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Abstract: Users access a large amount data and store in personal information management systems, There is a need to retrieve disparate data in a 
simple and efficient way using some search tools. IR-style ranking is supported by existing tools, but structure(path of a file) and 
metadata(includes name,author,title,date) are considered as filtering conditions in this approach. Normal search is performed based on keyword 
conditions but the multidimensional search allows search using  structure and metadata. It integrates the three dimension score into unified score 
where each score belongs to a dimension. In order to identify the relevant files which matches with the given query we make use of indexes and 
algorithms. We can improve ranking accuracy by performing the experiments for our approach. By using query processing strategies , the fuzzy 
search approach can be used in every day of our life. 
 
Keywords: Multidimensional search, personal information management system, query processing 

I. INTRODUCTION  

The data which is to be stored in personal information 
management systems is rapidly increasing, This explosion 
of information needs a powerful search tools to access often 
very disparate data in a simple and efficient manner. Such 
tools should provide both high-quality scoring mechanisms 
and efficient query processing capabilities. 

Inorder to perform keyword search and locate personal 
information stored in file there are numerous search tools 
such as the commercial tools Google Desktop Search [1] 
and Spotlight [19]. However, these tools usually support 
textual part of the query for searching a file—similar to 
what has been done in the Information Retrieval (IR) 
community,but only consider structure (e.g., file path) and 
metadata (e.g.,filetype, title, author) as filtering conditions. 

Recently, the research community has turned its focus 
on search over to Personal Information and Dataspaces 
[10], [12], [14], which consist of different data collections. 
However, in this search tools, these works focus on IR-style 
keyword queries and use other system information only to 
guide the keyword-based search. 

Keyword only searches are often insufficient, as 
illustrated by the following example: Consider a user stores 
his  personal information in the file system of a personal 
computing device. In addition to the actual file content, 
location information (e.g., directory structure) and a 
metadata information (e.g., access time, date) are also 
stored by the file system. 

In such a scenario, the user might want to ask the 
query: 
[file type = *.pdf AND accesstime = 12/03/2014 AND 
content = “Fuzzy search” AND structure = 
/docs/find/search] 

Current tools would answer this query by returning all 
files of type *.pdf created on 12/03/2014 under the directory 
/docs/find/search (as filtering conditions) that have content 
similar to “Fuzzy search” (ranking expression), ranked 
based on how close the content matches “Fuzzy search” 
using some underlying text scoring mechanism. Because all 
information except the content are used as filtering 
conditions, files that are very relevant to the query, but 
which do not satisfy these exact conditions would be 
ignored. For example, *.txt docu-ments created on 
12/03/2014 and files in the directory /arc/search/fuzzy 
containing the terms “Fuzzy Search” would not be returned. 

We argue that allowing flexible conditions on structure 
and metadata can significantly increase the quality and 
usefulness of search results in many search scenarios. For 
instance, in Eg 1, the user might not remember the exact 
creation date of the file but remembers that it was created 
around 21/03/2014. Similarly, the user might be interested 
in files of type *.pdf but might also want to consider 
relevant files of different but related types (e.g., *.tex or 
*.txt). Finally, the user might misremember the directory 
path under which the file was stored. In this case, by using 
the date, size, title and structure conditions not as filtering 
conditions but as part of the ranking conditions of the 
query. 

The challenge is then to score answers by taking not 
only textual components alone but together with flexibility 
in the structural and metadata components of the query. 
Efficient algorithms are need to identify the best query 
results, without considering all the information in the file 
system. 

We propose a novel approach that allows users to 
perform fuzzy searches across three different dimensions: 
structure content, and metadata. Then for each dimension an 
IDF based scoring is provided and a unified scoring 
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framework for multi-dimensional queries over personal 
information file-systems. In this we present new data 
structures and index construction optimizations to make 
finding and scoring fuzzy matches efficient. 

Our work could be extended to a variety of dataspace 
applications and queries, and this paper focus on a file 
search. we consider the granularity of the search results to 
be a single file in the personal information system. Of 
course, our techniques could be extended to a more flexible 
query model where pieces of data within files could be 
returned as results. 

II. UNIFIED MULTI-DIMENSIONAL SCORING  

In this section, we present our unified framework we 
can assign the scores to the files for closely mapped query 
condition of different query dimnesions. There are three 
scoring dimensions: content defines the textual content of 
the files, metadata defines the system information related to 
the files, and structure defines the directory path to access 
the file. 

We represent files and their associated metadata and 
structure information as XML documents. Metadata and 
structure conditions in addition to keyword-based content 
conditions are explained by using simplied version of 
XQuery 

Any file that is related to one or more of the query 
conditions is correct answer for the query.Each file will be 
assigned a score for each dimension on how close it 
matches the corresponding query condition. Scores across 
multiple dimensions are filtered into a single overall score 
for ranking of answers. 

