
Volume 5, No. 1, Jan-Feb 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 102

ISSN No. 0976-5697

On Enumerating Maximal Bicliques of Click-Through Graph
G.Manoranjitham

Department of Computer Science and Engineering
Kalaignar Karunanidhi Institute of Technology

Coimbatore, India
manorangitham1991@gmail.com

A.Revathi
Department of Computer Science and Engineering

Kathir College of Engineering
Coimbatore, India

revs.a1990@gmail.com
Abstract: Search Engine is to retrieve the relevant information from the web, based on user queries. The problem of discovering query clusters
from a click-through graph of web search logs is described in this paper. The click through graph consists of a set of clicked queries, pages that
are returned as result and a set of edges that connects a query and a page clicked by the user. The proposed method is enumerating all maximal
bicliques of a bipartite graph from click-through graph and compute equivalence query clusters from maximal bicliques. It has two main
contributions: first, use all maximal bicliques to find minimum number of bicliques covering a subset of edges or vertices for given bipartite
graph. We have conducted experiments on Yahoo web search queries.

Keywords: biclique enumeration; click-through graph; query cluster;

I. INTRODUCTION

A search engine can track which of its search results
were clicked for which query. For a popular system, these
click records can amount to millions of query-document
pairs per day. Users select pages by clicking on links on a
search engine result page that are related to queries. The
query clustering method includes query and clicked page
relationship, not considering syntactic or semantic features
on the query, such as keywords.

From the perspective of a user conducting a search,
documents that are clicked but not relevant constitute noise
in the click data. Documents that are relevant but not clicked
constitute sparsity in the click data. One class of approaches
attempts to reduce noise in click data, by building a click
model that may use additional information about the user’s
behaviour. For example, taking into account the user’s
browsing patterns after clicking a document. These
approaches can significantly reduce noise, by identifying
some clicked documents as irrelevant.

In this paper, we investigate efficient algorithm for
finding all maximal bicliques in general bipartite graphs. A
bipartite graph is a graph, were the vertices
can be divided into two disjoint sets X and Y such that every
edge connects a vertex in X to one in Y. A biclique

 of a bipartite graph β is a complete bipartite sub
graph of β induced by vertex set . The neighbor set

 of a vertex is defined as the set of vertices
such that there is an edge , i.e.,

. Similarly, . The
empty biclique is simply denoted as Ø.

II. MAXIMAL BICLIQUE ENUMERATION

Definition 1: (Maximal Biclique) Given a bipartite
graph , a biclique is a maximal
biclique of β if no proper superset of is a biclique,
i.e., there exists no biclique such that

 and .

For the sake of simplicity, pair of sets and
 are denoted as and , respectively

[1].
Definition 2: (Consensus Set) Given a bipartite graph

, for a subset the consensus
set is defined as the intersection of neighbor
set of each vertex , i .e. ,

 (1)

By definition, .
Note that this is equivalent to

 and similarity
 [1].

Theorem 1: is a maximal biclique
 and .

Proof: Let be a biclique and so
 and . By definition of maximality,

is a maximal biclique if and only if there exists no
 such that is a biclique and similarly there

exists no such that is biclique. This is
equivalent to that there exists no such that

 and there exists no such that
. Equivalently and .

Lemma 1 : For any , . Similarly,
for any , .

Proof: Consider a vertex . Since is
biclique, is also biclique. Thus,
this concludes that . Similar proof can be
conducted for .

Theorem 2: For any such that ,
 is a maximal biclique. Similarly, for

any such that , is a
maximal biclique.

Proof: Let be a subset of Y such that and let
 denote . Consider a vertex . Then,

 is biclique. Since , is also biclique.

G.Manoranjitham et al, International Journal of Advanced Research In Computer Science, 5 (1), Jan–Feb, 2014,102-104

© 2010-14, IJARCS All Rights Reserved 103

Thus which concludes that
. Since , Since

both and , is
a maximal biclique. Similar proof can be conducted for
maximality of biclique [1].

