
Volume 5, No. 3, March-April 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 57

ISSN No. 0976-5697

Implement Secure Authentication Mechanisms in Web Applications
Dr. Anil Kumar

Professor
Department of Computer Science

Manipal University
Jaipur, India

Mr. Krishna Reddy
M.Tech Scholar, Information Security

Department of Computer Science
Manipal University

Jaipur, India
Abstract:With the advent of World Wide Web, information sharing through internet increased drastically. So web applications security is
today’s most significant battlefield between attackers and resources of web service. It is likely to remain so for the foreseeable future. By
considering recent attacks it has been found that major attacks in Web Applications have been carried out even system having authentication
mechanisms. Malicious users getting access into systems, reasons may be anything but getting third party access into systems shell violet
organization policies. Authenticating an object means confirming its provenance to service, whereas authenticating a person often consists of
verifying their identity. Depends on application authentication scheme will implement one or more authentication factors. In computer security,
authentication is the process of attempting to verify the digital identity of user to server for getting service, in this process server don’t knows
who requesting service, irrespective of identification if server provides service then possibility to getting access by unauthorized users. Mainly
these vulnerable authentication applications lead to security risks.

Keywords:Security; authentication; service; identification; vulnerability;

I. INTRODUCTION

Constructing secure application is very difficult [1], in
terms of complexity. More over there is no measures for
security, providing security means to keep avoiding attacking
patterns. When industry moving towards electronic
communication, web service palace major role for
information interchange. Mainly web applications serves
public information, up to some extend attack patterns having
less impact in web service, when service starts to store and
transfer confidential in information through internet, attack
patterns are involving in between normal communication,
such activities spoils user or service present states. In initial
stages security handles with antivirus, then in network level,
now security threats more in application level, due to lack of
secure code. So vulnerability is defined as weakness in
system or future of system that males easy to exploit.
Vulnerability might be exists at the host, network or
application levels.

Many application especially web based application faces
risks and those applications will cause to violate policies that
are maintained in application. Web applications works in the
principle “web server accepting user request and process it,
again gives proper acknowledgments” this process enough to
implement communication channel, and in case of vulnerable
applications possible to compromise applications or service.
Until there is no attack patterns application serves
communication, whenever application moving to words
business application deployment authentication schemes
comes up and attack patterns will active. In this stage in
some vulnerable web applications can possible to access by
malicious user due to lack of proper authentication
mechanisms. When organization moves to automate business
with web service via internet attack surfaces comes in front,
due to lack of security auditing. Web application
authentication process is describes as follows.

Application level attacks place interesting role in web
applications, which causes to financial lose, and creates
serious reputation on service. Majorly application level

attacks happen because of authentication leaks [2], digital
information that requesting by user in application surface,
service have to configure to process user requests in proper
way, to keep out attack patterns. In application level
vulnerability identification is absolutely difficult; strong
authentication mechanism is the only way to keep application
secure from application attacks.

Figure 1: Typical Web Application Authentication process

More over avoiding authentication flaws after
deployment is very difficult. Authentication vulnerabilities
basically belong to application level attack, through this
possibility to happen other attacks like denial of service. In
web applications major vulnerabilities like Brute force,
Authentication bypassing, Cache, and multiple factors
authentication are commonly found in complex business
applications, unfortunately commercial applications also not
so far from application level attacks. Also keep on securing
application, it will cause to arises complexity issues, and
possibly launch new vulnerabilities.

II. AUTHENTICATION VULNERABILITIES IN
WEB APPLICATIONS

In web applications Authentication is the process of
proving them self they are authorized users to access
service. So authentication is the process of sending user

Krishna Reddyet al, International Journal of Advanced Research In Computer Science, 5 (3), March–April, 2014,57-61

© 2010-14, IJARCS All Rights Reserved 58

request via web browser and process user request by server,
if server getting true values then service will allocate session
to user, then user can able to enter into private state on
service. In this process user session is secure until no one
can able to enter into private state, but there is possible to
authentication flaws in web application, those describes as
follows.