Our scoring strategy is based on an IDF based 
interpretation of scores. For each query condition, we rank 
files based on the least relaxed form of the condition that 
each file matches. Scoring along all dimensions is 
uniformly IDF based which helps us to meaningfully 
combine multiple single-dimensional scores into a unified 
multi-dimensional score. 

A. Scoring Content: 
We use standard IR relaxation and scoring techniques 

for content query conditions. Specifically, we adopt the 
TF·IDF scoring formulas from Lucene [6], a state-of-the-art 
keyword search tool. These formulas are as follows: 

 

 

 
 

 
Figure:1 

Where Q is the content query condition, f is the file 
score given to a file, N is the total sum of files, N is the 
number of files containing the term t, and NormLength(f ) is 
a normalizing factor that is a function of f ’s length. 2 Note 
that relaxation is an integral part of the above formulas since 
they score all files that contain a subset of the terms in the 
query condition. 

B. Score of Metadata: 
We introduce a hierarchical relaxation approach for 

each type of searchable metadata to support scoring. For 
example, Figure 1 shows the relaxation levels for file types, 
represented as a Direct Acyclic Graph3. Each leaf node of 
graph represents a specific file type (e.g., pdf files). Each 
internal node represents a more general file type that is the 
union of the types of its children (e.g., Media is the union of 
Video, Image, and Music) and thus is a relaxation of its 
descendants. The set of files matching a node must be equal 
to or sub-sum of files matching each of its children nodes. 
This enable that the score of a file matching a more relaxed 
form of a query condition is always less than or equal to the 
score of a file matching a less than relaxed form (see 
Equation 4 below). 

For example, a file type query condition specifying a 
file type “*.cpp” would match the nodes representing files 
type “Code”, files type “Document”, etc. A query condition 
on the creation date of a file would match different levels of 
time granularity, e.g., month, week or day. The nodes on the 
path from the deepest (most restrictive) node to the root of 
the DAG then represent all of the relaxations that we can 
score for that query condition. Similarly, each file matches 
all nodes in the DAG that is equal to or subsum of the file’s 
metadata value. 

Finally, given a query Q represents a single metadata 
condition M, the metadata score of a file f with respect to Q 
is computed as: 

 
Where N is the total sum of files, nM is the deepest 

node that matches M , nf is the deepest DAG node that 
matches f , commonAnc(x, y) returns the closest common 
ancestor of nodes x and y in the relaxation hierarchy, and 
nFiles(x) returns the number of files that match node x. The 
score is normalized by log(N ) so that a single perfect match 
would have the highest possible score of 1. 
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C. Score of a Structure: 
To organize their files most of users use a hierarchical 

directory structure. When searching for a particular file, a 
user may often remember only some components of the 
containing directory path and approximate ordering than the 
exact path itself. Thus, allowing for some approximation on 
structure query conditions is required because it allows 
users to leverage their partial memory to help the search 
engine locate the required file. 

Our structure scoring strategy extends initial work on 
XML structural query relaxations [4], [5]. Specifically, the 
node inversion relaxation introduced here is novel and 
introduced to handle possible mis-ordering of pathname 
components when specifying structure query conditions in 
personal file systems. Assuming that structure query 
conditions are given as non-cyclic paths (i.e., path queries), 
these relaxations are: 

 

 
Figure 2 

Generalization of an Edge is used to relax a parent-
child relationship to an ancestor-descendant relationship. 
For example, applying edge generalization to /c/d would 
result in /c//d.  

Path Extension is used to extend a path P such that all 
files within the directory subtree rooted at P can be 
considered as result. For example, applying path extension 
to /c/d would result in /c/d//∗.  

Inversion Node is used to permute nodes within a path 
query P. To represent possible permutations, we introduce 
the notion of node group as a path where the placement of 
edges are fixed and (labeled) nodes may permute. 
Permutations can be applied to any adjacent nodes or node 
groups which have an exception for the root and *nodes. A 
permutation combines adjacent nodes, or node groups, into 
a single node group while preserving the relative order of 
edges in P . For example, applying node inversion on c and 
d from /c/d/e would result in /c/(d/e), allowing for both the 
original query condition as well as /a/c/b. The (b/c) part of 
the relaxed condition /c/(d/e) is called a node group.  

Deletion Node is used to delete a node from a path. 
Node deletion can be applied to any path query or node 
group but cannot be used to drop the root node or the ∗ 
node.  

