
Volume 5, No. 2, March 2014 (Special Issue)

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 100

ISSN No. 0976-5697

CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

The Process Improvement Model: CMM
CH.V.Phani Krishna

Computer Science Engineering
KLUniversity
Guntur, India

phanik16@yahoo.co.in

S.Gayatri Anusha
Computer Science Engineering

KLUniversity
Guntur, India

gayatrianusha@gmail.com

G.Lahari
Computer Science Engineering

KLUniversity Guntur, India
lahari.3013@gmail.com

Abstract— The Capability Maturity Model for Software is a model for building organizational capability that has been widely adopted in the
software community and beyond. The methodology of this model focuses on determining current process maturity in an organization and then
identifying issues that are critical to the software quality and process improvements. Therefore, the CMM supports the theory that focusing on
key issues and activities can steadily improve the software process capabilities throughout an organization. This framework is composed of 5
maturity levels that measure the maturity of an organizations software processes and evaluates the software. The Software CMM is a five-level
model that describes good engineering and management practices and prescribes improvement priorities for software organizations. This paper
stresses the need for a process maturity framework to prioritize improvement actions, describes the process maturity framework of five maturity
levels and the associated structural components

Keywords: capability maturity model, CMM, process maturity framework, software process improvement, maturity level, key process area.

I. INTRODUCTION

The Software CMM is intended to be:
A common-sense application of process management

and quality improvement concepts to software development
and maintenance -- the CMM practices are not rocket
science (even the statistical process control concepts at
Levels 4 and 5 have been successfully applied in other
industries for decades) a community-developed guide --
input from hundreds of software professionals was solicited
in developing the current release of the CMM a model for
organizational improvement – which implies a set of
priorities that may differ from those of any specific project,
but which have been proven effective in organizational
transformation The underlying structure for reliable and
consistent CMM-based appraisal methods -- assessments
and evaluations based on the Software CMM are widely
used by software organizations for improvement and
customers for understanding the risks associated with
potential suppliers.

The Capability Maturity Model for Software provides
software organizations with guidance on how to gain control
of their processes for developing and maintaining software
and how to evolve toward a culture of software engineering
and management excellence[2]. The CMM was designed to
guide software organizations in selecting process
improvement strategies by determining current process
maturity and identifying the few issues most critical to
software quality and process improvement. By focusing on a
limited set of activities and working aggressively to achieve
them, an organization can steadily improve its organization-
wide software process to enable continuous and lasting
gains in software process capability[3].

II. THE FIVE LEVELS OF SOFTWARE PROCESS
MATURITY

A maturity model can be viewed as a set
of structured

III.

levels that describe how well the behaviors,
practices and processes of an organization can reliably and
sustainably produce required outcomes. A maturity model
can be used as a benchmark for comparison and as an aid to
understanding - for example, for comparative assessment of
different organizations where there is something in common
that can be used as a basis for comparison[6]. In the case of
the CMM, for example, the basis for comparison would be
the organizations' software development processes. A
maturity level is a well-defined evolutionary plateau toward
achieving a mature software process. Each maturity level
comprises a set of process goals that, when satisfied,
stabilize an important component of the software process.
Achieving each level of the maturity framework establishes
a different component in the software process, resulting in
an increase in the process capability of the organization

A.

BEHAVIORAL CHARACTERIZATION OF THE
MATURITY LEVELS

Level 1 - The Initial Level:
At the Initial Level, the organization typically does not

provide a stable environment for developing and
maintaining software. Such organizations frequently have
difficulty making commitments that the staff can meet with
an orderly engineering process, resulting in a series of
crises. In spite of this ad hoc, even chaotic, process, Level 1
organizations frequently develop products that work, even
though they may be over the budget and schedule. Success

CH.V.Phani Krishna et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),100-104

© 2010-14, IJARCS All Rights Reserved 101 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

in Level 1 organizations depends on the competence and
heroics of the people in the organization3 and cannot be
repeated unless the same competent individuals are assigned
to the next project. Thus, at Level 1, capability is a
characteristic of the individuals, not of the organization. It is
characteristic of processes at this level that they are
undocumented and in a state of dynamic change, tending to
be driven in an

B. Level 2 - The Repeatable Level:

ad hoc, uncontrolled and reactive manner by
users or events. This provides a chaotic or unstable
environment for the processes.

At the Repeatable Level, policies for managing a
software project and procedures to implement those policies
are established. Planning and managing new projects is
based on experience with similar projects. Process capability
is enhanced by establishing basic process management
discipline on a project by project basis[4]. An effective
process can be characterized as one which is practiced,
documented, enforced, trained, measured, and able to
improve.