A. Information Transprt over Encrypted Channel:
When application sending sensitive information, web

applications should takes the appropriate security measures
by using a protocol like HTTPS, because HTTPS protocol is
built on TLS/SSL mechanism. Data passing through HTTP
protocol means it is non-secure way because it works on
application layer, whereas using HTTPS is secure because it
works on transport layer [3]. Else data can able to sniff
while data is being transmitted. Suppose,
GET http://www.example.com:443/login.php
Here credentials pass through get method and HTTP which
means whole information sends in URL, possible to sniff
information while being transmitted.
POST https://www.example.com:443/login.php
In this request protocol used here is https and method is
post, which means not that much easy to sniff.

B. Guessable User Accounts and Passwords:
Some users, gives user accounts for guessable accounts

and passwords which are easily known by others. Guessable
might be dictionary words, easily known to others. Some
applications leak information as to the validity of usernames
during either authentication attempts, like password not
match then user name is correct. Issues describes as follows,

Username: admin
Password: admin
In such case if application having authentication like

guessable strings then it is easy to enter into private state.

C. Bruteforce:
Brute forcing consists of systematically enumerating all

possible combinations to enter into system. In case password
checking is automated then it will causes to crash
application because of DOS attacks, which leads to loss of
availability. If a dictionary type attack fails, then possible to
attempt use brute force methods to gain authentication.
Brute force can easily crack with numeric and alphabet
combinations [4]. Loss for attack patterns are extend to,
crack directories, session id cookies, usernames and
passwords, table length, number of accounts.

It mainly depends on error messages, in application
request if service display as follows, wrong password, it
means username is existed, then attackers have to find
password, it is possible to check all possible combinations.

D. Bypassing Authentication Schema:
In web applications it is essential to require

authentication for gaining access to private state or to get
write permissions. In case of poorly configured mechanism
it is possible to access private state. An authentication
bypass attack targets files that are in use by the protected
application [5]. Where attacker looks to the unprotected files
for information about system and formulates a strategy to
bypass the authentication. Where mainly possibility to
getting root privileges, and attempt to access administrative
environment. In some cases root folder also contains

database connection scripts or may having sensitive
information. Attempt to bypass the authentication schema
able to access these resources without authentication
describes as follows,
www.example.com/login.php

This is environment to authenticate user details, where
poorly configured applications possible to skipping this page
and gives URL like this,
example.com/admin/org/account/upload.php
Such case directly bypass for authentication mechanism.

E. Remember & Reset Password:
Browsers have capability to save user passwords, in

such cases if user closes all their sessions even user
passwords being saved into local machines. This will cause
to enter into user private states without proper authentication
mechanism. Application has to maintain at least following
to prevent remember password mechanism,
<INPUT TYPE="password" AUTOCOMPLETE="off">

Reset password: user requesting to reset password,
service can able to provide mechanism with following cases,

a. Set new password in same browser
b. Authenticate old password to giving new password
c. One time password mechanism
d. Sending reset link to personal mail address
e. Authenticate with third party
Among these cases choose better service, depends on

service.

F. Logout and Browser CACHE Management:
Implement proper log out mechanisms to close use

sessions otherwise it is difficult to maintain application
private state. Basically user log information, user details are
saved in user machine with help of cache management.
Depends on application service have to kill the cookies, with
particular time span.

G. Multiple Factor Authentication:
It is critical task to implement in all applications;

mainly transaction oriented like banking and financial
applications uses this service. It means there is more than
one authentication scheme to enter into user private state.

This will prevents application attacks from Phishing,
Brute Forcing, Trojan, Malwares, Password reuses session
reading and Session fixation. These services have more
complexity to implement, so it is not necessary in
informational websites. Authentication page originally sets a
cookie in the following way,
Set-Cookie: SessionID=sjdhqwoy938eh1q; expires=Sun,
09-Feb-2014 12:20:00 GMT; path=/; domain=example.com

H. Captcha:
Aim to implement to make clarification between

automated services and humans. And sometimes poorly
configured CAPTCHA services leads to compromise web
applications. In case of easily broken captcha it is easy to
trace image, leads to violate security policies. Some times
captcha vulnerabilities causes to access private state.

