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Abstract: Search Engine is to retrieve the relevant information from the web, based on user queries. The problem of discovering query clusters 
from a click-through graph of web search logs is described in this paper. The click through graph consists of a set of clicked queries, pages that 
are returned as result and a set of edges that connects a query and a page clicked by the user. The proposed method is enumerating all maximal 
bicliques of a bipartite graph from click-through graph and compute equivalence query clusters from maximal bicliques.  It has two main 
contributions: first, use all maximal bicliques to find minimum number of bicliques covering a subset of edges or vertices for given bipartite 
graph. We have conducted experiments on Yahoo web search queries. 
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I. INTRODUCTION 

A search engine can track which of its search results 
were clicked for which query. For a popular system, these 
click records can amount to millions of query-document 
pairs per day. Users select pages by clicking on links on a 
search engine result page that are related to queries. The 
query clustering method includes query and clicked page 
relationship, not considering syntactic or semantic features 
on the query, such as keywords.  

From the perspective of a user conducting a search, 
documents that are clicked but not relevant constitute noise 
in the click data. Documents that are relevant but not clicked 
constitute sparsity in the click data. One class of approaches 
attempts to reduce noise in click data, by building a click 
model that may use additional information about the user’s 
behaviour. For example, taking into account the user’s 
browsing patterns after clicking a document. These 
approaches can significantly reduce noise, by identifying 
some clicked documents as irrelevant.  

In this paper, we investigate efficient algorithm for 
finding all maximal bicliques in general bipartite graphs. A 
bipartite graph  is a graph, were the vertices 
can be divided into two disjoint sets X and Y such that every 
edge  connects a vertex in X to one in Y. A biclique 

  of a bipartite graph β is a complete bipartite sub 
graph of β induced by vertex set  . The neighbor set 

 of a vertex  is defined as the set of vertices  
such that there is an edge , i.e., 

. Similarly, . The 
empty biclique  is simply denoted as Ø. 

II. MAXIMAL BICLIQUE ENUMERATION 

Definition 1: (Maximal Biclique) Given a bipartite 
graph , a biclique  is a maximal 
biclique of β if no proper superset of  is a biclique, 
i.e., there exists no biclique  such that 

 and . 
 
 

For the sake of simplicity, pair of sets  and 
 are denoted as  and , respectively 

[1]. 
Definition 2: (Consensus Set) Given a bipartite graph 

, for a subset  the consensus 
set  is defined as the intersection of neighbor 
set of each vertex ,  i .e. ,  
  

   (1) 
 

By definition,  .  
Note that this is equivalent to 

 and similarity 
 [1]. 

Theorem 1:  is a maximal biclique
 and  . 

Proof: Let  be a biclique and so 
 and . By definition of maximality,  

is a maximal biclique if and only if there exists no 
 such that  is a biclique and similarly there 

exists no  such that  is biclique. This is 
equivalent to that there exists no  such that 

 and there exists no  such that 
. Equivalently  and . 

Lemma 1 : For any , . Similarly, 
for any  , . 

Proof: Consider a vertex . Since  is 
biclique,  is also biclique. Thus,  
this concludes that . Similar proof can be 
conducted for .  

Theorem 2: For any  such that , 
 is a maximal biclique. Similarly, for 

any  such that ,  is a 
maximal biclique.  

Proof: Let  be a subset of Y such that  and let 
 denote . Consider a vertex . Then, 

  is biclique. Since ,  is also biclique. 
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Thus  which concludes that 
.  Since ,  Since 

both  and ,  is 
a maximal biclique. Similar proof can be conducted for 
maximality of biclique  [1]. 

III. DATASET AND PREPROCESSING 

In this study we used a set of randomly sampled click-
through data from the Yahoo web search query logs. The 
sample data consists of over 16M unique queries, over 10M 
page URLs, and over 92M edges connecting the nodes [2]. 

Like a typical web graph, the click-through graph 
exhibits the power law distribution in terms of the out-
degree of query nodes, and the in-degree of clicked URLs. 
We prune the following nodes and their associated edges in 
the preprocessing step: 

a. Web pages with in-degree higher than 100 and 
their in-coming edges: these are pages of very 
broad topic and interest, such as 
www.craigslist.org, and en.wikipedia.org. With 
those types of pages, we would get too broad 
clusters, since the topics of queries connected to 
those pages tend to be vary. There are about 5% of 
unique URLs with this level of high in-degrees. 

b. Queries with out-degree greater than 10 and their 
out-going edges: most normal user queries result in 
only a small number of clicks, rarely more than 10 
pages. Those with high out degree may include 
ones by robots for scraping or some special types 
of queries. There are only about 0.1% of URL 
queries in this category. 

c. Web pages with in-degree 1 and their in-coming 
edge. 

d. Queries with out-degree 1 and their out-going edge. 
e. Edges with click frequency less than a threshold τ. 

IV. QUERY CLUSTERING  

A. Biclique Generation: 
[3] Shows maximal bicliques generation from a 

bipartite graph is a special case of the maximal clique 
generation problem from a general graph. Let 

 be a bipartite graph, where and  are the two 
disjoint sets of nodes, and E is a set of edges connecting 
nodes in  and . To generate maximal bicliques, G is 
transformed to a general graph   where 

. Then the maximal clique 
generation algorithm for a general graph, such as the one in 
[4], can be applied on G’. This algorithm, however, requires 
an increased amount of the main memory space proportional 
to the entire expanded graph. 