The software process capability of Level 2
organizations can be summarized as disciplined because
planning and tracking of the software project is stable and
earlier successes can be repeated. The project's process is
under the effective control of a project management system,
following realistic plan based on the performance of
previous projects. It is characteristic of processes at this level
that some processes are repeatable, possibly with consistent
results. Process discipline is unlikely to be rigorous, but
where it exists it may help to ensure that existing processes
are maintained during times of stress.

C. Level 3 - The Defined Level:
At the Defined Level, the standard process for

developing and maintaining software across the organization
is documented, including both software Engineering and
management processes, and these processes are integrated
into a coherent whole. This standard process is referred to
throughout the CMM as the organization's standard software
process. Processes established at Level 3 are used (and
changed, as appropriate) to help the software managers and
technical staff perform more effectively. The organization
exploits effective software engineering practices when
standardizing its Software processes.

The software process capability of Level 3
organizations can be summarized as standard and consistent
because both software engineering and management
activities are stable and repeatable. Within established
product lines, cost, schedule, and functionality are under
control, and software quality is tracked. This process
capability is based on a common, organization-wide
understanding of the activities, roles, and responsibilities in
a defined software process.

D. Level 4 - The Managed Level:
At the Managed Level, the organization sets

quantitative quality goals for both software products and
processes. Productivity and quality are measured for
important software process activities across all projects as
part of an organizational measurement program. An
organization-wide software process database is used to
collect and analyze the data available from the projects'
defined software processes. Software processes are

instrumented with well-defined and consistent
measurements at Level 4. These measurements establish the
quantitative foundation for evaluating the projects' software
processes and products.

The software process capability of Level 4
organizations can be summarized as being quantifiable and
predictable because the process is measured and operates
within measurable limits. This level of process capability
allows an organization to predict trends in process and
product quality within the quantitative bounds of these
limits. Because the process is both stable and measured,
when some exceptional circumstance occurs, the "special
cause" of the variation can be identified and addressed.
When the known limits of the process are exceeded, action
is taken to correct the situation. Software products are of
predictably high quality[5]s.

E. Level 5 - The Optimizing Level:
At the Optimizing Level, the entire organization is

focused on continuous process improvement. The
organization has the means to identify weaknesses and
strengthen the process proactively, with the goal of
preventing the occurrence of defects. Data on the
effectiveness of the software process is used to perform cost
benefit analyses of new technologies and proposed changes
to the organization's software process. Innovations that
exploit the best software engineering practices are identified
and transferred throughout the organization.
 Software project teams in Level 5 organizations analyze
defects to determine their causes. Software processes are
evaluated to prevent known types of defects from recurring,
and lessons learned are disseminated to other projects

Figure: 1 The Key Process Areas by Maturity Level

CH.V.Phani Krishna et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),100-104

© 2010-14, IJARCS All Rights Reserved 102 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

IV. STRUCTURE OF THE MODEL

The model involves five aspects:
a. Maturity Levels: a 5-level process maturity continuum

- where the uppermost (5th) level is a notional ideal
state where processes would be systematically
managed by a combination of process optimization
and continuous process improvement.

b. Key Process Areas: a Key Process Area identifies a
cluster of related activities that, when performed
together, achieve a set of goals considered important.

c. Goals: the goals of a key process area summarize the
states that must exist for that key process area to have
been implemented in an effective and lasting way. The
extent to which the goals have been accomplished is
an indicator of how much capability the organization
has established at that maturity level. The goals signify
the scope, boundaries, and intent of each key process
area.

d. Common Features: common features include
practices that implement and institutionalize a key
process area. There are five types of common features:
commitment to perform, ability to perform, activities
performed, measurement and analysis, and verifying
implementation.

e. Key Practices: The key practices describe the elements
of infrastructure and practice that contribute most
effectively to the implementation and
institutionalization of the area.

Figure: 2 The CMM Structure

A. Key Process Areas:
Each key process area identifies a cluster of related

activities that, when performed collectively, achieve a set of
goals considered important for enhancing process capability
[7]. The path to achieving the goals of a key process area
may differ across projects based on differences in application
domains or environments. Nevertheless, all the goals of a key
process area must be achieved for the organization to satisfy
that key process area.

The key process areas may be considered the
requirements for achieving a maturity level. To achieve a

maturity level, the key process areas for that level must be
satisfied.