To delete a node n1  in a path query P:  
a. If n1  is a leaf node, n1  is deleted  from P and P – 

n1 is extended with //∗. This is to ensure 

containment of the exact answers to P in the set  
of answers to P’

b. If n is an internal node, n1 is dropped from P and 
parent(n) and child(n) are connected in P with //. 
For example, deleting node c from c/d/e results in 
c/d//∗ because c/d//∗ is the most specific relaxed 
path query containing a/b/c that does not contain c. 
Similarly, deleting c from c/d/e//∗ results in 
c//d//∗.To delete a node n1 that is within a node 
group N in a path query P , the following steps are 
required to ensure answer containment and 
monotonicity of scores: 

, and monotonicity of scores. 

c. n1 and one of its adjacent edge in N are dropped 
from N . Every edge within N becomes an 
ancestor-descendant edge. If n1  is the only node 
left in N , N is replaced by that node in P .  

d. Within P the surrounding edges of N are replaced 
by ancestor-descendant edges.  

 

 
e. If N is a leaf node group, the result query is 

extended with //∗.  
For example, deleting node a in x/(c/d//e/f)/y results in 

x//(f//g//h)//y because the extension set of x/(e/f//g/h)/y 
contains 24 path queries, which include x/c/d//e/f/y and 
x/d/e/f/c/y; after deleting node c, these two path queries be-
come x//d//e/f/y and x/d/e//f//y. Therefore, x// (d//e//f)//y is 
the only most specific path query which contains the 
complete extension set and does not contain c. 

D. Score Aggregation: 
We cumulate the above single-dimensional scores into 

a filtered multi-dimensional score to provide a fused 
ranking of files relevant to a multi-dimensional query. To 
do this, we construct a query vector, 

VQ having a value of 1 (exact match) for each 
dimension and a file vector, VF, consisting of the single-
dimensional scores of file F with respect to query Q. (Scores 
for the content dimension is normalized against the highest 
score for that query condition to get values in the range [0, 
1].) We then compute the projection of VF onto VQ

III. QUERY PROCESSING 

 and the 
length of the resulting vector is used as the cumulative score 
of file F . In its current form, this is simply a linear 
combination of the component scores with equal weighting. 
The vector projection method, however, provides a 
framework for future investigation of more complex 
aggregations. 

We adapt an existing algorithm called the Threshold 
Algorithm [13] to make query processing. Threshold 
Algorithm uses a threshold condition which avoids 
evaluating the possible matches to a query, focusing on 
identifying the k best answers. It takes several sorted lists as 
a input , each containing the system’s objects such as files 
(in our scenario) sorted in descending order according to 
their relevance scores for a particular attribute as dimension 
(in our scenario), and dynamically they can accesses  sorted 
lists until the threshold condition is met to find the k best 
answers. 



A.Seenu et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue), 05-12 

© 2010-14, IJARCS All Rights Reserved                                                                                                       8 CONFERENCE PAPER 
Two day National Conference on Advanced Trends and Challenges  

in Computer Science and Applications 
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P. 

Schedule: 18-19 March 2014 

Critically, TA relies on sorted and random accesses to 
retrieve individual required attribute scores. Sorted accesses, 
that is, accesses to the sorted lists mentioned above, which is 
used to return the required files in descending order of their 
scores for a particular dimension. Random accesses require 
the sum of a score for a particular dimension for any given 
file. Random accesses occur when Threshold Algorithm 
chooses a file from a particular list corresponding to some 
dimension, and then needs the scores for the file in all the 
other dimensions to compute its united score. To use 
Threshold Algorithm in our scenario, our indexing 
structures and algorithms need to support the sorted and 
random access for each of the three dimensions. 

We will now present these indexing structures and 
algorithms. 

A. Evaluation of Content Scores: 
As mentioned in Section 2.1, we use existing TF·IDF 

methods to score the content dimension. By using Random 
accesses we can find the term frequency in the entire file 
system as well as in a particular file. we keep the file  in a 
sorted order according to their Term-Frequency  scores, 
normalized by file size, for that term. 4 We then use the 
Threshold Algorithm recursively to return files in sorted 
manner according to their content scores for queries that 
having more than one term. 

B. Evaluation of Metadata Scores: 
Sorted access for a metadata condition is implemented 

using the appropriate relaxation DirectAcyclicGraph index. 
First, exact matches are identified by identifying the deepest 
Direct Acyclic Graph node that matches the given metadata 
condition (see Section 2.2). Once all exact matches have 
been retrieved from N’s leaf descendants, approximate 
matches are produced by traversing up the Direct Acyclic 
Graph to consider more approximate matches. Each parent 
contains a bigger range of values than its child nodes, which 
ensures the matched nodes are returned in decreasing order 
of metadata scores. For content dimension, we can use the 
Threshold Algorithm recursively to return files in sorted 
order for queries that contain multiple metadata conditions.  