I. Race Conditions:
Application produces unexpected result when timing of

actions impact other actions. When working with shared
data, whether in the form of files, databases, network
connections, shared memory, or inter process

Krishna Reddyet al, International Journal of Advanced Research In Computer Science, 5 (3), March–April, 2014,57-61

© 2010-14, IJARCS All Rights Reserved 59

communication, there are a number of possibilities to made
mistakes that can compromise security. For example if there
is one request to write file then there is no conflict, if
situation like multiple request to write same file then
possibility to arise race condition [6].

Race conditions may occur when a process is critically
or unexpectedly dependent on the sequence or timings of
other events. In a web application environment, where
multiple requests can be processed at a given time,
developers may leave concurrency to be handled by the
framework, server, or programming language.

III. IMPACT OF AUTHENTICATION
VULNERABILITIES

Until applications use for constructive purpose there is
problems occurs from third party, when application using
for transaction oriented, it will attract attacking patterns,
reasons maybe anything but application gets loss because of
attack patterns. Impact of authentication flaws will describes
as follows,
a. Encrypted Channel:Usually data that passing from

web browser, depends on service information is
encrypt with help of browser. In case of poorly
configured service it is possible to sniff sending
information which causes to big leak of confidential
information. In case of sensitive information like
passwords, card numbers such details, its leak of
transactional information, if it is happen then there is
no words for security, because with corresponding leak
information other person easily access private state [7].

b. Guessable User Accounts and Passwords:If system
authentication having default credentials and
passwords being commonly used one and simple
dictionary words then those accounts will easily leak
by others, then it is easy to access by other system
users.

c. Brute Forcing:Through this mechanism, keep on
attempt all possible combinations sometimes
application will crashes due to overflow of maximum
number of requests. Nowadays cracking alphanumeric
combinations of passwords are becoming easy, which
is having less than 16 characters; it may be manual
checking or automated brute forcing.

d. Bypassing Authentication Schema: This vulnerability
shell causes to access restricted directories, by simply
requesting required path. So for others, it is easily to
enter into private accounts [8].

e. Remember and Reset Password: if application having
this poorly configured remember password then
possible to access application even after logged out.
Also if session ID is stolen then those who have that
session ID they can easily access original accounts.

In case of reset password, if reset mechanism
implement in same page then sometimes it will misuse by
others.
f. Logout and Browser Cache Management:After

logged out if others requesting previous page then, it
will opens previous account. This vulnerability will
never kill previous state.

g. Multiple Factor Authentication:if second factor
authentication done from same machine then
application will easily compromise, in case of poorly

configured mechanism in multiple factor
authentications.

h. Captcha:Mainly captha vulnerabilities lead to violate
authentication policies. Some poorly configured
captcha leads tolaunch new vulnerabilities like
enumeration attacks and cross site request forgery
attacks. And some cases captcha will generates
automated traffic, and sending anonymous mails to
target id. Moreover, traffic will generates denial of
service attacks, which leads to loss of availability or
possibility to crash application.

i. Race Condition: Poorly configured race conditions,
machine doesn’t know which condition will execute
first. This will extend up to application crashes,
because of maximum number of requests to
corresponding applications. Also this will causes to
create denial of service [6]. However identifying race
conditions is very difficult. Any system that supports
multitasking with shared resources is susceptible to
race conditions. This can be avoided if appropriate
synchronization primitives are used.

Majorly authentication flaws will causes to access
private states, like restricted paths and directories, which
cause to leak sensitive information.