The specific practices to be executed in each key process
area will evolve as the organization achieves higher levels of
process maturity. For instance, many of the project
estimating capabilities described in the Software Project
Planning key process area at Level 2 must evolve to handle
the additional project data available at Level 3, as is
described in Integrated Software Management.

The key process areas at Level 2 focus on the software
project's concerns related to establishing basic project
management controls.
a. The purpose of Requirements Management is to

establish a common understanding between the
customer and the software project of the customer's
requirements that will be addressed by the software
project .This agreement with the customer is the basis
for planning and managing the software project.

b. The purpose of Software Project Planning is to
establish reasonable plans for performing the software
engineering and for managing the software project.
These plans are the necessary foundation for managing
the software project.

c. The purpose of Software Project Tracking and
Oversight is to establish adequate visibility into actual
progress so that management can take effective actions
when the software project's performance deviates
significantly from the software plans.

d. The purpose of Software Subcontract Management is to
select qualified software subcontractors and manage
them effectively.

e. The purpose of Software Quality Assurance is to
provide management with appropriate visibility into the
process being used by the software project and of the
products being built.

f. The purpose of Software Configuration Management is
to establish and maintain the integrity of the products
of the software project throughout the project's
software life cycle.

 The key process areas at Level 3 addresses both project
and organizational issues, as the organization establishes an
infrastructure that institutionalizes effective software
engineering and management processes across all projects.
g. The purpose of Organization Process Focus is to

establish the organizational responsibility for software
process activities that improve the organization's
overall software process capability.

h. The purpose of Organization Process Definition is to
develop and maintain a usable set of software process
assets that improve process performance across the
projects and provide a basis for defining meaningful
data for quantitative process management. These assets
provide a stable foundation that can be institutionalized
via mechanisms such as training.

i. The purpose of Training Program is to develop the
skills and knowledge of individuals so they can
perform their roles effectively and efficiently. Training
is an organizational responsibility, but the software
projects should identify their needed skills and provide
the necessary training when the project's needs are
unique.

j. The purpose of Integrated Software Management is to
integrate the software engineering and management

CH.V.Phani Krishna et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),100-104

© 2010-14, IJARCS All Rights Reserved 103 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

activities into a coherent, defined software process that
is tailored from the organization's standard software
process and related process assets. This tailoring is
based on the business environment and technical needs
of the project.

k. The purpose of Software Product Engineering is to
consistently perform a well-defined engineering
process that integrates all the software engineering
activities to produce correct, consistent software
products effectively and efficiently. Software Product
Engineering describes the technical activities of the
project, e.g., requirements analysis, design, code, and
test.

l. The purpose of Intergroup Coordination is to establish
a means for the software engineering group to
participate actively with the other engineering groups
so the project is better able to satisfy the customer's
needs effectively and efficiently.

m. The purpose of Peer Reviews is to remove defects from
the software work products early and efficiently. An
important corollary effect is to develop a better
understanding of the software work products and of the
defect that can be prevented. The peer review is an
important and effective engineering method that can be
implemented via inspections, structured walkthroughs,
or a number of other collegial review methods.

The key process areas at Level 4 focus on establishing a
quantitative understanding of both the software process and
the software work products being built.
n. The purpose of Quantitative Process Management is to

control the process performance of the software project
quantitatively. Software process performance
represents the actual results achieved from following a
software process. The focus is on identifying special
causes of variation within a measurably stable process
and correcting, as appropriate, the circumstances that
drove the transient variation to occur.

o. The purpose of Software Quality Management is to
develop a quantitative understanding of the quality of
the project's software products and achieve specific
quality goals.

p. The key process areas at Level 5 cover the issues that
both the organization and the projects must address to
implement continuous and measurable software process
improvement.

The purpose of Defect Prevention is to identify the
causes of defects and prevent them from recurring. The
software project analyzes defects, identifies their causes, and
changes its defined software process.

q. The purpose of Technology Change Management is to
identify beneficial new technologies (i.e., tools,
methods, and processes) and transfer them into the
organization in an orderly manner .The focus of
Technology Change Management is on performing
innovation efficiently in an ever-changing world.

r. The purpose of Process Change Management is to
continually improve the software processes used in the
organization with the intent of improving software
quality, increasing productivity, and decreasing the
cycle time for product development.

