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Abstract: The computer vision-based vehicle detection has several applications. Among those fast detection of moving vehicles is crucial for 
safe autonomous urban driving. With the ultimate goal of building autonomous vehicles; many government institutions have lunched various 
projects worldwide. These efforts have produced several prototypes and solutions, based on different approaches. The laser range finders 
provides reliable detection of moving vehicles from a high-speed moving platform. To overcome the low signal-to-noise ratio we presenting a 
notion of motion evidence that arises during rapid detection of moving vehicles in noisy urban environments. We also describe an array of 
optimization techniques that enable accurate detection in real time. This paper provides a critical survey of recent vision-based on-road vehicle 
detection systems from the most challenging situations presented at the Urban Grand Challenge as well as other urban settings.  
 
Keywords: motionevidence,DynamicBayesiannetworkmodel,IBEOAlasca,HDL-64E,signal-to-noise

I. INTRODUCTION 

Every minute, on average, at least one person dies in a 
vehicle crash. Allover 10 million people are injured and two 
or three million of them seriously injured by auto accidents 
each year. The hospital bill, damaged property, and other 
costs are expected to raise 1%-3% of the world’s gross 
domestic product. Self driving cars give more number of 
benefits to the society, including prevention of road 
accidents, optimal fuel usage, comfort and convenience. 
Vehicle accident statistics disclose that the main threats a 
driver is facing are from other vehicles. Hence, developing 
on-board automotive driver assistance systems aiming to 
alert a driver about driving environments, and possible 
collision with other vehicles. In these systems, robust and 
reliable vehicle detection algorithm will pave the way for 
vehicle recognition, vehicle tracking, and collision 
avoidance. 

We are concerned with detection of moving vehicles 
from a high-speed mobile platform using laser range finders. 
Detection of vehicles is usually discussed as a sub-problem 
in vehicle tracking literature [1, 2, 3]. In this paper we focus 
on the vehicle detection sub-problem alone. A detailed 
description of the full vehicle tracking module is given in 
[4]. For autonomous driving, fast detection of new moving 
vehicles is crucial in order to avoid dangerous situations and 
possible collisions. Poor signal-to-noise ratio presents a 
significant obstacle to fast detection of new moving 
vehicles. We present the notion of motion evidence that 
allows us to quickly and accurately detect new vehicles by 
effectively pruning false positives caused by noise. We   
also present an array of optimization techniques that assures 
reliable real time performance in the challenging traffic 
conditions, including situations presented at the Urban 
Grand Challenge. In the experimental section we evaluate 
the impact of each technique on the overall performance. 
Section 2 introduces notation and describes our models of 

vehicles, sensor data, and measurements. Section 3 
effectively describes our vehicle detection algorithm, motion 
evidence notion and optimization techniques. Experimental 
results are given in Sect. 4 and Sect. 5 concludes with a 
discussion. The main focus of this paper is on techniques for 
fast and accurate moving vehicle detection. In the previous 
part, the detection problem has been solved by addition of 
vision sensors (e.g. [3]), although visual classification does 
not help distinguish moving vehicles from stationary. 
Another approach is to sample frames at lower rates to 
overcome the low signal-to-noise ratio ([2]), although it 
increases the time it takes to detect a new moving vehicle. 
Other described approaches detect by scan shape ([1]) or by 
location ([2]). These approaches give lower detection 
accuracy Due to possible ambiguities in the range data. 

II. REPRESENTATIONS 

A. Vehicle Model: 
We detect each vehicle using a separate particle filter. 

For each vehicle we estimate its 2D position and orientation 
Xt = (xt, yt, θt) in world coordinates at time t, and its 
forward velocity vt.  

    
Figure.2.DynamicBayesian network model of the detected       vehicle pose 

Xt, forward velocity vt, and measurements Zt. 

Figure 2 depicts a dynamic Bayesian network 
representing the resulting probabilistic model. We assume 
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that the velocity evolves from one time step to the next by 
addition of random bounded acceleration. Furthermore we 
utilize a linear motion model for vehicle dynamics: first the 
orientation is perturbed slightly, then the vehicle moves 
forward according to its velocity, then the orientation is 
perturbed slightly again. This motion law is often utilized 
when exact dynamics of the object are unknown, which 
happens to be the case in our application. The exact 
geometric shape of a vehicle can be complex and difficult to 
model precisely. For simplicity we approximate it by a 
rectangular shape of a fixed width W and length L1. The 2D 
representation is sufficient because the height of the vehicles 
is not important for driving applications. At each time step 
we obtain a new measurement Zt.The measurements are 
incorporated into the particle filter accordin g to the 
measurement model that we describe in Sect. 3.3. 