III. DATASET AND PREPROCESSING

In this study we used a set of randomly sampled click-
through data from the Yahoo web search query logs. The
sample data consists of over 16M unique queries, over 10M
page URLs, and over 92M edges connecting the nodes [2].

Like a typical web graph, the click-through graph
exhibits the power law distribution in terms of the out-
degree of query nodes, and the in-degree of clicked URLs.
We prune the following nodes and their associated edges in
the preprocessing step:

a. Web pages with in-degree higher than 100 and
their in-coming edges: these are pages of very
broad topic and interest, such as
www.craigslist.org, and en.wikipedia.org. With
those types of pages, we would get too broad
clusters, since the topics of queries connected to
those pages tend to be vary. There are about 5% of
unique URLs with this level of high in-degrees.

b. Queries with out-degree greater than 10 and their
out-going edges: most normal user queries result in
only a small number of clicks, rarely more than 10
pages. Those with high out degree may include
ones by robots for scraping or some special types
of queries. There are only about 0.1% of URL
queries in this category.

c. Web pages with in-degree 1 and their in-coming
edge.

d. Queries with out-degree 1 and their out-going edge.
e. Edges with click frequency less than a threshold τ.

IV. QUERY CLUSTERING

A. Biclique Generation:
[3] Shows maximal bicliques generation from a

bipartite graph is a special case of the maximal clique
generation problem from a general graph. Let

 be a bipartite graph, where and are the two
disjoint sets of nodes, and E is a set of edges connecting
nodes in and . To generate maximal bicliques, G is
transformed to a general graph where

. Then the maximal clique
generation algorithm for a general graph, such as the one in
[4], can be applied on G’. This algorithm, however, requires
an increased amount of the main memory space proportional
to the entire expanded graph.

We deal with a very large click-through graph that
would hardly fit into main memory. We instead modified
the bipartite core generation algorithm in [1] to generate
maximal bicliques. One of the major advantages of the
algorithm is that it does not require storing the entire graph
in memory. Instead it applies various pruning techniques on
sorted lists of nodes; one for queries, and another for pages
for click-through graph. The algorithm can be further
optimized to sort only once, and build only a small index in
main memory [2].

a) Iterative pruning:
Since we are looking for query clusters larger than

certain size, queries and pages of which in- and out-degrees
do not meet the minimum size requirement can be
eliminated.

To compute a biclique of size (i,j), query nodes with
out-degree smaller than i and their out-going edges are
pruned. Similarly, any page node with in-degree smaller
than j and its associated edges are pruned. This pruning step
is iteratively applied until there exists no more such nodes.

b) Biclique generation:
At each step of the biclique generation algorithm we

either generate a biclique, or exclude a node and the
associated edges from the graph. After generating a biclique,
the sub graph corresponding to the biclique is removed from
the click-through graph. Starting from the maximum out-
degree size, we repeat the following steps iteratively for
each decreasing value of i:

(a). From a sorted list of queries, find all queries, ,
without degree i, and list the neighbors of each

.
(b). For each , generate the set of all in-coming

queries, , of each page, . (An
index on the page URLs is used for better
performance.)

(c). Find the intersection of all .
(d). Let m denote the size of the query set,

, and E be a set of all edges between
 and P().

i. If (m ≥ j), generate a biclique of size (i,m),
(. After generating a
biclique, remove all query and page nodes, and
edges in the biclique from the click-through graph
(unless the node is a part of another cluster).

ii. If (m < j), remove all in-coming edges of nodes in
P() that do not connect to a query node in the
intersection .

(e). After removing all edges, apply the iterative
pruning before continuing with the next iteration
with out-degree size i-1.

The generated bicliques are maximal.

B. Query Cluster Generation:
For each biclique generated, the query set,

 forms an equivalence set that becomes a
query cluster.