Random accesses for a metadata condition require 
positioning in the appropriate Direct Acyclic Graph index 
the closest common ancestor of the deepest node that 
matches the condition and the deepest node that matches the 
file’s metadata attribute (see Section 2.2). This is 
implemented as an efficient Direct Acyclic Graph traversal 
algorithm.  

IV. EVALUATION OF STRUCTURE SCORES 

The structure score of a file for a query condition 
depends on how close the directory in which the file is 
associated 

To compute the structure score of a file f in a directory 
d1 that matches the (exact or relaxed) structure condition P 
of a given query, we have to determine  all the directory 
paths, including d1 that match P. We will then sum the 
number of files contained in all the directories matching P 
to compute the structure score of these files for the query 
using Equation 6. The score computation step is 
straightforward; the complexity resides in the directory 
matching step. Node inversions complicate matching query 
paths with different directories, as required possible 

permutations have to be measured. Particular techniques 
and their supporting index structures required to be 
developed. 
 

 
Figure: 3 

We use a two-phase algorithm to identify all the 
required directories that match a query path. First, we 
identify a set of candidate directories using the observation 
that for a directory d1 to match a query path P , it is 
necessary for all the components in P to appear in d1. For 
example, the directory/docs/proposals/final/Wayfinder is a 
potential match for the query path 
/docs/(Wayfinder//proposals) since the directory contains 
all three components docs, Wayfinder, and proposals. We 
implement an inverted index mapping components to 
directories to support this step (see Figure 3). 

In the second phase, we extract from the query path: 
(1) The set of node groups representing possible 
permutations of components, and (2) a sequence of logical 
conditions representing the left to right parent-child or 
ancestor-descendant relationship between each component-
component or component-node group pairs. For example, 
we would extract the node group (Wayfinder//proposals) 
and the sequence (/docs, docs/(Wayfinder//proposals)) from 
the query path /docs/(Wayfinder//proposals). Then, to 
compute whether a directory matches a query path, we 
would first identify parts of the directory that match the 
node groups. Finally, we would attempt to find an ordering 
of components and node groups that would match the 
generated sequence of conditions. If we can find such an 
ordering, then the directory matches the query path; 
otherwise, it does not. 

Given the above index, suppose that we want to 
compute whether the candidate directory /docs 
/proposals/final/Wayfinder matches the query path /docs 
/(Wayfinder//proposals). The index would tell us that /, 
docs, Wayfinder, and proposals appear at positions 0, 1, 4, 
and 2, respectively. We would then compute that the 
components proposals and Wayfinder appearing at positions 
4 and 2 represents a valid match for the node group 
(Wayfinder//proposals) of the query path; we say that this 
node group component spans positions 2-4 for the candidate 
directory. We then compute that the ordering 0, 1, (2-4) of /, 
docs, (Wayfinder//proposals) satisfies the left-to-right re-
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lationships extracted for the query path and thus concludes 
that the candidate directory is a valid match for the query 
path. For a path query P with |P|components, our query 
matching algorithm has worst-case I/O complexity linear in 
the sum of sizes of the |P | inverted lists, and CPU time 
complexity linear in the length of the smallest of the |P | 
inverted lists. The worst-case space complexity does not 
exceed the maximum length of directory pathnames. Details 
of the algorithm and complexity analysis can be found in 
[29]. 

Obviously, we also need to be able to efficiently find 
the files residing in any given directory to support scoring. 
The file system itself supports this functionality. 

Given the above matching algorithm, we can then 
support TA in the structure dimension by dynamically 
building the DAG and populating its nodes with score 
information. (Building a static structural index is not a 
realistic option as this would entail enumerating all possible 
query conditions (paths) and all of their relaxations, a 
prohibitively expensive task.) A naive implementation of 
sorted access could then be a Direct Acyclic Graph traversal 
in decreasing order of structure scores. Similarly, random 
access could be implemented as a Direct Acyclic Graph 
traversal to locate the least relaxed query that a file 
matches. However, complete expansion and scoring of the 
Direct Acyclic Graph would be too expensive. Thus, in the 
next section, we present optimizations to minimize the 
expansion and scoring of the Direct Acyclic Graph. 

V. OPTIMIZING QUERY PROCESSING IN THE 
STRUCTURE DIMENSION 

In this section, we present our dynamic indexes and 
algorithms for efficient processing of query conditions in 
the structure dimension. This dimension brings the 
following challenges: 

a. The Direct Acyclic Graphs representing relaxations of 
structure conditions [4], [17] are query-dependent and 
so have to be built at query processing time. However, 
since these DAGs grow exponentially with query size, 
i.e., the number of components in the query, efficient 
index building and traversal techniques are critical 
issues.  

b. The Threshold Algorithm requires efficient sorted and 
random access to the single-dimension scores (Section 
3).  
We propose the following techniques and algorithms to 

address the above demands. We incrementally build the 
query dependent Direct Acyclic Graph structures at query 
time, only materializing those Direct Acyclic Graph nodes 
necessary to reply a query (Section 4.1). To improve sorted 
access efficiency, we propose techniques to skip the scoring 
of unnecessary Direct Acyclic Graph nodes by taking 
advantage of the containment property of the Direct Acyclic 
Graph (Section 4.2). We improve random accesses using a 
novel algorithm that efficiently locates and evaluates only 
the parts of the Direct Acyclic Graph that match the file 
requested by each random access (Section 4.3). 