B. Sensor Data Representation: 
We use two types of laser range finders for sensing the 

environment: IBEO Alasca and Velodyne HDL-64E. These 
sensors produce range scans at 10Hz. IBEO produces four 
horizontal scan lines and performs ground filtering. Velo - 
dyne produces unfiltered 3D point clouds consisting of 64 
horizontal scan lines. 

2D data sets are more compact than 3D point clouds. 
Furthermore they are sufficient for vehicle tracking, 
provided that ground readings can be filtered out. To 
expedite data access, we preprocess the raw data and filter 
out ground readings to build 2D virtual scans as described in 
[4]. A virtual scan is a grid in polar coordinates, which 
subdivides 360 degrees around a chosen origin point into 
angular grids (Fig. 3). In each angular grid we record the 
range to the closest obstacle. We will often refer to the cone 
of an angular grid from the origin until the recorded range as 
a ray due to its similarity to a laser ray. By construction each 
angular grid contains information about free, occupied, and 
occluded space. This information is important for detecting 
changes in the environment. The changes are computed by 
differencing two consecutive virtual scans. This 
computation takes time linear in the size of the virtual scan 
and only needs to be carried out once per frame. Figure 3 
shows the results of a virtual scan differencing operation. 
The classification of space into free, occupied and occluded 
also helps us properly reason about what parts of a vehicle 
should be visible as we describe in Sect. 3.3. 

        
Figure. 3. A virtual scan constructed from Velodyne data. Yellow line 
segments rep- resent virtual rays. Red points are new obstacles, green 

points are obstacles that disappeared, and white points are obstacles that 
remained unchanged or appeared in previously occluded areas. (Best 

viewed in color.) 

C. Measurement Model: 
To complete our probabilistic model, we define the 

following measurement model 2. Given a vehicle’s pose X 

and a virtual scan Z we need to compute the measurement 
likelihood p(Z|X). We position a rectangular shape 
representing the vehicle according to X. Then we build a 
bounding box to include all points within a predefined 
distance λ (λ =lm) around the vehicle (see Fig. 4). Assuming 
that there is an actual vehicle in this con figuration, we would 
expect that points within the rectangle to be occupied or 
occluded, and points in its vicinity to be free or occluded, 
because vehicles are spatially separated from other objects 
in the environment. We consider measurements obtained 
along each ray independent of each other (a common 
assumption when dealing with laser range finders). Thus if 
we have a total of N rays in the virtual scan Z, the 
measurement likelihood factors as follows: 

 

 
Figure. 4. (a) Geometric regions involved in the likelihood 

computations.(b) costs assignment for a single ray. (Best viewed in color.) 

III. VEHICLE DETECTION 

Accurate moving vehicle detection in laser range data 
requires three frames. The first two fram es are required to 
detect motion of an object. The third frame is required to 
check that the motion is consistent over time and follows the 
vehicle dynamics law. Thus for a 10Hz sensor the minimum 
vehicle detection time is 0.3 seconds. Note that detection 
based on three frames allows for accurate results, because 
we can observe two consecutive motion updates and verify 
that the observed motion is consistent with a moving 
vehicle. For some applications it may be acceptable to 
sacrifice accuracy in favor of faster detection based on just 
one or two frames.  

A. The basic algorithm: 
Our vehicle detection method proceeds in three stages: 

a. First a vehicle is fitted using importance sampling in 
an  area where a change in the environment has been 
detected by scan differencing. The scoring is 
performed using the measurement model described in 
Sect. 2.3. 
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b. Next the vehicle’s velocity is estimated by performing 
a particle filter update step and scoring using the 
measurement model in the next frame. 

c. During the last stage, another particle filter update is 
performed and scored against a third frame. 

B. Challenges in vehicle detection: 
The range data in outdoor urban environments contains 

large amounts of noise that adds up from a number of 
sources. The laser range finder produce s readings corrupted 
by random noise. Environmental factors such as dust and 
rain cause false readings. Complex shape of vehicles does 
not match the box models precisely. Readings obtained from 
the same object at a slightly different height give different 
range. For the driving application we need to detect vehicles 
moving at 5mph to 35mph with a 10Hz sensor. Thus a 
vehicle moves 20 − 150cm per frame. This signal can be 
easily overwhelmed by noise especially in the lower range 
of the velocities. The poor signal-to-noise ratio makes it 
difficult to accurately tell a moving object apart from noise 
in just three frames. Although the signal is easier to detect if 
we use more than three frames, this solution is undesirable 
because it increases the detection time and takes up more 
computational resources. A more efficient approach, 
proposed in [2], is to sample the frames at a lower rate (e.g. 
1Hz), so that the signal is prevalent over the noise. 
However, this method also increases the total time required 
for detection of a vehicle and therefore it is unsuitable for 
our application. 