We deal with a very large click-through graph that 
would hardly fit into main memory. We instead modified 
the bipartite core generation algorithm in [1] to generate 
maximal bicliques. One of the major advantages of the 
algorithm is that it does not require storing the entire graph 
in memory. Instead it applies various pruning techniques on 
sorted lists of nodes; one for queries, and another for pages 
for click-through graph. The algorithm can be further 
optimized to sort only once, and build only a small index in 
main memory [2]. 

a) Iterative pruning: 
Since we are looking for query clusters larger than 

certain size, queries and pages of which in- and out-degrees 
do not meet the minimum size requirement can be 
eliminated. 

To compute a biclique of size (i,j), query nodes with 
out-degree smaller than i and their out-going edges are 
pruned. Similarly, any page node with in-degree smaller 
than j and its associated edges are pruned. This pruning step 
is iteratively applied until there exists no more such nodes. 

b) Biclique generation: 
At each step of the biclique generation algorithm we 

either generate a biclique, or exclude a node and the 
associated edges from the graph. After generating a biclique, 
the sub graph corresponding to the biclique is removed from 
the click-through graph. Starting from the maximum out-
degree size, we repeat the following steps iteratively for 
each decreasing value of i: 

(a). From a sorted list of queries, find all queries, , 
without degree i, and list the neighbors of each 

. 
(b). For each , generate the set of all in-coming 

queries,  , of each page, . (An 
index on the page URLs is used for better 
performance.) 

(c). Find the intersection of all . 
(d). Let m denote the size of the query set, 

, and E be a set of all edges between 
  and P( ). 

i. If (m ≥ j), generate a biclique of size (i,m), 
( . After generating a 
biclique, remove all query and page nodes, and 
edges in the biclique from the click-through graph 
(unless the node is a part of another cluster). 

ii. If (m < j), remove all in-coming edges of nodes in 
P( ) that do not connect to a query node in the 
intersection . 

(e). After removing all edges, apply the iterative 
pruning before continuing with the next iteration 
with out-degree size i-1.  

The generated bicliques are maximal. 

B. Query Cluster Generation: 
For each biclique generated, the query set, 

 forms an equivalence set that becomes a 
query cluster. 

V. ALGORITHM 

Theoretical results suggest that it is sufficient to 
enumerate on the consensus sets, in order to find all 
maximal bicliques [1]. Therefore we find all consensuses X 
subsets of bipartite graph . The algorithm 
requires only the bipartite graph B. Then we initialize a set 
of consensus X subsets S with neighbor sets of every vertex 

. Concurrently, we hold a priority queue Q which 
works in a FIFO manner, and it is also initialized by the 
same set of consensus X subsets. We iteratively grow the set 
S as follows. At each iteration, we select an unselected 
consensus set  from queue Q. For each vertex   
which is not in the consensus set of  , we construct a set 
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 by the intersection of  and neighbor set N( ).  
corresponds to the consensus set of  . We do 
not consider a vertex in , because for such a vertex, 
the intersection will result again   which wouldn’t be a 
new consensus set in S . If  is a new consensus set in S , 
we insert  to S . We also enqueue it to priority queue Q 
in order to expand new consensus sets based on . The 
iterations terminate whenever there remains no consensus 
set to generate new ones. By the termination, we compute 
the maximal bicliques by taking pairs  for each 
subset . 
 
Algorithm 1 FIND-ALL-MAXIMAL Algorithm 
 
Require: Bipartite graph  

S ← { } 
Q ← S 
While  DO  

 ← DEQUEUE(Q) 
for each  do  

 
if  then 

 
ENQUEUE(Q, ) 

end if 
end for 

end while 
 

return  
 
For each maximal biclique we check for at most |Y | 

new bicliques. With a naïve implementation, the checking 
procedure can be done in polynomial time on number of 
total maximal bicliques and number of vertices. Thus, the 
whole procedure runs in polynomial-time in total of input 
and output size with a naive implementation which 
concludes that FIND-ALL-MAXIMAL is a total polynomial 
algorithm [4] for the problem of enumerating all maximal 
bicliques of a bipartite graph [1]. 

VI. EXPERIMENTS 

After preprocessing with τ=2, there remain ~1.15M and 
~2M query and page nodes, and ~68M edges in the sample 
graph, reduced from ~16M and ~10M nodes and ~ 92M 
edges, respectively [2]. 

 

 
Figure 1: Number of query clusters 

Figure 1 plots the number of query clusters extracted by 
our algorithm. As expected, the numbers of maximal 
bicliques drop significantly as the size of the cliques grow. 
The number may be interpreted as lower bound of query 
clusters, as our method considers only maximal bicliques. 
As we relax the equivalence condition and consider strongly 
connected, but not necessarily completely connected 
bipartite sub graphs as the candidates, it may further reveal 
interesting quasi-equivalence sets of queries. Due to the 
strict requirement of complete connectedness of the clusters 
by the current algorithm, many potentially interesting query 
clusters are excluded if they slightly violate the 
requirements. 
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