A. Incremental Identification of Relaxed Matches:  
As mentioned in Section 2.3, we represent all possible 

relaxations of a query condition and corresponding IDF 
scores using a Direct Acyclic Graph structure. Scoring an 
entire query relaxation Direct Acyclic Graph can be 

expensive as they grow exponentially with the size of the 
query condition. For example, there are 5, 21, 94, 427, and 
1946 nodes in the respective com- 

plete Direct Acyclic Graph for query conditions /a, /a/b, 
/a/b/c, /a/b/c/d, /a/b/c/d/e. However, in many cases, enough 
query matches will be found near the top of the DAG, and a 
large portion of the Direct Acyclic Graph will not need to be 
scored. Thus, we use a lazy evaluation approach to 
incrementally build the DAG, expanding and scoring DAG 
nodes to produce additional matches when needed in a 
greedy fashion [29]. The partial evaluation should 
nevertheless ensures that directories (and therefore files) are 
returned in the order of their scores. 

For a simple top-k evaluation on the structure 
condition, our lazy Direct Acyclic Graph building algorithm 
is applied and stops when k matches are identified. For 
complex queries involving multiple dimensions, the 
algorithm can be used.Random accesses are more 
problematic as they may access any node in the DAG. The 
Direct Acyclic Graph building algorithm can be used for 
random access, but any random access may lead to the 
materialization and scoring of a large part of the DAG.5  

B.  Improving Sorted Accesses: 
Evaluating queries with structure conditions using the 

lazy DAG building algorithm can lead to significant query 
evaluation times as it is common for multi-dimensional top-
k processing to access very relaxed structure matches, to 
compute the top-k answers. 

Not every possible relaxation leads to the discovery of 
new matches. For example, in Fig2, the query paths 
/docs/Wayfinder/proposals, //docs/Wayfinder/proposals, and 
//docs//Wayfinder/proposals have exactly the same scores of 
1, which means that no additional files were retrieved after 
relaxing /docs/Wayfinder/proposals to either 
//docs/Wayfinder/proposals or //docs//Wayfinder/proposals 
(Equation 6). By extension, if two DAG nodes share the 
same score, then all the nodes in the paths between the two 
DAG nodes must share the same score as well per the DAG 
definition. This is formalized in Theorem 1 

Theorem 1: Given the structural scoreidf function 
defined in Eq 6, if a query path P’ is a relaxed version of 
another query path P, and scoreidf (P’) = scoreidf (P) in the 
structure DAG, any node P’’ on any path from P to P’has the 
same structure score as scoreidf (P), andF(P’) = F(P’’

Proof: (Sketch) If score

) = F(P), 
where F(P) is the set of files matching query path P. 

idf (P’) = scoreidf (P), then by 
definition NP’= NP (Equation 6). Because of the 
containment condition, for any node P’’on any path from P 
to P’, we have F(P’) or F(P’’

NP
) or F(P) and 

’≥ NP’’ ≥ NP . Th u s, NP’= NP’’= NP and F(P’) = 
F(P’’) = F(P), since otherwise there exists at least one file 
which belongs to F(P’) (or F(P’’)) but does not belongs to 
F(P) and NP’’= NP (or NP’’’=NP ), contradicting our 
assumption NP’= NP (and NP’’

Theorem 1 can be used to speed up sorted access 
processing on the DAG by skipping the score evaluation of 
DAG nodes that will not contribute to the answer, since the 
score evaluation of DAG nodes can be expensive. We 
propose Algorithm 1, DAG-Jump. 

= NP ).  

It includes two steps: (a) starting at a node 
corresponding to a query path P, the algorithm performs a 
depth-first traversal and scoring of the DAG until it finds a 
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parentchild pair, P’  and child(P’), where scoreidf (child(P’)) 
< scoreidf (P); and (b) score each node P’’

 
at the same 

 
 

Depth (distance from the root) as P’ if scoreidf (P’’) 
=scoreidf (P), then traverse all paths from P’’ back toward the 
root; on each path, it can reach a previously scored node P *, 
where scoreidf (P*) = scoreidf (P); all nodes on all paths from 
P’’to P* can be dropped since they  have the same score as 
P’’

An example execution of DAG Jump for our query 
condition /docs/Wayfinder/proposals is given in Figure 4. 
The two steps from Algorithm 1 are performed as follows: 
(a) starting at the root with a score of 1, DAG Jump 
performs a DFT and scores the DAG nodes until it finds a 
node with a smaller score than 1 (//d//w//p); and (b) 
DAGJump traverses each node at the same depth as //d//w/p 

. 

