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Abstract: Decision tree usually applied for solving both classification and regression problems in many applications. This paper evaluates the 
capability of Decision Tree in predicting defect-prone software module and compares its prediction performance against three intelligence 
technique in the context of PC1 dataset. we have used PC1 dataset (NASA dataset) which has sufficient parameters for analysis. As PC1 data is 
highly unbalanced data different balancing techniques have been applied.  
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I. INTRODUCTION 

We have done Study and shown that the majority of 
defects are often found in only a few software 
modules[1,2].Such defective software modules may cause 
software failures, increase development and maintenance 
costs, and decrease customer satisfaction[3]. software fault 
prediction models which allow software engineers to focus 
development activities on fault-prone code, thereby 
improving software quality and making better use of 
resources[4]. Identification of defect-prone software 
modules is commonly achieved through binary prediction 
models that classify a module into either defective or not -
defective category. These prediction models almost always 
utilize static product metrics, which have been associated 
with defects, as independent variables[5]. Recently, DT 
(Decision Tree) have been introduced as an effective model 
in both machine learning and data mining communities for 
solving both classification and regression problems [6,7]. It 
is therefore motivating to investigate the capability of DT in 
software fault prediction. 

The objective of this paper is to evaluate the capability 
of DT in predicting defect-prone software modules and 
compare its prediction performance against three well-
known statistical and machine learning models in the 
context of PC1 NASA datasets. The compared models are 
one statistical classifiers techniques: (i) Logistic Regression 
(LR), one neural networks techniques: (i) Multi-layer 
Perceptrons (MLP) and one tree structured classifiers 
techniques:(i) Decision Trees (DT). For more details on 
these techniques see[8,9,10,11]. 

The rest of this paper is organized as follows. Section 2 
reviews the research done in the field of software fault 
prediction. Section 3 overviews the data description and data 
preparation, Section 4 overviews the techniques applied in 
this paper, section 5 presents the results and discussions. 
Finally, Section 6 concludes the paper. 

II. LITERATURE SURVEY 

Software reliability is a critical field in software  and an 
important fact of software quality. Every organization wants 
to assess the quality of the software product as early as 

possible so that poor software design leading to lower 
quality product can be detected and hence be improved or 
redesigned[12]. This would lead to significant savings in the 
development costs, decrease the development time, and 
make the software more reliable. A wide range of statistical 
and machine learning techniques have been developed and 
applied to predict defects in software. Basili et al. 
investigated the impact of the suite of object -oriented 
design metrics on the prediction of fault-prone classes using 
logistic regression[13]. Khoshgoftaar et al. investigated the 
use of the neural network as a model for predicting software 
quality. They used large telecommunication system to 
classify modules as fault prone or not fault-prone[14]. 
Disadvantage of neural network that it is learning in form of 
weights and human cannot interpret any knowledge from 
the weights. Khoshgoftaar et al. applied regression trees 
with classification rule to classify fault-prone software 
modules using a very large telecommunications system as a 
case study[15]. the advantage of DT is giving the if then 
rules that is human readable and understandable format. By 
using these rules we can design early warning prediction 
system for software fault prediction. 

In recent years, a number of alternative modeling 
techniques have been proposed for software fault prediction. 
Alternative models include artificial neural networks, 
analogy-based reasoning, fuzzy system and ensemble 
techniques. Ensemble is used to combine the result of 
individual methods [16,17]. Unfortunately the accuracy of 
these models is not satisfactory so there is always a scope 
for new software fault prediction techniques. 

