
Volume 4, No. 11, Nov-Dec 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 220

ISSN No. 0976-5697

A Review on Quality Attributes Based Software Metrics

Neha Gehlot
Cse Department, ITM University

Gurgaon, Haryana, India
neha12sep009@itmindia.edu

Jagdeep Kaur
Cse Department, ITM University

Gurgaon, Haryana, India
jagdeep@itmindia.edu

Abstract; The process of software development, including documentation, design, program ,test and maintenance can be measured statistically.
Therefore the quality of software can be monitored efficiently. Software metrics is very important in research of software engineering and it has
developed gradually. Component-based systems(CBS) achieve flexibility by clearly separating the stable parts of systems (i.e. the components)
from the specification of their composition. In order to realize the reuse of components effectively in component based system development
(CBSD), it is required to measure the reusability of components. However, due to the black-box nature of components where the source code of
these components are not available, it is difficult to use conventional metrics in CBSD as these metrics require analysis of source codes. In this
paper, we survey few existing component-quality attribute based metrics with their limitations and how these metrics helps in computing the
quality of the software and how their use can help achieve a high quality software system. These metrics give a border view of component’s
complexity, reusability, interface complexity and coupling among the components. As the CBS development is rising more and more quality
attribute based metrics are being developed for the same.
Keywords: components; metrics; quality; attributes

I. INTRODUCTION
Component-based software engineering (CBSE) has been
characterized by two development processes: the development
of components for reuse and the development of component-
based software systems (CBSS) with reuse by integrating
components that have been deployed independently. CBSE
proved to be the best practices development paradigm in terms
of both time and Component-based software engineering
(CBSE) has been characterized by two development processes:
the development of components for reuse and the development
of component-based cost. For continuous success of this
developmental approach, the evaluation of CBSSs and
individual components is an essential research area. Being able
to isolate weaknesses over the entire software life cycle. The
two different objectively measure the quality of CBSS
attributes, helps us to better software systems (CBSS) with
reuse by integrating components that have been deployed
independently. CBSE proved to understand, evaluate, and
control the quality of CBSSs and processes of CBSE led us to
distinguish between metrics that are relevant to component
producers and those that are relevant to component consumers.
Component producers are concerned with the design,
implementation and maintenance of individual components
whereas component consumers search for specific
components, evaluate them and integrate them to construct a
CBSS[1].
One of the difficulties of applying the existing traditional
metrics to a CBSS is the inadequacy of the measurement
Unit. Procedural metrics focus on measures that are derived
from code, for example, lines of code (LOC). Object-oriented
metrics focus on measures that are derived from both the code
level and the higher level units, such as methods, classes,
packages or subsystems. Object-oriented metrics are also
restricted in their application to CBSSs because CBSS
interfaces are usually specified at the component level, not at
the class level. Thus, several authors have described different
techniques and guidelines and have proposed a wide-ranging
set of metrics for assessing the quality of CBSS attributes. The
limitations of existing CBSE metrics approaches not only are

the lack of consistent approaches and measures that provide a
reliable method to evaluate component quality, but also

include the ambiguity in their definitions and the lack of an
appropriate mathematical property that can fail quality metrics.

II. REUSABILITY
In CBD, applications are built from existing components,
primarily by assembling and replacing interoperable parts.
Thus a single component can be reused in many applications,
giving a faster development of applications with reduced cost
and high quality. The reason is that these components are
tested under varieties of situations before being used in the
application .Another characterization of software reuse is the
way it is implemented. First, known as white-box Reuse, when
reuse is attempted, developers usually have the access to the
code that can be modified to cater the new demands of the
application. This provides a flexible way to harvest
software assets in development projects by fitting existing
components to new requirements, thus maximizing the reuse
opportunities.

III. REUSABILITY METRICS
According to [1] reusability can measure the degree of features
that are reused in building new applications.
There are a number of metrics available for measuring the
reusability for Object-Oriented systems. These metrics focus
on the object structure, which reflects on each individual
entitysuch as methods and classes, and on the external
attributes that measures the interaction among entities such as
coupling & inheritance.
Poulin & Cho et al’s reusability metrics
[1] presents a set of metrics to estimate the efforts saved by
reuse. The study suggests the potential benefits against the
expenditures of time and resources required to identify
andintegrate reusable software into a product.

