
Volume 4, No. 11, Nov-Dec 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 113

ISSN No. 0976-5697

Enhanced Gap Sequencing Shell Sort
AgamVerma1, Jitender Kumar Sharma

M.Tech(CSE)
United College of Engg.and Research

Allahabad, India
agam_alpine@yahoo.com1, jitenderkumkum@yahoo.com2

Abstract:Sorting algorithms are used for arranging alist of numbers or characters in an ascendingor descending order.Many sorting
algorithmshave been proposed for sorting a given sequence,some important algorithms of themare Bubble Sort, Insertion
Sort,SelectionSort,Shell sort and many more. Sorting algorithms puts elements in a certain order suchas numerical or lexicographical
order.Shellsort is the fastest algorithm in comparison tobubble,insertion and selection.Shell sort is anenhanced version of insertion sort. It
reducesthe number of swaps of the elements beingsorted to minimize the complexity and timeas compared to insertion sort.Shell sorting
algorithm sorts the elements according thegap sequences.The operations depends on theused gap sequences(many gap sequences havebeen
proposed).In this paper we analyze thealgorithm by using the following gap sequence:N1;N2;N3;…; 1,where
N1 = floor (3n/4);
N2 = floor (3N1/4);
N3 = floor (3N2/4);
………………….;
………………….;
Nk = floor (3Nk-1/4) and so on until the value of Nk becomesone. Here ‘n’ is the number of elements to besorted.

Keywords:Algorithm,Shell,Sorting,Comparison.

I. INTRODUCTION

Shell sort is the algorithm that has beenthe focus of
research.Shell sort is introducedby Donald L. Shell in
1959[1].Shell sortingalgorithm is the generalization of
insertionsort algorithm[2].It is easy to implement,andthus a
practical choice for sorting moderate-sized lists.Shell sort
has been proposed toimprove the average running time of
theinsertion sort, which is Θ (n2)[2].It has beenobserved that
Shell sort is a non-stable in-placesort. Shell sort improves on
the efficiency ofinsertion sort by quickly shifting values
totheir destination [2]. Many different gap sequences may be
used to implement the shellsort[1].Typically, the array is
sorted with largegap sequencing,then the gap sequencing
isreduced,and the array is sorted again. On the final sort,gap
sequencing is one.

In this paper work, I use the tools developed in some
previous published papers on shell sort to analyze the
gapsequence:N1;N2;N3; …………………. 1,where
N1 = floor (3n/4);
N2 = floor (3N1/4);
N3 = floor (3N2/4);
…………………...;

Nk = floor (3Nk-1/4) and so on until the value of Nk
becomesone. Here ‘n’ is the number of elements to
besorted.In analyzing Enhanced Gap SequencingShell
Sort,It turns out that the value of the gapsequence depends
on the number of elements to be sorted. First,we find N1 =
floor (3n/4),after thisall other gaps N2;N3; ……………….. ;
can be found byputting N1in place of ‘n’ to get N2 and N2 in
place of ‘n’ to get N3 and so on until we get the value 1.For
example, if we want to sort 125 numbers of elements,then
N1 = floor (3(125)/4) becausehere n=125,so N1=93. Now
find N2 = floor (3N1/4) which is 69,and

N3=51,N4=38,N5=28,N6=21,N7=15,N8=11,N9=8,N10=6,N11=
4,N12=3,N13=2,N14=1. So the gap sequence for sorting 125
elements is93,69,51,38,28,21,15,11,8,6,4,3,2,1.

In this paper,I made the list of comparisonsof
“Enhanced Gap Sequencing Shell sort” with Insertion sort
and Shell sort. In Shellsort the numbers of swaps are
reduced ascompared to Insertion sort and in “Enhanced Gap
Sequencing Shell Sort” the numbers ofswaps are further
reduced as compared to Shellsort.[3]

A. Insertion Sort:
Insertion Sort algorithm sorts the elementsby inserting

them into their proper position in the final sorted
list.Insertion sort keeps making the left side of the array
sorted until the wholearray is sorted.It sorts the values seen
faraway and repeatedly inserts unseen values inthe array
into the left sorted array.It is thesimplest of all sorting
algorithms.Although ithas the same complexity as Bubble
Sort (Θ (n2)),the insertion sort is a little over twice as
efficient as the bubble sort.The advantage ofInsertion Sort is
that it is relatively simple andeasy to implement.

In the following example,the number of swapsis
calculated to sort the elements using Insertion Sort
algorithm.In this example,the listcontains 38 elements,which
are unsorted,theInsertion sort is applied in order to find
thetotal number of swaps required to sort theelements in the
increasing order.

a. Unsorted list:
22,12,53,94,27,59,50,39,14,88,35,3,115,3,4,230,29,84,6

2,102,14,54,5,3,87,67,16,43,73,19,27,64,16,4,2,85,51,34.
After applying the Insertion sort on this array,the

number of swaps calculated for sortingit, are 367.

AgamVerma et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,113-118

© 2010, IJARCS All Rights Reserved 114

B. Shell Sort:
Shell sort sorting algorithm is introduced bythe Donald

L. shell in 1959[1,2].Shell sort worksby comparing elements
that are distant ratherthan adjacent elements in an array or
list whereadjacent elements are compared.Shellsort usesa
gap sequence g1; g2; …….; gtcalled the increment sequence.
Any increment sequence is fine as long as g1 = 1 and some
other choices arebetter than others.Shellsort makes
multiplephases through a list and sorts a number ofequally
sized sub lists using the insertion sort.Shellsort is also
known as diminishing increment sort[2].