C. Motion evidence: 

 
Figure: 5 

Fig. 5. Diagram representing forward motion of a bus. 
Green color represents the position of the bus at time t. Red 
color represents its position at time t + 1. The green shaded 
area in the back of the bus frees up as the bus moves 
forward. The red shaded area in the front of the bus becomes 
occupied. Note that these changes are small compared to the 
overall area taken up by the bus, which remains occupied in 
both frames. (Best viewed in color.) 

To overcome the poor signal-to-noise ratio, we turn to 
the method used by humans to detect moving vehicles in 
noisy data. Consider a long bus moving forward at 5mph 
(Fig. 5). From one frame to the next it travels 20cm - a 
negligible distance compared to the noise and overall size of 
the vehicle. Since the middle of the bus appears stationary, a 
human trying to discern motion will focus on the front and 
back of the bus, to see if there is at least a tad of motion. To 
take advantage of the same method for vehicle detection, we 
define a score we call motion evidence. To compute this 
score, we consider the regions cleared by the vehicle as it 
moves. The cleared area behind the vehicle should be 
occupied in the prior frame and free in the current frame. 

Similarly the area in front of the moving vehicle should 
be free in the prior frame and occupied in the current frame. 
Usually we can only observe the front or the back of the 
vehicle, thus only half of the evidence is available due to 
self-occlusion. Note that motion evidence score is different 
from the probabilities obtained by fitting a vehicle using a 
particle filter. The particle filter computes the probability 
that motion could have happened, whereas the motion 
evidence scores the motion that “must have” happened. In 
the bus example given above the motion evidence score 
would ignore the entire bus except 20cm in the front and in 
the back. The motion evidence score can be computed for 
any pair of consecutive frames. In our approach we compute 
it for the first and the second pairs of frames. Doing so 
provides a very dramatic decrease in false positives, without 
affecting the false negatives rate. 

D. Optimizations: 
New vehicle detection is the most challenging and 

computationally expensive part of tracking dynamic 
vehicles. Below we describe the optimization techniques we 
developed to achieve reliable vehicle detection in real time. 
In Sect.4 we evaluate the impact of each technique on the 
performance of vehicle detection. 

a. Road masking: 
Since a digital road map is available in our application, 

one simple optimization is to restrict the search to the road 
regions. We do this by marking each data point as “close to 
road” or “far from road”. Only the points near the road are 
considered for new vehicle detection. This optimization 
greatly improves the efficiency of the vehicle detection 
algorithm. 

b. Cleared Area: 
As we already discussed above, a change in the data can 

be caused by either noise or motion. Ultimately the motion 
evidence score will help disambiguate motion from noise. 
However, the motion evidence score can only be used after 
the vehicle model has already been fitted to data. To make 
the search more efficient we would like to distinguish 
between noise and motion before performing any model 
fittings.When a vehicle moves forward with a minimum 
velocity vmin for a time interval Δt, it clears an area of 
approximately vmin 

c. Scaling Series: 

Δt W. Thus we can examine each data 
point to see if enough space has been cleared around it to 
allow for motion of a vehicle. If the vehicle is moving away 
from us, the cleared area will be in the current frame with 
respect to the prior frame. If the vehicle is approaching us, 
the cleared area will be in the prior frame with respect to the 
current frame. Thus we can find bot h types of cleared area 
by performing a symmetric clearing operation between the 
two frames.Even though cleared area logic is not as 
powerful as the motion evidence score, it provides a 
significant speed-up when used as a fast data pre-processing 
step. 

The firststep of vehicle detection involves fitting the 
geometric vehicle model to a virtual scan under conditions 
of large uncertainty: several meters in position and 360◦ in 
orientation of the vehicle. Using simple importance 
sampling with three state parameters makes the problem 
intractable within real time constraints.To improve 
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performance we turn to Scaling Series, a method first 
proposed in [9] for a tactile localization application. In that 
application the number of parameters was also too large to 
perform an importance sampling step in real time in 
conditions of global uncertainty. They proposed the Scaling 
Series algorithm to efficiently produce a much more 
informed proposal distribution, one that is concentrated 
around the areas of high probability mass. We refer the 
reader to [5] for details on Scaling Series, but briefly, the 
algorithm works by performing a series of successive 
refinements, generating an increasingly informative proposal 
distribution at each step of the series. The successive 
refinements are performed by gradually annealing the 
measurement model from arti ficially relaxed to realistic. 

In our setting, we applied the Scaling Series algorithm 
to choose the proposal distribution for the initial importance 
sampling step. Using this method we obtained a very 
significant improvement in the reliability of the search and 
reduced the time it takes to detect a new moving vehicle by 
a factor of 10. 

d. Backward search: 
Since vehicle detection takes three frames, the 

minimum detection time is 0.3 seconds for a sensor with a 
frame rate of 10Hz. It turns out that if we only search 
forward in time, then the minimum detection time is 0.4 
seconds for approaching vehicles, because the firstframe is 
only used to detect dynamic data points in the second frame. 
However, if we fit the vehicle in the second frame and then 
move it backwards in time, we can utilize the firstframe as 
well. In this case we use frame number two for the initial 
vehicle fitting and frame number one for velocity estimation. 
As before the third frame is used to check motion 
consistency. 