(the parent node of //d//w//p); for the four such nodes that 
have a score 1, DAGJump marks as skippable all nodes that 
are on their path to the root node. 
 

Algorithm 1. DAG-JUMP(srcNode) 
a. S ← getScore(srcNode) 
b. currentNode ← srcNode 
c. loop 
d.          targetDepth ← getDepth(currentNode) 
e.          childNode ← firstChild(currentNode) 
f.          If getScore(childNode) ≠ s or 
g.                  hasNoChildNodes(childNode) then 
h.                  exit loop 
i.          currentNode ← childNode 
j. for each n getDepth(n) = targetDepth and 

       getScore(n) = s do 
     Evaluate bottom-up from n and identify ancestor 
     node set S s.t. getScore(m)=s, ∀m€ S 

k. for each m€ S do 
l.            for each n’

m.                  setScore(n
 on path p € getPaths(n,m) do 

’

n.                  setSkippable(n
,s) 

’

o.                  if notSkippable(m)   then 
) 

p.                      setSkippable(m) 

C. Improving Random Accesses: 
Random accesses is required for top-k query processing 

in DAG. Using sorted access to emulate random access 

tends to be very inefficient as it is likely the top-k algorithm 
will access a file that is in a directory that only matches a 
very relaxed version of the structure condition. 

While the DAG-Jump algorithm somewhat alleviates 
this problem by reducing the number of nodes that need to 
be scored, efficient random access remains a critical 
problem for efficient top-k evaluations. We present the 
RandomDAG algorithm to optimize random accesses over 
our structure DAG. The key idea behind RandomDAG is to 
skip to a node P in the DAG that is either a close ancestor of 
the actual least relaxed node P’ that matches the random 
access file’s parent (containing) directory d or P’ itself and 
only materialize and score the sub-DAG rooted at P as 
necessary to score P

The intuition is that we can identify P by comparing d 
and the original query condition. In particular, we compute 
the intersection between the query condition’s components 
and d. P is then computed by dropping all components in the 
query condition that is not in the intersection, replacing 
parent-child with ancestor-descendant relationships as 
necessary.  The computed P is then guaranteed to be equal 
to or an ancestor of P

’ . 

’

Algorithm 2 Random-DAG (root, DAG, F) 

. As DAG nodes are scored, the score 
together with matching directories are cached to speed up 
future random accesses.  

a. P ← getDirPath(F) 
b. if  p € DAGCache then 
c.      return getScoreFromCache(DAGCache ,p) 
d. droppedComponents  ←  

        extractComponents(root) - 
extractComponents(p) 

e. p’

f. for each component  € droppedComponents do 
←root 

g.    p’ ← nodeDeletion(p’

h. loop 
,component) 

i.          n ← getNextNodeFromDAG(p’

         {getNextNodeFromDAG incrementally build 
a  

) 

         sub-DAG rooted at p’ 

         node in decreasing order of score.} 

and  returns the next 
DAG 

j.   fileMatches ← matchDirectory(getQuery(n)) 
k.  dirPaths ← getDirpaths(fileMatches) 
l.  addToCache(DAGCache,dirPaths,getScore(n)) 
m.  if p € dirPaths  then 
n.    return getScore(n) 
As an example, for our query condition 

/docs/Wayfinder/proposals in Figure 2, if the top-k 
algorithm wants to perform a random access to evaluate the 
structure score of a file that is in the directory 
/archive/proposals/Planetp, RandomDAG will first compute 
the close ancestor to the node that matches 
/archive/proposals/Planetp as the intersection between the 
query condition and the file directory, i.e., //proposals, and 
will jump to the sub-DAG rooted at this node. The file’s 
directory does not match this query path, but does match its 
child //proposals//* with a structure score of 0.197. This is 
illustrated in Figure 5 which shows the parts of the DAG 
from Figure 2 that would need to be accessed for a random 
access to the score of a file that is in the directory 
/archive/proposals/Planetp. 
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Figure: 5 

VI. EXPERIMENTAL RESULTS 

We now experimentally evaluate the potential for our 
multidimensional fuzzy search approach to improve  ranking 
accuracy. We also report on search performance achievable 
using our index structures, scoring algorithms, and also top-
k adaptation. 