V. ALGORITHM

Theoretical results suggest that it is sufficient to
enumerate on the consensus sets, in order to find all
maximal bicliques [1]. Therefore we find all consensuses X
subsets of bipartite graph . The algorithm
requires only the bipartite graph B. Then we initialize a set
of consensus X subsets S with neighbor sets of every vertex

. Concurrently, we hold a priority queue Q which
works in a FIFO manner, and it is also initialized by the
same set of consensus X subsets. We iteratively grow the set
S as follows. At each iteration, we select an unselected
consensus set from queue Q. For each vertex
which is not in the consensus set of , we construct a set

G.Manoranjitham et al, International Journal of Advanced Research In Computer Science, 5 (1), Jan–Feb, 2014,102-104

© 2010-14, IJARCS All Rights Reserved 104

 by the intersection of and neighbor set N().
corresponds to the consensus set of . We do
not consider a vertex in , because for such a vertex,
the intersection will result again which wouldn’t be a
new consensus set in S . If is a new consensus set in S ,
we insert to S . We also enqueue it to priority queue Q
in order to expand new consensus sets based on . The
iterations terminate whenever there remains no consensus
set to generate new ones. By the termination, we compute
the maximal bicliques by taking pairs for each
subset .

Algorithm 1 FIND-ALL-MAXIMAL Algorithm

Require: Bipartite graph

S ← { }
Q ← S
While DO

 ← DEQUEUE(Q)
for each do

if then

ENQUEUE(Q,)

end if
end for

end while

return

For each maximal biclique we check for at most |Y |

new bicliques. With a naïve implementation, the checking
procedure can be done in polynomial time on number of
total maximal bicliques and number of vertices. Thus, the
whole procedure runs in polynomial-time in total of input
and output size with a naive implementation which
concludes that FIND-ALL-MAXIMAL is a total polynomial
algorithm [4] for the problem of enumerating all maximal
bicliques of a bipartite graph [1].

VI. EXPERIMENTS

After preprocessing with τ=2, there remain ~1.15M and
~2M query and page nodes, and ~68M edges in the sample
graph, reduced from ~16M and ~10M nodes and ~ 92M
edges, respectively [2].

Figure 1: Number of query clusters

Figure 1 plots the number of query clusters extracted by
our algorithm. As expected, the numbers of maximal
bicliques drop significantly as the size of the cliques grow.
The number may be interpreted as lower bound of query
clusters, as our method considers only maximal bicliques.
As we relax the equivalence condition and consider strongly
connected, but not necessarily completely connected
bipartite sub graphs as the candidates, it may further reveal
interesting quasi-equivalence sets of queries. Due to the
strict requirement of complete connectedness of the clusters
by the current algorithm, many potentially interesting query
clusters are excluded if they slightly violate the
requirements.

VII. REFERENCES

[1] Enver Kayaaslan, “On Enumerating All Maximal Bicliques
of Bipartite Graphs” CTW2010, University of Cologne,
Germany. May 25-27, 2010.

[2] J. Yi and F. Maghoul, “Query Clustering Using Click-
through Graph,” Proc. the 18th Int’l Conf. World Wide
Web (WWW ’09), 2009.

[3] K. Makino, and T. Uno, New algorithms for enumerating
all maximal cliques, The 9th Scandinavian Workshop on
Algorithm Theory, 2004.

[4] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case
time complexity for generating all maximal cliques and
computational experiments. Theoretical Computer Science,
363(1), pp.28-42, 2006.

[5] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer,
and B. Simeone, Consensus algorithms for the generation
of all maximal bicliques, Discrete Applied Mathematics,
145 (2004), pp. 11 – 21. Graph Optimization IV.

[6] J. Orlin, Contentment in graph theory: Covering graphs
with cliques, Proceedings of the Koninklijke Nederlandse,
(1977), pp. 406–424.

	INTRODUCTION
	MAXIMAL BICLIQUE ENUMERATION
	DATASET AND PREPROCESSING
	QUERY CLUSTERING
	Biclique Generation:
	Iterative pruning:
	Biclique generation:
	Query Cluster Generation:

	ALGORITHM
	EXPERIMENTS
	REFERENCES

