
Volume 5, No. 2, March 2014 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 26

ISSN No. 0976-5697

CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

Asynchronous Data Access and Transaction Decomposition in Distributed Databases

Dr N.Srinivasu
Associate professor

K L University
srinivasu28@kluniversity.in

S.M.Gouse Samdani, L.Sai Kiran
K L University

gousemailbox@gmail.com
Saikiran02@ymail.com

Abstract: A RDBMS is usually accessed using blocking drivers like JDBC/ODBC which require clients to block and wait for the result of each
query they issue. An asynchronous database access mechanism would eliminate the need for such blocking and greatly improve client
performance. Thread-Per-Connection and Thread Pooling are two methods currently being used to provide this asynchrony. These methods
require the use of multiple threads in the database server, which provides the clients with access to the database. This is inefficient since a lot of
memory and computing power is spent in creating, scheduling and switching multiple threads. In this paper, we show how asynchronous
database access can be achieved with a single thread using the Fork-Join mechanism which employs Future objects in Java. We also show how
Asynchronous Transaction Decomposition in distributed databases can help improve client performance.

Keywords: Asynchronous, Transaction Decomposition, Future objects, Fork-Join

I. INTRODUCTION

Relational Database Management Systems (RDBMS)
are the predominant means for storing and retrieving data
nowadays due to their relative ease of use compared to
traditional hierarchical and network database systems. A
relational database stores and operates on data using
relations which are implemented as tables. Using SQL
commands, a client can create, delete, retrieve and update
data in these tables.

Database drivers like ODBC [1] and JDBC [2] serve as
an interface between a RDBMS and its clients. These
drivers are blocking in nature i.e. they require clients to
block and wait for the result of each query they issue before
being able to issue the next query. This affects the clients'
performance as a lot of useful CPU time is wasted in such
waits. If the queries are dispatched asynchronously, the
clients can return immediately without blocking and then
retrieve the results at a later time. One way of doing this is
to create a new database connection for each query the client
issues. This method requires the database server, which
handles these connections, to follow a Thread-Per-
Connection architecture in which a new thread is created
and maintained for each such connection. Since server
memory is limited, threads cannot be created infinitely as
the number of queries issued and/or the number of clients
increase and as a result, this architecture does not scale well.

Thread Pooling (shown in Fig 1) is a scalable variant of
Thread-Per-Connection in which a fixed pool of worker
threads service requests from a client. The queries issued by
a client are queued and the client thread returns immediately
without blocking. The worker threads then fetch the requests
from this queue and dispatch them to the database. The
maximum number of outstanding requests in the queue is
bounded by the amount of memory available and can be
greater than the number of executing threads. Hence, even if
all worker threads are busy, additional requests can be held
in the queue until any of the worker threads becomes
available again.

Figure 1. Thread Pooling

Both Thread-Per-Connection and Thread Pooling
require the use of a large number of threads per client to
achieve asynchronous database access. This is inefficient
since creating and maintaining several threads is costly both
in terms of the amount of server memory used up and in
terms of the processor time spent in switching and
scheduling the threads. Hence, there is a need to develop
efficient methods for issuing queries asynchronously using a
minimal number of threads.

In Section 2 of this paper we examine some proposed
methods for asynchronous data access. Section 3 gives a
detailed look at our solution (which uses a single thread per
client) and explains why using a thread pool to service
requests is inefficient. It also shows how the concept of
transaction decomposition in distributed databases works. In
Section 4, we analyze results from tests carried out on our
system along with comparisons of the performance of our
system versus other proposed methods under the same
workload.

L.Sai Kiran et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),26-30

© 2010-14, IJARCS All Rights Reserved 27 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

II. RELATED WORK

A. The Event Driven Model:
One of the proposed alternatives to thread pooling is the

Event Driven Model. Here, a single thread is used to handle
multiple database connections. A Client mentions which
database connection sockets it wishes to connect to and then
issues its requests. Operating system buffers are used to
store and transmit large data requests over these sockets in
small packets. After the requests are serviced and the results
are available, the client is notified through socket events.

Figure 2. Event Driven Architecture

The event driven architecture scales well as it does not
require multiple threads for asynchronous access. However,
it is quite complex to implement and also does not find
support with existing database drivers. Special drivers need
to be developed to make this architecture work.