A. Experimental Setup: 
a. Experimental environment: All experiments were 

performed using a prototype system implemented in 
Java. We use the Berkeley DB [18] to persistently 
store all indexes and Lucene to rank content. 
Experiments were run on a PC with a 64-bit hyper-
threaded 2.8 GHz Intel Xeon processor, 2 GB of 
memory, and a 10K RPM 70 GB SCSI disk, running 
the Linux 2.6.16 kernel and Sun’s Java 1.4.2 JVM. 
Reported query processing times are cummalation of 
40 runs, after 40 warm up runs to avoid measurement 
JIT effects. All caches (except for any Berkeley DB 
internal caches) are flushed at the beginning of each 
run. 

b. Data set: As noted in [12], there is a large amount  
data sets and benchmarks to evaluate search over 
personal information management systems. Then a 
data set contains files and directories from the working 
environment of one of the authors. This data set 
contains 14.3 GB of data from 24,926 files organized 
in 2,338 directories; 24% of the files are multi-media 
files (e.g., music and pictures), 17% document files 
(e.g., pdf, text, and MS Office), 14% email messages,7 
and 12% source code files. The average depth of a 
directory was 3.4 with the longest being 9. On average, 
each directory contains 11.6 subdirectories and files. 
The system extracted 347,448 unique content terms.  
File modification dates span 10 years. 75% of the files 
are smaller than 177 KB. 

B. Impact of Flexible Multi-Dimensional Search: 
To improve ranking accuracy using two example search 

scenarios. In each scenario, we initially construct a content 

only query intended to retrieve a specific target file and then 
expand that particular query is extended to other 
dimensions. For each query, we consider the status of the 
aimed file by our approach together with whether the target 
file would be ranked at all by today’s typical filtering 
approaches on non-content query conditions. An example of 
results in Table 1. In the first example, the target file is the 
novel “Time Machine” by H.G.Well, located in the directory 
path /Personal/Ebooks/Novels/, and the set of query content 
terms in our initial content-only query Q1 contains the two 
terms time and machine.   

While the query is quite reasonable, the terms are 
common enough that they appear in many files, leading to a 
ranking of 18 for the target file.Q2 augments Q1 with the 
exact matching values for file type, modification date, and 
containing directory. This helps in ranking  the target file to 
1. The left-s over queries look at what happens when we 
provide an incorrect value for the non-content dimensions. 
For example, in query Q10, a group of correct but wrongly 
ordered components in the directory name still brings the 
ranking up to 1. In comparisons, if such directories were 
given as filtered results, the target file would be considered 
mismatch to the query and not ranked at all; queries which 
contain a “*” next to our technique’s rank result represent 
those in which the target file would not be considered as a 
relevant answer given today’s typical filtering approach.  

Results for the second example, which is a search for an 
email, are similar. This study also presents an opportunity 
for gauging the potential impact of the node inversion 
relaxation. Specifically, queries Q23 and Q26 in the second 
example misplaced the structure conditions as /Java/Mail 
and /Java/Code, respectively, compared to the real  
pathname  personal/Mail/Code/Java. Node inversion allow 
these conditions to be relaxed to //(Java//Mail) and 
//(Java//Code), so that the target file is still ranked 1. 
Without node inversion, these conditions cannot match the 
target until they both are relaxed to //Java/*, the matching 
relaxation with the highest IDF score, using node deletion. 
This leads to ranks of 9 and 21 since files under other 
directories such as /Backup/CodeSnippet/Java and 
/workspace/BookExample/Java now have the same structure 
scores as the target file. 

In another example scenario not shown here, a user is 
searching for the file wayfinder cons.ppt stored in the 
directory /Personal/publications/wayfinder/presentations. 
The query with content condition wayfinder, availability, 
paper and structure condition  
Personal/wayfinder/presentations would rank wayfinder 
cons.ppt 1. Though, structure condition is misplaced as 
/Personal/presentations/wayfinder or  
presentations/Personal/wayfinder, the rank of the target file 
would fall to 17 and 28, respectively, without node 
inversion. With node inversion, the conditions are relaxed to 
/Personal//(presentations/wayfinder) and /(presentations// 
Personal/wayfinder), respectively, and the target file is still 
ranked 1. 
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C. Storage Cost: 
We report the cumulative size of our static indexes of 

Section 3 to show that our approach is practical with respect 
to both space (storage cost) and time (query processing 
performance). In total, our indexes require 246 MB of 
storage, which is less than 2% of the data set size (14.3GB). 
This storage is dominated by the content index, which 
accounts for almost 92% of the 246 MB. The indexes are so 
compact compared to the data set because of the large sound 
(music) and video (movie) files. As future data sets will be 
increasingly media rich, we expect that our indexes will 
continue to require a relatively insignificant amount of 
storage. 

VII. CONCLUSION 

Multidimensional queries make use of the scoring 
framework for personal information management systems. 
Metadata and structure relaxations are defined and we 
proposed structure,metadata and content query conditions 
using a approach IDF based scoring . By using this unified 
scores we can aggregate the scores easily. In order to 
support efficient multidimensional queries we have designed 
query processing optimizations, indexing structures and 
construction. 