IV. ISSUE REMEDIATIONS

Security is nonfunctional issues for service, when
security threat arises in system; survivability is difficult in
public service. More over finding authentication flaws is
difficult before deployment of corresponding application.
And it is better to follow security policies in application
development itself; if not attack patterns are more active
after deployment stage. Patterns to avoid authentication
flaws are discussed as follows,
a. Encrypted Channel: Even there is encrypted channel

in application, it is better to provide strong encryption
channel for sending sensitive information, because
base level applications will easily decrypts in some
cases.

b. Guessable User Accounts and Passwords:It is most
common in digital world, whenever use wants to
install new mechanism, corresponding technicians will
access system with default usernames and passwords,
which will know by others. So to avoid such risks, it is
better to change default passwords to difficult
credentials. Also reset passwords frequently [9].

c. Brute Forcing: Best solution is only to use
manageable switches, to keep avoiding system crashes.
Also keep mechanism to block account after particular
failed login attempts. Use strong passwords which
having at least one special character, it is better to use
password policy to create passwords. In case of
administrative authentications, use tokens and
certificates, it essential to exchange client and server
side certificates. Restrict logins with multiple
usernames from the same IP address, also logins for a
single account coming from many different IP
addresses. Avoid excessive usage and bandwidth
consumption from a single user. Keep restrictions on
logins with suspicious passwords which may effects
the service, to avoid such suspicious activities properly
configure IDS and IPS [10].

Krishna Reddyet al, International Journal of Advanced Research In Computer Science, 5 (3), March–April, 2014,57-61

© 2010-14, IJARCS All Rights Reserved 60

d. Bypassing Authentication Schema:To this
vulnerability keep on directory level restrictions on
each directory. Keep accesses restrictions on system
files, and maintain authorization privileges on all
directories to avoid authentication bypassing.

e. Remember and Reset Password: Active mechanism to
kill session ID after successful logged out. Allocate
new sessions to every new requests. Also use secure
random number generator to create sessions. In
application input fields that are accepting sensitive
information, always those fields keep auto complete
off.

In reset mechanism always use old password
authentication or reset mechanism authenticate with one
time passwords or sending reset links to personal mail
address.
f. Logout and Browser Cache Management:Kill

cookies after closing sessions, and store cookie
information with strong cipher techniques.

g. Multiple Factor Authentication:Second
authentication factor should be done with other
machine. In application configure secondary
authentication in proper way, means those
configurations must be in encrypted channel. In highly
secure mechanism prefer hardware authentication.

h. Captcha:Generate random image instead of sequence
or predefined images. In case of high security service,
it is better to generate own captcha, instead of using
predefined services. In time of sending captcha, prefer
encrypted mechanism. And always send captcha by
POSTmethods.Generatecaptcha with special
characters, which is difficult to crack in mean time.

i. Race Condition:Provide updated processors, and
maintain maximum physical memory, to prevent
unaccepted system crashes.Use appropriate
synchronization primitives. Also better to implement
following at the time of application development, Lock
variables, Named pipes, Semaphores.

V. ANALYSIS

Authentication is process of changing user public state
to private state, depends on authentication type providing
file permissions to user. In secure applications it is essential
to provide application accessing mechanism, which possible
only with proper authentication strategies. From the
considerations of basic application security principles,
building secure applications is possible only to keep
avoiding attack patterns. So to compromise application,
authentication flaws are enough no need to concentrate on
higher level vulnerabilities.

Web applications are mainly deals with request and
response to process and manage information with
webserver. In terms of business point of view, there must be
place to security, if not possible to change private state turn
to public. Result to loose integrity, confidentiality,
availability. For this web server have to make sense before it
process, which digital information that server receives from
user requests. Use secure coding strategies from application
designing phase onwards. Methods and functions used to
host pages in web server causes to security threats.

In order to complete application, developers basically
follows software development life cycle, which analyze
whole functional architecture of application except security

risks, this SDLC mainly manipulate by the security unaware
team. To overcome these risk patterns implement secure
software development life cycle (SSDLC), which consider
only secure methods and functions.
Strong Authentications ⊄ web server ⇒ vulnerable web
applications
Strong Authentications ⊂web server ⇒ secure web applications

Mainly security threats will occur because of functions
and methods used in application, so major risks will active
in the development stage itself, it is essential to aware about
secure methods before application development stage. It is
difficult to change methods and functionality of application
when attack happens, so prefer only secure application
development strategies. And consider security as functional
issue in each development and deployment stages, to
provide secure communication.