Neha Gehlot et al, International Journal of Advanced Research In Computer Science, 4 (11), Nov–Dec, 2013, 220-224

© 2010, IJARCS All Rights Reserved 221

1.Study assumes the cost as the set of data elements like
Shipped Source Instructions (SSI), Changed Source
Instructions (CSI), Reused sourceInstructions (RSI) etc.

2. Reusability can also be measured indirectly. Complexity,
adaptability and observability can be considered as a good
measure of reusability indirectly.
3. Cho et al propose a set of metrics for measuring various
aspects of software components like complexity,
customizability and reusability. The work considers two
approaches to measure the reusability of a component.
4. The first is a metric that measures how a component has
reusability and may be used at design phase in a component
development process.
5. This metric, Component Reusability (CR) is calculated by
dividing sum of interface methods providing commonality
functions in a domain to the sum of total interface methods.
6. The second approach is a metric called Component
Reusability level (CRL) to measure particular component’s
reuse level per application in a component based software
development. CRLLOC, which is measured by using lines of
code, and is expressed as percentage as given as
CRL LOC (C) = (Reuse (C) / Size (C)) *100%
where:
Reuse(C): The lines of code reused component in an
application,
Size(C): The total lines of code delivered in the application.
7 .The limitation of his metric was that this metric gives an
indication of higher reusability if a large number of functions
used in a component. However, the proposed metrics are
based on lines of codes and can only be used only at design
time for components.
Washizaki’s reusability metrics for black-box components
1. Scope of Washizaki’s reusability metrics is JavaBeans
Interfaces.Intent is to propose a metrics set for assessing the
reusability of JavaBeans.
2. The metrics set is defined in the scope of a quality model
for black-box component reusability.
3. propose a Component Reusability Model for black-box
components from the viewpoint of component users.
The proposed metrics suite considers
understandability,adaptability and portability as relevant sub-
characteristics of reusability. These metrics are:
1. Existence of Meta-Information (EMI) checks whether the
BeanInfo class corresponding to the target component C is
provided.
2. Rate of Component’s Observability (RCO) is a percentage
of readableb properties in all fields implemented within the
Façade class of a component C. The metric indicates that high
value of readability
 3. Rate of Component’s Customizability (RCC) is a
percentage of writable properties in all fields implemented
within Façade class of a component C. the high level of
customizability of component as per the user’s requirement
and thus leading to high adaptability.
4. Self-completeness of Component’s Return Value (SCCr) is
the percentage of business methods without any return value in
all business methods implemented within a component.
The limitation of this metric is that these metrics are applied
on only for small Java Bean components and need to be
validated for other component technologies like .NET,
ActiveX and others also. It gives an insight view of the
reusability metrics.

However, an independent experiment showed the metrics to be
unreliable for components with a small number of features on
their interface.. Further independent analysis is still required.
Researchers for further study and empirical validation of these
existing metrics can use the review done for CBS. Also, some
new enhanced metrics can be proposed and empirically
validated on the basis of the work already done by researchers
in this area.
Dumke’s metrics for reusability of JavaBeans
1 .According to [2] the scope of dumke’s metrics are White-
box Java Beans with an intent to present a metrics set for
reusability of JavaBeans. using a technique of Informal
definition of metrics, relying on access to the source code.
2. The metrics in this set are adapted from other contexts, such
as OO design and structured programming.
3. The limitation of this metric is that the white-box view of
components renders this approach inadequate for evaluation
by independent component assemblers. The internal
complexity of a component method should not be relevant for
the understandability of its interface and the component’s
reusability.