The scoring framework and query processing 
techniques are implemented and evaluated. By using this 
evaluation the aggregation multidimensional score approach 
preserves the properties of individual  dimension scores and 
ranking accuracy has been increased significantly. We can 
make the multidimensional search efficient for daily usage 
by making use of our indexes and optimizations, which 
results in good query performance. 

VIII. REFRENCES    

[1]. Google desktop. http://desktop.google.com 

[2]. Apple MAC OS X spotlight. 
http://www.apple.com/macosx/features/spotlight. 

[3]. S. Amer-Yahia, S. Cho, and D. Srivastava. Tree Pattern 
Relaxation. In Proc. of the Intl. Conference on Extending 
Database Technology (EDBT), 2002. 

[4]. S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. 
Toman. Structure and Content Scoring for XML. In Proc. of 
the Intl. Conference on Very Large Databases (VLDB), 
2005. 

[5]. S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. 
FleXPath: Flexible Structure and Full-Text Querying for 
XML. In Proc. of the ACM Intl. Conference on Management 
of Data (SIGMOD), 2004. 

[6]. Lucene. http://lucene.apache.org/. 

[7]. R. A. Baeza-Yates and M. P. Consens. The continued saga of 
DB-IR integration. In Proc. of the Intl. Conference on Very 
Large Databases (VLDB), 2004. 

[8]. C. M. Bowman, C. Dharap, M. Baruah, B. Camargo, and S. 
Potti. A File System for Information Management. In Proc. 
of the Intl. Conference on Intelligent Information 
Management Systems (ISMM), 1994.  

[9]. N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig 
Joins: Optimal XML Pattern Matching. In Proc. of the ACM 
Intl. Conference on Management of Data (SIGMOD), 2002. 

[10]. Y. Cai, X. L. Dong, A. Halevy, J. M. Liu, and J. Madhavan. 
Personal Information Management with SEMEX. In Proc. of 
the ACM Intl. Conference on Management of Data 
(SIGMOD), 2005. 

[11]. D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A. 
Soffer. Searching XML Documents via XML Fragments. In 
Proc. of the ACM Intl. Conference on Research and 
Development in Information Retrieval (SIGIR), 2003.  

[12]. J.-P. Dittrich and M. A. Vaz Salles. iDM: A Unified and 
Versatile Data Model for Personal Dataspace Management. 
In Proc. of the Intl. Conference on Very Large Databases 
(VLDB), 2006. 

[13]. R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation 
Algorithms for Middleware. Journal of Computer and 
System Sciences, 2003.  

[14]. M. Franklin, A. Halevy, and D. Maier. From Databases to 
Dataspaces: a New Abstraction for Information 
Management. SIGMOD Record, 34(4), 2005. 

[15]. C. Peery, W. Wang, A. Marian, and T. D. Nguyen. Multi- 
Dimensional Search for Personal Information Management 
Systems. In Proc. of the Intl. Conference on Extending 
Database Technology(EDBT), 2008.  

[16]. Sleepycat Software. Berkeley DB. 
http://www.sleepycat.com/ 

[17]. S. Amer-Yahia, P. Case, T. R¨olleke, J. Shanmugasundaram, 
and G. Weikum. Report on the DB/IR panel at SIGMOD 
2005. SIGMOD Record, 34(4), 2005. 

[18]. J. Teevan, C. Alvarado, M. Ackerman, and D. Karger. The 
Perfect Search Engine is Not Enough: A Study of 
Orienteering Behavior in Directed Search. In Proc. of the 
Conference on Human Factors in Computing Systems 
(SIGCHI), 2004. 

[19]. M. Theobald, H. Bast, D. Majumdar, R. Schenkel, and G. 
Weikum. TopX: Efficient and Versatile Top-k Query 
Processing for Semistructured Data. VLDB Journal, 17(1), 
2008. 

 


	INTRODUCTION
	UNIFIED MULTI-DIMENSIONAL SCORING
	Scoring Content:
	Score of Metadata:
	Score of a Structure:
	Score Aggregation:

	QUERY PROCESSING
	Evaluation of Content Scores:
	Evaluation of Metadata Scores:

	EVALUATION OF STRUCTURE SCORES
	OPTIMIZING QUERY PROCESSING IN THE STRUCTURE DIMENSION
	Incremental Identification of Relaxed Matches:
	Improving Sorted Accesses:
	Improving Random Accesses:

	EXPERIMENTAL RESULTS
	Experimental Setup:
	Impact of Flexible Multi-Dimensional Search:
	Storage Cost:

	CONCLUSION
	REFRENCES