III. DATA DESCRIPTION AND DATA 
PREPARATION 

The dataset used in this study is mission critical NASA 
software projects, which are publicly accessible from 
PROMISE Software Engineering Repository. data set made 
publicly available in order to encourage repeatable, 
verifiable, refutable, and/or improvable predictive models of 
software engineering. dataset contains 1109 total Number of 
instances, each instances contains 21 software metrics 
(independent variables) and the associated dependent 
Boolean variable: Defective (whether or not the module has 
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any defects). 21 independent metrics further divided in 5 
different lines of code measure, 3 McCabe metrics, 4 base 
Halstead measures, 8 derived Halstead measures, and a 
branch-count. since data set contain, 93% non-fault and 7% 
fault instances. It is clear that the dataset is highly 
unbalanced in terms of proportion of fault vs. non-fault. 
Consequently, before supplying this data to the intelligence 
techniques, balancing is done so that the classifier while 
predicting will not be nfluenced by the majority class, that 
is, non-fault. The balancing is done using under-sampling 
and over -sampling for balancing the data set during 
cleaning and data preparation. 

We used the WEKA for SMOTE, implementation 
available at 
http://www.softpedia.com/get/Internet/Servers/Database-
Utils/Weka.shtml. 

Finally, we normalized the data set. 
SMOTE is a technique in which the minority class is 

over-sampled by creating synthetic samples. The minority 
class is over-sampled by taking out each sample and 
introducing synthetic samples along the line segments 
joining any/all of the k minority class nearest neighbours. 
This approach effectively forces the decision region of the 
minority class to become more general. Further, under-
sampling is a technique in which some of the samples 
belonging to the majority class are removed and combined 
with the minority class samples. For example, under-
sampling (25%) means that the majority class is reduced to 
25% of its original size[18]. Then, over-sampling is a 
technique in which the samples belonging to the minority 
class are replicated a few times and combined with the 
majority class samples. For example, over-sampling (100%) 
means that the majority class is replicated once. After the 
dataset are balanced using one of the above-mentioned two 
methods, intelligence techniques is invoked. Also, ten-fold 
cross validation is performed throughout the study. Further, 
sensitivity, specificity and accuracy are computed for each 
data balancing method. 

The quantities employed to measure the quality of the 
classifiers are sensitivity, specificity and accuracy, which 
are defined as follows[19]: 

Sensitivity is the measure of proportion of the true 
positives, which are correctly identified. 

Sensitivity = True positive / (True positive + False 
negative) 

Specificity is the measure of proportion of the true 
negatives, which are correctly identified. 

Specificity = True negative / (True negative + False 
positive) 

Accuracy is the measure of proportion of true positives 
and true negatives, which are correctly identified. 

Accuracy = (True positive + True negative) / (True 
positive + True negative +False positive + False negative) 

IV. OVERVIEW OF TECHNIQUES EMPLOYED 

In the following, we now present an overview of the 
techniques applied in this paper. 

A. Multilayer perceptron (mlp):  
Multilayer Perceptron (MLP) is an example of an 

artificial neural network. It is used for solving different 
problems, example pattern recognition, interpolation, etc. It 
is an advancement to the perceptron neural network model. 

With one or two hidden layers, they can solve almost any 
problem. In a popular form of ANN called the multi-layer 
perceptron (MLP), all nodes and layers are arranged in a 
feed forward manner. The first or the lowest layer is called 
the input layer where external information is received. The 
last or the highest layer is called the output layer where the 
network produces the model solution. In between, there are 
one or more hidden layers, which are critical for ANNs to 
identify the complex patterns in the data. A cyclic arcs from 
a lower layer to a higher layer connect all nodes in adjacent 
layers. The parameters (arc weights) of a neural network 
model need to be estimated before the network can be used 
for prediction purposes. The process of determining these 
weights is called training. 

B. Support vector machine (svm):  
A Support Vector Machine (SVM) is a learning 

technique that is used for classifying unseen data correctly. 
For doing this, SVM builds a hyperplane, which separates 
the data into different categories. The dataset may or may 
not be linearly separable. By "linearly separable" we mean 
that the cases can be completely separated (i.e., the cases 
with one category are on the one side of the hyperplane and 
the cases with the other category are on the other side).  