B. Asynchronous Database Connectivity in Java
(ADBCJ):

Asynchronous Database Connectivity in Java (ADBCJ)
[3] is a framework which uses non-blocking socket I/O
along with a small number of OS threads to allow clients to
issue queries to a RDBMS asynchronously. Clients use a
special API for asynchronous RDBMS access to issue
queries. ADBCJ notifies clients through events when the
results are available. It also allows pipelining of RDBMS
requests which further improves performance. One of the
drawbacks with the current version of ADBCJ is that it
supports only simple data types like integers, floating point
numbers and strings. It also works only with open source
databases like MySQL and PostgreSQL on Linux platforms.

III. ASYNCHRONOUS DB

A. Fork-Join Mechanism:
Our solution for asynchronous data access using a

single thread, which we have named Async DB, makes use
of the Fork-Join mechanism [4]. This is a parallel
programming method based on the divide and conquer
strategy in which a single task forks multiple subtasks, waits
for their completion and then joins the results returned by
the subtasks to obtain the final solution. The fork join

mechanism can be used effectively with a single thread or a
pool of threads. In our system, we use a single thread to
issue queries from the client asynchronously and then allow
the clients to obtain the results at a later time.

Figure 3. Fork-Join Mechanism using Future Objects

The Fork-Join mechanism is simpler to implement
compared to the Event Driven model. One of the main
advantages of Fork-Join over Event Driven programming is
with respect to how thread safety is ensured. In Event
Driven programming, the user is responsible for writing
thread safe code whereas in Fork-Join, thread safety is
handled automatically by the Java Virtual Machine. Failure
to ensure thread safety is the reason why Connection reset
errors are often noted to occur when ADBCJ (which makes
use of event driven programming) is used with PostgreSQL
databases under heavy loads.

B. Interface Future in Java:
The interface Future [5] is available under the

java.util.concurrent package in Java 5.0. It is used along
with the ExecutorService interface available in the same
package for asynchronous and parallel computation in Java.

Figure 4. Java code snippet showing how queries are issued asynchronously

L.Sai Kiran et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),26-30

© 2010-14, IJARCS All Rights Reserved 28 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

Fig 4 shows a sample code snippet which uses the
Future interface. An object of type Future represents the
result of an asynchronous operation. The Executor Service
interface [6] , [7] provided in Java 5 allows us to work with
threads in a much easier way compared to the thread
manipulation options provided in earlier versions of Java.
The newSingleThreadExecutor() method returns an
Executor which uses a single worker thread working off an
unbounded queue. It ensures that tasks are executed
sequentially and that no more than one task is active at a
given time. The ExecutorService takes a query, which the
client wishes to issue, in the form of a Callable object and
returns a Future object. The single worker thread executes
the query and when a result is available, it notifies the
ExecutorService which then updates the Future object. The
client has a variety of methods it can call on the Future
object to perform operations like checking for completion of
a query, cancelling the execution of a query, retrieving the
result of a computation etc.

C. Single Thread vs:
Thread Pool It is possible to use an Executor which

works with a fixed pool of threads to provide asynchronous
data access capability but as mentioned in the introduction
of this paper, we have found that using a single thread is
more efficient. Fig 5 shows the comparison between an
executor using fixed thread pools of three different sizes: 10,
100 and 1000 threads per pool respectively and an executor
using a single thread with respect to the response time for
executing a certain number of queries concurrently.

Figure 5. Performance comparison between a single thread and thread pools

of various sizes

On an average, the single thread executor is found to be
6% faster than the thread pool executor when a high speed
network with delay less than 1 ms is used. Using a single
thread also provides great benefit in terms of the memory
and processing power saved and helps service a greater
number of clients compared to a thread pool. The following
example clearly shows this.

Assume that the default stack space occupied by a JVM
1.6 thread in the server is 256 KB. The maximum memory
allotted for the JVM's functioning in the server is 512 MB
and of this, about 128 MB is used on an average for the
JVM's internal structures, profiler agent code etc and 256
MB is allotted as heap memory for object creation at run
time. That leaves 128 MB for non heap storage like thread

stack space, loaded classes and other Meta data. If the total
non heap memory is considered as the maximum stack
space, then the maximum number of threads that can be
created is 512. Using a thread pool which comprises three
threads to service a batch of requests from a user, a
maximum of 170 users can access the database concurrently.
However, a single thread executor allocates just one thread
per user and hence, up to 512 users are allowed concurrent
access to the database.