IV. COMPLEXITY METRICS
Complexity can be defined as a measure of a how big or
complex a system is to handle and work with. According to[6]
Size and complexity: direct metrics. We need a set of direct
metrics (i.e., metrics computed directly from the source code)
to describe a system in simple, absolute terms. They count the
most significant modularity units of an object-oriented system,
from the highest level (i.e., packages or namespaces), down to
the there is one metric in the overview pyramid that measures
it. The metrics are placed one per line in a top-down manner.
 1.NOP — Number of Packages, i.e., the number of high-
level packaging mechanisms, e.g., packages in Java,
namespaces in C++.
2.NOC — Number of Classes, i.e., the number of classes
defined in the system, not counting library classes.
3.NOM — Number of Operations, 1 i.e., the total number of
user defined operations within the system, including both
methods and global functions.
4.LOC — Lines of Code, i.e., the lines of all user-defined
operations. In the Overview Pyramid only the code lines
containing functionality are counted.
5.CYCLO — Cyclomatic Number, i.e., the total number of
possible program paths summed from all the operations in the
system. It is the sum of McCabe‘s Cyclometric number for all
operations.
These are the direct measure of the complexity of a system and
can vary at different user level and are thus are not an
appropiate choice for measuring complexity of large system
with large number of operations and methods.
The Interface Method Complexity
According to [3]method for determining the complexity of
interface methods has been defined. High interface methods
complexity shows more complexity of component.
1.The interface methods can be divided in the following
categories:
Interface methods having no return value and no parameter,
having return value but no parameters ,no return value but
having parameters, return value as well as parameters.
The complexity of the interface methods can be measured on
the basis of data types of return value and parameters, and on
the basis of number of parameters. On the basis of data type of

Neha Gehlot et al, International Journal of Advanced Research In Computer Science, 4 (11), Nov–Dec, 2013, 220-224

© 2010, IJARCS All Rights Reserved 222

return value and parameters, and by considering the number of
parameters in a method
2.Thus a Interface Method Complexity Metric for Black Box
Component, IMCM(BB), has been defined as below:
IMCM(BB) = Wr + PCM(M) Where Wr represents the weight
assigned to the category of return value’s data type and
PCM(M) is Parameters Complexity Metric for Method which
calculate the complexity caused by parameters.

3.Parameters Complexity Metric for Method ,PCM(M), has
been defined as below: PCM(M) = a*Wvs + b*Ws + c*Wm +
d*Wc + e*WvcWhere a,b,c,d,e represent counts and
Wvs,Ws,Wm,Wc,Wvc represent the assigned weights for very
simple, simple, medium, complex and very complex data type
categories for parameters of a method.High value of
IMCM(BB) shows decrease in understandability and
increase in testing effort.
Steps to Calculate CCCM(BB)
Step 1 : Calculate FICM(BB) Fan-in Complexity Metric for
Black Box Component, FICM(BB) = fin * [Cn * .10 + (Count
the different types of data type incompatibilities need to be
handled to receive the data in the correct form and multiply the
different counts with their respective weights
Step 2: Calculate FOCM(BB) Fan-out Complexity Metric for
Black Box Component, FOCM(BB) = fout * [Cn *.10+
(Count the different types of data type incompatibilities need
to be handled to provide the data in the correct form and
multiply the different counts with their respective weights Cn
represents the count of interactions causing no incompatibility
problem.
Step 3: Calculate CCCM(BB) CCCM(BB) = FICM(BB) +
FOCM(BB)
 4.High coupling complexity shows that more integration
andtesting effort is required. But it represents low
maintainability.
 Determine Component Complexity Metric for Black Box
Component
Component Complexity Metric for Black Box Component,
CCM(BB), has been defined as below
i=n CCM(BB) = CCCM(BB) + Σ IMCM(BB) i=1
5.Limitation of this metric is that it is based on component
specfication, and component specification at an early stage are
difficult to estimate,if there is an ambiguity in the
specifications taken in the begining of the CBSD ,can create
problems later. It has been proposed for the black box
component only.
6.Thus measuring the component complexity during the
component selection is a difficult task and can be misleading
as an important component may not get selected.
Gill’s interface complexity metrics
According to[2]scope of gills metric is Black-box
component’s interface, with the intent of providing the
complexity aspects of interfaces’ signature, with also
constraints upon those interfaces, as well as their packaging, to
account for different configurations that the interface may
present, depending on the context of use.
1.Following technique that the overall complexity is defined as
the weighted sum of the complexities related to signature,
constraints and packaging of the interfaces.
2.For each of these aspects of interface complexity, a
definition is also proposed, again using weighted sums of
features (e.g. events and operations count).Thus has the merit

of including constraints and packaging complexities on the
assessment.
3. Demerits of Gill’s proposal is that it still lacks any sort of
empirical assessment. This hampers the ability of the authors
to assign values to the coefficients on their definitions, and,
more significantly, our ability to assess the extent to which this
approach helps common practitioners to choose among
alternative components.thus there is lack of maturity.

