace least-fit population with new individuals. 

H. The Building  Block Hypothesis 

Genetic algorithms are simple to implement, but their 

behavior is difficult to understand. In particular it is difficult 

to understand why these algorithms frequently succeed at 

generating solutions of high fitness when applied to 

practical problems. The building block hypothesis (BBH) 

consists of: 

[a] A description of a heuristic that performs adaptation by 

identifying and recombining "building blocks", i.e. low 

order, low defining-length schemata with above average 

fitness.  

[b] A hypothesis that a genetic algorithm performs 

adaptation by implicitly and efficiently implementing 

this heuristic. 

Goldberg describes the heuristic as follows:   "Short, 

low order, and highly fit schemata are sampled, recombined 

[crossed over], and resampled to form strings of potentially 

higher fitness. In a way, by working with these particular 

schemata [the building blocks], we have reduced the 

complexity of our problem; instead of building high-

performance strings by trying every conceivable 

combination, we construct better and better strings from the 

best partial solutions of past samplings.  

"Because highly fit schemata of low defining length and 

low order play such an important role in the action of 

genetic algorithms, we have already given them a special 

name: building blocks. Just as a child creates magnificent 

fortresses through the arrangement of simple blocks of 

wood, so does a genetic algorithm seek near optimal 

performance through the juxtaposition of short, low-order, 

high-performance schemata, or building blocks[6]  

III. EXPERIMENT DESCRIPTION 

First we generate the random population of individual 

.in this paper we consider the process scheduling problem 

.we have five jobs with their corresponding service time.  

The parameter setting include inversion probability is 

.001and cross over probability is changed from 0.1 to 1.0. 

Then we compare the results of GA with variable cross over 

probability. 
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Figure 4 Comparison of result 
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Table 1.  GA with CP  (P=0.1 TO 0.5) 

 
Sr.No Burst Time of  Jobs GAc0.1 

 

GAc0.2 

 

GAc0.3 

 

GAc0.4 

 

GAc0.5 

 

J1 J2 J3 J4 J5 Execution 

time in sec. 

Execution 

time in sec. 

Execution 

time in sec. 

Execution 

time in sec. 

Execution 

time in sec. 

1 6 3 4 10 10 15 12 5 4 3 

2 20 6 11 13 14 14 13 5 5 4 

3 15 7 18 19 20 12 15 10 6 1 

4 13 9 22 41 33 13 10 3 5 4 

5 28 11 43 35 26 12 5 6 5 3 

6 19 13 8 19 18 11 10 6 4 4 

7 27 15 16 13 14 24 11 5 3 2 

8 24 4 25 20 22 25 9 4 4 4 

9 13 23 11 21 33 11 6 9 6 4 

10 12 33 34 13 34 11 8 4 5 5 

11 11 8 15 20 23 11 7 4 5 2 

12 17 24 18 19 20 19 9 6 4 4 

13 9 21 13 14 16 25 11 5 2 3 

14 8 19 20 11 22 13 7 3 2 4 

15 1 23 18 9 10 12 8 5 5 5 

16 16 14 15 16 8 14 7 5 5 2 

17 17 19 25 16 27 11 6 6 3 2 

18 6 33 14 25 16 12 7 6 4 4 

19 7 18 19 20 21 15 9 6 3 3 

20 20 8 20 11 15 13 5 6 3 2 

         

TOTAL E _ TIME
s=

    s=

1

20

= �   ES

 

293 175 109 83 65 

 

          
MEAN  E_ TIME s=

    s=

1

20

=

�   ES

20  

14.65 8.75 5.45 4.15 3.25 

 

 
Table 2.  GA with  CP  (P=0.5 TO 0.6) 

 
Sr.No Burst Time of  Jobs GA0.6 

 

GA0.7 

 

GA0.8 

 

GA0.9 

 

GA1.0 

 

J1 J2 J3 J4 J5 Execution 

time in sec. 

Execution 

time in sec. 

Execution 

time in sec. 

Execution 

time in sec. 

Execution 

time in sec. 

1 6 3 4 10 10 1 1 2 1 1 

2 20 6 11 13 14 2 2 3 2 2 

3 15 7 18 19 20 4 3 2 2 1 

4 13 9 22 41 33 3 2 2 2 2 

5 28 11 43 35 26 2 1 1 2 2 

6 19 13 8 19 18 3 4 2 2 3 

7 27 15 16 13 14 3 3 2 2 3 

8 24 4 25 20 22 1 1 2 2 2 

9 13 23 11 21 33 4 2 2 2 2 

10 12 33 34 13 34 5 4 3 3 3 

11 11 8 15 20 23 2 3 1 1 2 

12 17 24 18 19 20 2 2 1 2 2 

13 9 21 13 14 16 4 2 3 3 2 

14 8 19 20 11 22 2 3 2 2 2 

15 1 23 18 9 10 3 3 4 2 2 

16 16 14 15 16 8 2 2 2 2 3 

17 17 19 25 16 27 5 2 3 2 1 

18 6 33 14 25 16 3 4 3 3 2 

19 7 18 19 20 21 3 1 2 4 2 

20 20 8 20 11 15 4 3 3 2 3 

        
TOTAL E _ TIME

s=

    s=

1

20

= �   ES

 
  

58 48 45 43 42 

       
MEAN  E_ TIME s=

    s=

1

20

=

�   ES

20  

2.9 2.4 2.25 2.15 2.1 
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IV. CONCLUSION AND FUTURE WORK 

The Genetic algorithm is robust, flexible search method 

to optimize the scheduling problem. We examine that when 

the probability of crossover increase the execution time for 

job scheduling is decrease. i.e the GA converge to nearest 

optimal solution. Also the diversity of the Population 

increase .we can expand this work with variable mutation 

probability. The efficient parameter setting is required for 

the GA. 

V. REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 

[1] J.H. Holland. Adaptation in Natural and Artificial  

Systems. MIT Press, 1975. 

[2] L. Davis. Genetic Algorithms and Simulated Annealing. 

Pitman, 1987. 

[3] L. Davis. Handbook of Genetic Algorithms. Van  

Nostrand Reinhold, 1991. 

[4] J.J. Grefenstette. Optimization of control parameters for 

genetic algorithms. IEEE Trans SMC, 16:122{128, 

1986. 

[5] J.J. Grefenstette. Genetic algorithms and their 

applications. In A. Kent and J.G. Williams, editors, 

Encyclopaedia of Computer Science and Technology, 

pages 139{152. Marcel Dekker, 1990. 

[6]  Goldberg, David E. (1989). Genetic Algorithms in  

Search Optimization and Machine Learning. Addison  

Wesley.  pp. 41. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No.of Cases

E
x
e
c
u

ti
o

n
 T

im
e
(S

e
c
.)

GA 0.6 GA 0.7 GA 0.8 GA 0.9 GA 1.0