D. System Architecture:
Async DB uses a distributed database system.

Distributed databases have a number of useful
characteristics like reliability, the ability to process huge
workloads and fast data access from which present day
database intensive consumer services like online ticket
booking, online banking etc can greatly benefit from. We
have taken advantage of these benefits to introduce
Asynchronous Transaction Decomposition which we believe
can improve end user performance many fold.

Figure 6. Asynchronous DB System Architecture

The architecture of our system is shown in Fig 6. The
client is any web browser/desktop application which
provides an interface for querying the database system.
There can be any number of nodes connected together to
form the distributed database system. In our implementation,
we have restricted the size to three nodes, comprising the
databases Oracle, DB2 and MySQL. All the database copies
contain the same data and a replication scheme is used to
keep the data on these copies consistent. Unlike ADBCJ, our
asynchronous data access method can work with both
commercial and open source databases which are evident
from the heterogeneous nature of Async DB [8]. There is
also support for advanced data types like binary objects.
IBM's Web sphere Application Server Community Edition
(WASCE) serves as the database server and there is one
server per each copy of the database. Query execution is
location based [9] i.e. when a client queries or updates any
table in the database, the request is sent to that server which

L.Sai Kiran et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),26-30

© 2010-14, IJARCS All Rights Reserved 29 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

is found to be the nearest in terms of geographical location
to the client. This ensures quick data access. Requests are
redirected to whichever alternate nodes are available in the
event the original node the user tries to access is busy or has
crashed.

E. Asynchronous Transaction Decomposition
(ADT):

Transaction decomposition is one of the features
suggested by researchers to improve the transaction
performance [10] , [11], [12], [13]. In Async DB, we make
this method more efficient by introducing asynchrony in
query execution. The queries in a transaction can be split
into groups based on the dependencies existing between the
queries such that no query in a group is dependent upon a
query in any other group. We can then make use of the
parallelism provided by a distributed database and the
capability of asynchronous execution provided by Future
objects to execute each group on a different database copy
asynchronously. The following example clearly shows how
transaction decomposition works. Consider these three
tables used for booking a flight ticket online [14].
Customer (CustomerID, CustomerName, FreeMiles)
Flight (FlightNo, Origin, Destination, JourneyDistance,
AvlTickets)
CustFlight (FlightNo, CustomerID, CustomerName)

The process of booking a ticket comprises of the
following three activities in a transaction. Each activity
comprises a number of sub-activities (For the sake of
simplicity, we have left out the banking transactions in this
example)

a. Blocking a Ticket:
Obtain a particular flight number from the customer.
(a). Read AvlTickets from Flight for this flight number.
(b). If AvlTickets > 0 , AvlTickets = AvlTickets - 1.

b. Updating the Airline Database with customer
details:

(a). Read CustomerName and CustomerID from
Customer.

(b). Update CustFlight with customer's details.

c. Updating the Frequent Flier Miles for the
customer:

(a). Read JourneyDistance from Flight.
(b). Update Customer with a fraction of

JourneyDistance as FreeMiles.
Here, activities 2 and 3 both depend on the success of

activity 1 but are independent of each other. Hence after 1
completes successfully, 2 and 3 can be executed in parallel.
This will result in the transaction competing much faster
than if the activities were carried out sequentially. ADT can
be made fail-safe by ensuring that the transaction commits
only after the success of all three operations. The transaction
is rolled back if any of the three operations fails.

IV. RESULTS

A. Asynchronous vs. Synchronous Data Access:
In order to test the efficiency of Async DB over

traditional synchronous access, we executed a batch of
retrieval queries using both techniques and observed the
response times. This test was repeated for a total of five

trials using a network with average communication delay of
1 ms .The observed response times are listed in Table 1.