The SVM is a powerful learning algorithm based on 
recent advances in statistical learning theory (Vapnik, 
1998). SVMs are learning systems that use a hypothesis 
space of linear functions in a high dimensional space, 
trained with a learning algorithm from optimization theory 
that implements a learning bias derived from statistical 
learning theory (Cristianini and Shawe-Taylor, 2000) . 
SVMs have recently become one of the popular tools for 
machine learning and data mining and can perform both 
classification and regression. 

C. Decision tree(DT):  
A decision tree is a predictive machine-learning model 

that decides the target value (dependent variable) of a new 
sample based on various attribute values of the available 
data. 

The internal nodes of a decision tree denote the 
different attributes, the branches between the nodes tell us 
the possible values that these attributes can have in the 
observed samples, while the terminal nodes tell us the final 
value (classification) of the dependent variable. The J48 
Decision tree classifier follows the following simple 
algorithm. In order to classify a new item, it first needs to 
create a decision tree based on the attribute values of the 
available training data. So, whenever it encounters a set of 
items (training set) it identifies the attribute that 
discriminates the various instances most clearly. This 
feature that is able to tell us most about the data instances so 
that we can classify them the best is said to have the highest 
information gain. Now, among the possible values of this 
feature, if there is any value for which there is no ambiguity, 
that is, for which the data instances falling within its 
category have the same value for the target variable, then we 
terminate that branch and assign to it the target value that 
we have obtained. 

V. RESULTS 

Results of above three techniques is as follows” 
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A. SVM:  
===Summary === 
 

Correctly Classified Instances 312 90.0931 % 
Incorrectly Classified Instances 22 09.9069 % 
Mean absolute error 0.0691  
Root mean squared error 0.2628  
Relative absolute error 53.131 % 
Root relative squared error 103.6412 % 
Coverage of cases (0.95 level) 93.0931 % 
Mean rel. region size (0.95 level) 50 % 
Total Number of Instances 333  
=== Confusion Matrix ===   

a b <-- classified as   
0 23 | a = TRUE   
0 310 b = TRUE   

B. J-48: 
=== Summary ===   
Correctly Classified Instances 312 96.0931 % 
Incorrectly Classified Instances 23 3.9069 % 
Mean absolute error 0.1131  
Root mean squared error 0.2542  
Relative absolute error 87.0291 % 
Root relative squared error 100.2537 % 
Coverage of cases (0.95 level) 100 % 
Mean rel. region size (0.95 level) 100 % 
Total Number of Instances 333  
=== Confusion Matrix ===   

a b  <-- classified as   
0 23 |  a = TRUE   
0 310  b= True   

C. MLP: 
=== Summary ===   
Correctly Classified Instances 310 93.4925 % 
Incorrectly Classified Instances 25 6.5075 % 
Kappa statistic 0.0547 
Mean absolute error 0.09  
Root mean squared error 0.2562  
Relative absolute error 69.259 % 
Root relative squared error 101.02 % 
Coverage of cases (0.95 level) 95.7958 % 
Mean rel. region size (0.95 level) 55.7057 % 
Total Number of Instances 333  
=== Confusion Matrix ===   

a b  <-- classified as   
1 22 |  a = TRUE   
3 307  b= TRUE   

From the above result it is clearly seen that Decision 
Tree that is J 48 gives the best result in compare to other 
two techniques. 

VI. CONCLUSION 

Fault prediction modeling is an important area of 
research and the subject of many previous studies.These 
studies typically produce fault prediction models which 
allow software engineers to focus development activities on 
fault-prone code, thereby improving software qualityand 
making better use of resources. The term ‘fault’ is used 
interchangeably in this study with the terms ‘defect’ or ‘bug’ 
to mean a static faultin software code. It does not denote a 

‘failure’ (i.e. the possible result of a fault occurrence)This 
models help us many ways. In any software project, there 
can be a number of faults. It is very essential to deal with 
these faults and to try to detect them as early as possible in 
the lifecycle of the project development. Predict the fault 
from the software helps us to make our software without 
any fault. 
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