V. INTERFACE COMPLEXITY

According to[4], a component is linked with other components
and hence has interfaces with them. Two or more components
are said to be interfaced if there is a link between them, where
a link means that a component submits an event and other
components receive it. The direction of the link indicates that
which component requests the services or dependent on the
other. Interface between two components can be through
incoming and outgoing interactions.
1.These both types of interactions add complexity to a
component-based software system. By taking only interface
complexity into account, an interface complexity measure for
a component-based system is suggested as
Average Incoming Interactions Complexity (AIIC) =sum of all
incoming interaction/m
Average Outgoing Interactions Complexity (AOIC) = sum of
all outgoing interactions/m
Average Interface Complexity of a Component Based System
(AIC (CBS)) = AIIC+AOIC
Number of components in the Component Based System
(CBS) = m
[4] also evaluated the metrics against Weyuker,who proposed
an axiomatic framework in the form of several properties for
evaluating complexity aspects of software systems.
2. The proposed interface complexity metric reported here is
evaluated against these properties for compatibility. These
properties are evaluated for the proposed interface metric.
3.Demerits of this metrics is that the experiment is based on
directed graph of components, thus generating directed
graphsfor lagrge system is an overhead, cannot deciding the
overall complexity of a component-based system.
4..However, application of conclusions to real life situations
needs further study and empirical support using data from
industrial projects
to validate these findings and to derive more useful and
generalized results.

VI. COUPLING METRIC

fig I:
The Right Part: System Coupling
According to suri,garg [6]the second part of the Overview
Pyramid provides an overview with information about the
level of coupling in the system,by means of operation
invocations.

Neha Gehlot et al, International Journal of Advanced Research In Computer Science, 4 (11), Nov–Dec, 2013, 220-224

© 2010, IJARCS All Rights Reserved 223

1. System coupling: direct metrics. The key questions when
trying to characterize the level of coupling in a software
system are: How intensive and how dispersed is coupling in
the system? The two direct metrics that we use are:
2. CALLS — Number of Operation Calls, i.e., this metric
counts the total number of distinct operation calls
(invocations) in the project, by summing the number of
operations called by all the user-defined operations. If an
operation fo () is called three times by a method f1() it will be
counted only once. If it is called by methods f1(), f2() and f3(),
three calls will be counted for this metric.
3. FANOUT — Number of Called Classes, this is computed
as a sum of the FANOUT metric (i.e., classes from which
operations call methods) for all user-defined operations. This
metric provides raw information about how dispersed
operation calls are in classes.
Dhama Coupling Metric
[6] Coupling is a measure of how closely tied are two or more
modules or class. In particular, a coupling should indicate how
likely would be that a change to another module would affect
this module .
1. The basic form of coupling metric is to establish a list of
items that cause one module to be tied to the internal working
of another module.
2. One of the metric to measure coupling is Dhama‘s Module
coupling Dhama proposed a coupling metric that measures the
coupling of an individual component C ,which is equal to: 1/(
i1 + q612+u1+q2u2+g1+q8g2+w+r) where q6,q7,q8 are
constants assigned a value of 2 as a heuristic estimate, and
 i1 is the number of in data parameters,
i2 is the number of in control parameters,
 u1 is the number of out data parameters, and
 u2 is the number of out control parameters.
3. For global coupling: g1 is the number of global variables
used as data, and g2 is the number of global variables used for
control.
4. For environment coupling: w is the number of other
components called from component C, and r is the number of
components calling component C;it has a minimum value of 1.
5. The limitation of Dhama metric considers the effect on
coupling of a parameter to be the same as the effect of a global
variable,which is a major deviation from the Myers
classification [6]scheme. The Dhama metric is an example of
an intrinsic coupling metric,which calculates the coupling
value of each component individually.
Fenton and Melton Software Metric
[6] The Fenton and Melton metric is a direct quantification of
the Myers coupling levels, considers all types of
interconnections between components to have the same
complexities and have the same effects on coupling.
1. Fenton and Melton [16] have proposed the following
metric as a measure of coupling between two components
x and y :
 C(x,y)= i +n/(n+1) where,
n = number of interconnections between x and y , and
i = level of highest (worst) coupling type found between x
and y .
2. Coupling Level Modified Definition between
components x and y
Content- 5 Common- 4 Control- 3 Stamp -2 Data- 1
No Coupling -0