Table 1. Observed response times for asynchronous and synchronous
data access

Mode Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Asynch 3.94377 3.40204 3.57142 2.84677 2.85517

Synch 34.3694 39.7153 31.9314 34.5868 39.2095

From the results, we see that our asynchronous data

access method is on average about twelve times faster than
traditional synchronous data access. This strongly supports
our view that using an asynchronous mechanism to access a
database is much more efficient than using blocking
connections. Fig 7 is a graphical representation of the data
listed in Table 1 which clearly shows that clients can gain
immense performance benefits by adopting the Async DB
approach of accessing databases.

Figure 7. Performance comparison between asynchronous and synchronous

data access

V. CONCLUSION

In this paper, we have shown how asynchronous
execution of queries can provide immense performance
benefits to database clients. Queries are currently executed
by traditional database drivers using synchronous techniques
which require clients to block and thereby waste a lot of
CPU time until results are made available. Asynchronous
data access removes the need to block clients, thereby
allowing them to work on other operations. Some techniques
like thread pooling, which have been adopted to provide
asynchrony, require the use of multiple threads which is
inefficient. Our proposed asynchronous data access strategy
Async DB uses just a single thread and has been found to
outperform alternatives like Event Driven Architecture and
ADBCJ in terms of performance. Finally, we discuss how
Asynchronous Transaction Decomposition (ADT) can
greatly speed up transactions, which otherwise take up a lot
of time to execute due to sequential execution of their
component queries.

L.Sai Kiran et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),26-30

© 2010-14, IJARCS All Rights Reserved 30 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

VI. REFERENCES

[1]. Microsoft: ODBC–Open Database Connectivity Overview.
Web http://support. microsoft.com /kb/110093 (2007)
Accessed December 2011

[2]. Oracle: JDBC 4.0 API Specification Final Release. Web
http://java.sun.com/products/jdbc/ download.html (2006)
Accessed December 2011

[3]. Heath, M.: Asynchronous Database Drivers. MS Thesis,
Brigham Young University Web.
http://contentdm.lib.byu.edu/ETD/image/etd4130.pdf (2011)
Accessed December 2011

[4]. Goetz, B.: Java theory and practice: Stick a fork in it, Part 1.
Web http://www.ibm.com/developerworks /java/library/j-
jtp11137/index.html (2007) Accessed January 2012

[5]. Oracle: Interface Future. Web
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurr
ent /Future.html (2009) Accessed January 2012

[6]. Amis Technology Blog: Asynchronous processing in Java
applications – leveraging those multi-cores. Web
http://technology.amis.nl/2009/02/19/asynchronous-
processing-in-java-applications-leveraging-those-multi-cores
(2009) Accessed February 2012

[7]. Bloch, J.: Task Execution. In: Bloch, J., Bowbeer, J., Goetz,
B., Holmes, D., Lea, D., Peierls, T. Java Concurrency in
Practice, pp. 113-134. Addison Wesley Professional (2006)

[8]. Hepner, P.: Integrating Heterogeneous Databases: An
Overview. Web ftp://deakin.edu.au/pub
/TR/Computing/TRC9530.ps.gz (1999) Accessed February
2012

[9]. Cardellini, V., Colajanni, M., Yu, P.S.: Request Redirection
Algorithms for Distributed Web Systems. IEEE Transactions
on Parallel and Distributed Systems 14(4), 355-368 (2003)

[10]. Mackinnon, L.M., Marwick, D.H., Williams, M.H.: A Model
for Query Decomposition and Answer Construction in
Heterogeneous Distributed Database Systems. Journal of
Intelligent Information Systems 11(1), 69-87 (1998)

[11]. Moss, E.: Nested Transactions: An Approach to Reliable
Distributed Computing. MIT/ LCS/ TR-260,

[12]. Haveman J.: Transaction Decomposition: Refinement of
Timing Constraints. In: Proceedings of the South Pacific
Conference on Formal Methods (1997)

MIT Press
(1985).

[13]. Bernstein, A.J., Lewis, P.M: Transaction Decomposition
Using Transaction Semantics. Distributed and Parallel
Databases (1996)

[14]. Transaction Example - A Simple SQL Query. Web
http://softbase.uwaterloo.ca/~tozsu/courses/cs448/notes/8.Tr
ansactions-ho.pdf Accessed February 2012