B. Common Features:
For convenience, the practices that describe the key

process areas are organized by common features[8]. The

common features are attributes that indicate whether the
implementation and institutionalization of a key process area
is effective, repeatable, and lasting. The five common
features are:
a. Commitment to Perform: Commitment to Perform

describes the actions the organization must take to
ensure that the process is established and will endure.
Commitment to Perform typically involves establishing
organizational policies and senior management
sponsorship.

b. Ability to Perform: Ability to Perform describes the
preconditions that must exist in the project or
organization to implement the software process
competently. Ability to Perform typically involves
resources, organizational structures, and training.

c. Activities Performed: Activities Performed describes
the roles and procedures necessary to implement a key
process area. Activities Performed typically involve
establishing plans and procedures, performing the
work, tracking it, and taking corrective actions as
necessary.

d. Measurement and Analysis: Measurement and
Analysis describes the need to measure the process and
analyze the measurements. Measurement and Analysis
typically includes examples of the measurements that
could be taken to determine the status and effectiveness
of the Activities Performed.

e. Verifying Implementation: Verifying Implementation
describes the steps to ensure that the activities are
performed in compliance with the process that has been
established. Verification typically encompasses reviews
and audits by management and software quality
assurance.

The practices in the common feature Activities
Performed describe what must be implemented to establish a
process capability. The other practices, taken as a whole,
form the basis by which an organization can institutionalize
the practices described in the Activities Performed common
feature.

C. Key Practices:
Each key process area is described in terms of the key

practices that contribute to satisfying its goals. The key
practices describe the infrastructure and activities that
contribute most to the effective implementation and
institutionalization of the key process area. Each key practice
consists of a single sentence, often followed by a more
detailed description, which may include examples and
elaboration. These key practices, also referred to as the top-
level key practices, state the fundamental policies,
procedures, and activities for the key process area. The
components of the detailed description are frequently
referred to as sub practices. The key practices describe
"what" is to be done, but they should not be interpreted as
mandating "how" the goals should be achieved. Alternative
practices may accomplish the goals of the key process area.

The key practices should be interpreted rationally to
judge whether the goals of the key process area are
effectively, although perhaps differently, achieved. The key
Practices are contained in the "Key Practices of the
Capability Maturity Model,

CH.V.Phani Krishna et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),100-104

© 2010-14, IJARCS All Rights Reserved 104 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

V. CONCLUSION

The CMM represents a "common sense engineering"
approach to software process improvement. The maturity
levels, key process areas, common features, and key
practices have been extensively discussed and reviewed
within the software community. While the CMM is not
perfect, it does represent a broad consensus of the software
community and is a useful tool for guiding software process
improvement efforts.

The CMM provides a conceptual structure for improving
the management and development of software products in a
disciplined and consistent way. It does not guarantee that
software products will be successfully built or that all
problems in software engineering will be adequately
resolved. However, current reports from CMM-based
improvement programs indicate that it can improve the
likelihood with which a software organization can achieve its
cost, quality, and productivity goals.[1]..The CMM identifies
practices for a mature software process and provides
examples of the state-of-the-practice (and in some cases, the
state-of-the-art), but it is not meant to be either exhaustive or
dictatorial. The CMM identifies the characteristics of an
effective software process, but the mature organization
addresses all issues essential to a successful project,
including people and technology, as well as process

VI. ACKNOWLEDGMENT

We would like to acknowledge the support and
guidance of our supervisor Ch.V.Phani Krishna. This paper
has been possible because of his trust and confidence in our
work. He has always encouraged, supported, corrected and
guided us during the paper preparation. The paper has been
learning and growing experience for us. We would like to
thank the all the professors for all the support that they have
provided us in response.

VII. REFERENCES

[1] Dion92 Raymond Dion, "Elements of a Process-Improvement
Program," IEEE Software, Vol. 9, No. 4,July 1992, pp. 83-85.

[2] Fowler90 P. Fowler and S. Rifkin, Software Engineering
Process

[3] Group Guide, Software Engineering Institute, CMU/SEI-90-

[4] TR-24, ADA235784, September, 1990

[5] Humphrey87a W.S. Humphrey, Characterizing the Software
Process

[6] Maturity Framework, Software Engineering Institute,
[7] CMU/SEI-87-TR-11, ADA182895, June 1987. Also

[8] Published in IEEE Software, Vol. 5, No. 2, March
1988,pp.73-79.

	The Process Improvement Model: CMM
	INTRODUCTION
	THE FIVE LEVELS OF SOFTWARE PROCESS MATURITY
	2TBEHAVIORAL CHARACTERIZATION OF THE MATURITY LEVELS

	STRUCTURE OF THE MODEL
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