IV. EXPERIMENTAL RESULTS 

The presented vehicle detection algorithm has been 
used as part of our tracking module (described in [5]). The 
module has proven to be reliable, efficient, and capable of 
handling complex traffic situations including the most 
challenging tests presented during the Urban Grand 
Challenge and the qualifiers (see Fig. 6). The average 
computation time of our approach - including detection and 
tracking - is 25ms per frame, which is four times faster than 
the sensor update rate. 

 
Figure: 6 

Fig. 6. Actual scene and tracking results on a test 
presented in Area A during the qualification event at the 
Urban Grand Challenge. During this test robots had to 
repeatedly merge into live traffic on a course resembling the 
Greek letter . 

Table: 1 

 
Table 1. Vehicle detector performance on data sets from 

three urban environments. For each car we counted how 
many frames it took to detect it. By construction of the 
algorithm, at least three frames are required. We also 
counted the number of false detections. The ’% Detected’ 
columns give the percentages of cars detected by frame 
three, four and five. ’FP %’ is the false positive rate attained 
by the vehicle detection algorithm. 

To evaluate the performance of the vehicle detection 
algorithm empirically we forced the tracking module to drop 
each target as soon as it was detected. We then ran vehicle 
detection on data sets from three different urban environ- 
ments: Area A of the Urban Grand Challenge qualifiers, the 
Stanford campus, and a port town in Alameda, CA (see Tbl. 
1). In each frame of data we labeled all vehicles identifiable 
by a human in the range data. The vehicles had to be within 
50m of Junior, on or near the road and moving with a speed 
of at least 5mph. For each vehicle we counted how many 
frames it took to detect it. We also counted false positives. 

Overall, all vehicles were detected in five frames or less 
and the false positive rate was 0.4%.To evaluate motion 
evidence contribution, we ran the algorithm with and 
without motion evidence logic on labeled data sets. The use 
of motion evidence brought false discovery rate from 60% 
down to 0.4%. At the same time the rate of false negatives 
did not increase. We used prerecorded data sets to evaluate 
performance gains from the optimization techniques. We 
compared the computation time of the algorithm with and 
without road masking. Road masking sped up the algorithm 
by a factor of eight. We also ran the algorithm with and 
without cleared area logic. The speed up from this 
optimization was approximately a factor of three. The 
backward search optimization reduced the minimum 
detection delay for oncoming traffic by 25%. 

 
(a)Standard PF 

 
(b) Scaling Series 

Figure: 7 

Fig. 7. Comparison of standard PF to Scaling Series for 
new vehicle detection. The horizontal axis denotes time in 
seconds. The vertical axis has two states: 0 - target is not 
tracked, 1 - target is tracked. To verify target acquisition, the 
code was specifically modified to discontinue tracking a 
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target after 1 second. By construction of the algorithm, the 
minimum possible time spent in non-tracking state is 0.3 
seconds. (a) Standard PF has a long target acquisition time - 
too dangerous for autonomous driving. (b) Scaling Series 
method has nearly perfect acquisition time. 

To evaluate improvements from Scaling Series, we used 
a 30 second data set of our ego-vehicle following another 
car. For evaluation purposes we modified the tracker to drop 
each target after tracking it for 1 second. Figure 7 presents 
comparison of results obtained using a standard particle 
filter and Scaling Series particle filter. Vehicle detection 
with the standard particle filter took 4.44 seconds on average 
and 13.7 seconds in the worst case, which can easily result 
in a collision in a real life situation. In contrast the Scaling 
Series particle filter took 0.32 seconds on average to detect 
the vehicle, with the worst case being 0.5 seconds. Thus the 
Scaling Series approach performs very close to the 
theoretical minimum of 0.3 seconds. 

V. ONCLUSIONS 

We presented a model based approach to detection of 
dynamic vehicles from a high-speed robotic platform 
equipped with laser range finders. We developed the notion 
of motion evidence, which effectively overcomes the low 
signal-to- noise ratio for fast and accurate detection of 

moving vehicles in noisy urban environments. We also 
presented an array of optimization techniques that enable 
our algorithm to run in real time and provide reliable 
moving vehicle detection even in the most challenging 
conditions presented at the UGC.A promising direction for 
future work is to fuse laser range finders with other sensors 
such as vision and radar to allow for even faster detection of 
new vehicles. Another useful direction is to identify a 
greater variety of moving objects in urban settings such as 
people, bicyclists and animals. 
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