3. It is an example of an inter-modular coupling metric, which
calculates the coupling between each pair of components in
the system
Coupling Metric Proposed by Alghamdi S. jarallah
[7]. This metric involves breaking the calculation of coupling
into two steps.
1. The first step is to generate a description matrix that
captures the factors that affect coupling in a system.
2. The second step is to calculate the coupling between each
two components of the system from the description matrix to
produce a coupling matrix.
3. Each component of the software system is represented by a
row of the description matrix. Components are classes in an
object-oriented system, or functions, procedures, and
subroutines in a procedural system.
4. Columns of the description matrix represent elements.
Elements are methods and instance variables in an object-
oriented system, or variables and parameters in a procedural
system.
5.There are two limitations with these metrics.One is that an
inverse means that the greater the number of situations that are
counted , the greater the coupling that this module has with
other modules and smaller will be the value of mc.
6. The other issue is that the parameters and calling counts
offer potential for problems but do not guarantee that this
module is linked to the inner working of the other
modules.The use of global variables almost guarantees that
this module is tied to the other modules that access the same
global variables .

VII. ACKNOWLEDGMENT

I would like to gratefully and sincerely thank my guide
Mrs. Jagdeep Kaur and my H.O.D Dr.Latika Singh for their
guidance, understanding, patience and provided me with
unending encouragement and support. Their mentorship was
paramount in providing a well rounded experience for my
long-term career goals. They encouraged me to not only grow
as a researcher also as an independent thinker.
I would like to thank the Department of Computer science at
ITM university, especially for their input, valuable discussions
and accessibility.

VIII. CONCLUSION
This paper gives basic review about all the quality based
attributes metrics for the software component and their
limitations.Describing the evolving nature of metrics form the
basic object oriented metrics towards a more complex and
justifying metrices considering all quality attributes like
reliabilty,complexity.Providing a more consistent approaches
and measures that provides more reliable methods to evaluate
component quality. However, application of conclusions to
real life situations needs further study and empirical support
using data from industrial projects to validate these findings
and to derive more useful and generalized results. Using data
from industry implemented projects will provide a basis to
examine the relationship between metric values and several
quality attributes of component-based systems.

IX. REFERENCES

Neha Gehlot et al, International Journal of Advanced Research In Computer Science, 4 (11), Nov–Dec, 2013, 220-224

© 2010, IJARCS All Rights Reserved 224

[1] Arun Sharma, Rajesh Kumar, P. S. Grover “A Critical Survey of
Reusability Aspects for Component-Based Systems” World
Academy of Science, Engineering and Technology 2007

[2] Miguel Goulão, “Software Components Evaluation: an Overview
Fernando International Journal of Computer Applications”
(2829– 516 caparica) Volume 40– No.1, December2010

[3] Navneet Kaur, Ashima Singh“A Complexity Metric for Black
Box Components International Journal of Software Computing
 Engineering” (IJSCE) Volume-3, Issue-2, May 2013

[4] Usha Kumari and Shuchita Upadhyaya “An Interface Complexity
Measure for Component-based Software Systems” International
Journal of Computer Applications (0975 – 8887) Volume 36–
No.1, December 2011.

[5] Tu honglei, sun wei, zhang yanan“The Research on “software
metrics and software complexity metrics ”International Forum
on Computer Science - Technology and Application,2009

[6] DrP.KSuri and Neeraj Garg “Software Reuse Metrics: Measuring
Component Independence and its applicability in Software
Reuse”, IJCSNS International Journal of Computer Science and
Network Security, VOL.9 No.5, May 2009

[7] Majdi Abdellatief, Abu Bakar Md Sultan, Abdul Azim Abdul
Ghani1, Marzanah A.Jabar,“A mapping study to investigate
component-based software system metrics ”The Journal of
Systems and Software 86 (2013) 587– 603

 received 20 May
2011,available online 13 October 2012

	I. INTRODUCTION
	II. REUSABILITY
	III. REUSABILITY METRICS
	IV. COMPLEXITY METRICS
	VII. ACKNOWLEDGMENT
	VIII. CONCLUSION
	IX. REFERENCES