VI. DEPLOYMENT STRATEGIES

For business mobility web applications plays major key
role. Any application it may be information or transaction
oriented application active with authentication only. If there
is no secure software development life cycle
implementation, it is difficult to find security risks before
deployment. It is better way to provide security is to avoid
attack patterns. In case of administrative access keep on
monitor network status, and keep on avoid multiple requests
on single user.

Before deployment check applications from internal
attacks, if so solve them. And come to sensitive information
sharing always prefer strong encoding strategies, and store
sensitive information with strong hash creation [8, 11]. And
in case of transaction oriented services, always use multiple
factor authentications. In hardware devices periodically reset
default information, better to prefer manageable devices and
secure plugins. Manage file permissions to control external
user activities. In case of transactional oriented services
always prefer manageable hardware and prefer maximum
physical memory, and these strategies will prevents loss of
integrity, confidentiality and availability.

VII. CONCLUSION

In this paper, we present secure authentication schemes,
which change security implementation in organization level,
and we focus on authentication vulnerabilities and
preventing attack patterns in application entry level. This
evolution of work will describes precautions to maintain in
software pre and post deployment stages, which prevents
internal and external authentication flaws.

Future evaluation of work shall focus on evaluating the
secure web application development strategies, to provide
reliable and secure communication, having lesser
complexities and more reliable services, which prevent
internal and external attack patterns on a system.

VIII. REFERENCES

[1] Gary McGraw and John Viega, “Building Secure Software:
How to Avoid Security Problems the Right Way”, Addison-
Wesley Pub Co, ISBN 020172152X.

[2] Dafydd Stuttard, Marcus Pinto, “The Web Application’s
Handbook - Discovering and Exploiting Security Flaws”,
2008, Wiley, ISBN 978-0-470-17077-9.

Krishna Reddyet al, International Journal of Advanced Research In Computer Science, 5 (3), March–April, 2014,57-61

© 2010-14, IJARCS All Rights Reserved 61

[3] Joel Scambray, Mike Shema, Caleb Sima, “Hacking
Exposed Web Applications”, Second Edition, McGraw-Hill,
2006 - ISBN 0-07-226229-0.

[4] Sverre Huseby, “Innocent Code: A Security Wake-Up Call
for Web Programmers”, John Wiley & Sons, ISBN
0470857447.

[5] Hassan A, “Xiaowen Zhang, Bypassing web-based wireless
authentication systems”, Systems, Applications and
Technology Conference LISAT, 2011 IEEE

[6] Jinpeng Wei ; Pu, C; “Multiprocessors May Reduce System
Dependability under File-Based Race Condition Attacks”,
Dependable Systems and Networks, 2007, IEEE/IFIP, pp
358-367

[7] Saxena, P. ; Akhawe, D. ; Hanna, S. ; Feng Mao ;
McCamant, S. ; Song, D., “A Symbolic Execution

Framework for JavaScript”, Security and Privacy (SP), 2010
IEEE, Page(s): 513-528.

[8] Mike Howard and David LeBlanc, “Writing Secure Code”,
Microsoft Press, ISBN 0735617228.

[9] Gary McGraw and Greg Hoglund, “Exploiting Software:
How to Break Code”, Addison-Wesley Pub Co, ISBN
0201786958.

[10] Atashzar, H. ; Torkaman, A. ; Bahrololum, M. ; Tadayon,
M.H., “A survey on web application vulnerabilities and
countermeasures”, Computer Sciences and Convergence
Information Technology (ICCIT), 2011, Page(s): 647-652.

[11] James S. Tiller, “The Ethical Hack: A Framework for
Business Value Penetration Testing”, Auerbach, ISBN
084931609X.

	INTRODUCTION
	AUTHENTICATION VULNERABILITIES IN WEB APPLICATIONS
	Information Transprt over Encrypted Channel:
	Guessable User Accounts and Passwords:
	Bruteforce:
	Bypassing Authentication Schema:
	Remember & Reset Password:
	Logout and Browser CACHE Management:
	Multiple Factor Authentication:
	Captcha:
	Race Conditions:

	IMPACT OF AUTHENTICATION VULNERABILITIES
	ISSUE REMEDIATIONS