The distance between comparisonsdecreases as the
sorting algorithm runs untilthe last phase in which adjacent
elementsare compared.After each phase and someincrement
gh,for every i,we have a[i] ≤ a[i+gh]all elements spaced
ghapart are sorted.The file is said to be gh -sorted .The size
of thesub-lists,which are to be sorted gets largerwith each
phase through the list, until thesub-list consists of the entire
list. (Note thatas the size of the sub list increases, the
number of sub-lists to be sorted decreases.)Thisarrangement
makes the insertion sort to runfor an almost-best case with a
complexity thatapproaches O(n).

The elements contained in each sub-list are
notcontiguous, rather,if there are i sub-lists then asub-list is
composed of every i-th element.Forexample,if there are 4
sub lists then the firstsub-list would contain the elements
located atpositions 1,5,9 and so on.The second sub-listwould
contain the elements located at positions 2,6,10,and so
on;while the fourth sub-listwould contain the items located
at positions4,8,12,and so on.[3]

The efficiency of the algorithm is depends onthe size of
the sub-lists used for each iteration.Along with the benefit of
being robust,Shellsort is a complex algorithm and not
nearlyas efficient as the merge, heap, and quicksorts.The
shell sort is still significantly slowerthan the merge, heap,
and quick sorts, butits relatively simple algorithm makes it
agood choice for sorting lists of less than 5000items unless
speed important. It is also anexcellent choice for repetitive
sorting of smallerlists.It has been observed that Shell sort is
anon-stable in-place sort. Shell sort improves the efficiency
of insertion sort by quicklyshifting values to their
appropriate position.Average sort time is O(n1.25), while
worst-casetime isO(n1.5)[3].

Knuth has experimented with several valuesand
recommends that gaping ‘h’ for an array ofsize N be based
on the following formula: Leth1= 1; hs+1= 3hs+ 1,and stop
with htwhenht+2≥N[3].Thus,values of h are computed as
follows:
h1= 1
h2 = (3*1) + 1 = 4
h3 = (3*4) + 1 = 13
h4= (3*13) + 1 = 40
h5= (3*40) + 1 = 121
h6= (3*121) + 1 = 364

To sort 125 items we first find an ‘hs’ suchthat hs≥
125.For 125 items, h6is selected. The Final value htis two
steps lower, or h4.Therefore sequence for the values of ‘h’
willbe 40,13,4, 1.Once the initial ‘h’ value hasbeen
determined, subsequent values may be calculated using the
formula
hs-1= floor(hs/3).

Now we apply the shell sort for calculating thenumber
of swaps to sort the same problem (asdiscussed in Insertion
sort) by using Knuth'sgap sequences.

a. Unsorted list:
22,12,53,94,27,59,50,39,14,88,35,3,115,3,4,230,29,84,6

2,102,14,54,5,3,87,67,16,43,73,19,27,64,16,4,2,85,51,34.
After applying the shell sort using Knuth's

gapsequences on this array of numbers,the numberof swaps
calculated for sorting it, are 170.

C. Enhanced Gap SequencingShell Sort:
Enhanced Gap Sequencing Shell Sort introduced a new

way to find the gap sequences tosort the large list of
elements rapidly. Enhanced Gap Sequencing Shell Sort
algorithm alsoworks in same fashion as the previous
existing versions of the Shell sort algorithm.The only
difference is the way to choose the more efficient gap
sequence,which is a key step forthe algorithm to be more
effective and better.Calculating the value of the gap
sequencehsin conventional Shell sort is a key step
inexecution of the algorithm.

In conventional Shell sort, given by Knuth, the value of
hsis found by the following formula:

h1= 1; hs+1= 3hs+ 1,and stop with htwhenht+2≥ N.
By using this existing formula Shell sortreduces the

number of swaps up-to 50% ascompared to that of Insertion
sort.

Enhanced Gap Sequencing Shell sort mainlyfocuses to
improve the efficiency of the previous existing shell sort
algorithms.It can beachieved by choosing the appropriate
values ofgap sequences,which can reduce the numberof
swaps.In conventional Shell sort,the gapsequences are
small,so they divide the list intolarge number of sub-
steps,for example,if n=100 then the gap sequence is (13,4,
1),which meansto sort the elements, it first divide the list
into8-sublists of size 13,then 25-sublists of size 4.Itmakes
algorithm to swap many elements manytimes to place them
into right place.So, if we increase the size of gap sequence,it
divides thelist into less number of sub-lists of larger sizeand
elements are not needed to swap manynumbers of times.

Enhanced Gap Sequencing Shell Sort introduces a new
mechanism to calculate the valueof gap sequence.The
formula for calculatinggap sequence is as follows:

The gap sequence is of the form N1,N2,
N3,…….,1,whereN1= floor (3n/4);
N2= floor (3N1/4);
N3= floor (3N2/4);
…………………..;
…………………..;

Nk= floor (3Nk-1/4) andso on until the value of
Nkbecomes one.Here ‘n’ is the number of elements to be
sorted.Thusto sort 125 numbers of elements,the gap
sequence is calculated as follows:here n=125
N1= floor (3*125/4) = 93
N2= floor (3*93/4) = 69
N3= floor (3*69/4) = 51
N4= floor (3*51/4) = 38
N5= floor (3*38/4) = 28
N6= floor (3*28/4) = 21
N7= floor (3*21/4) = 15
N8= floor (3*15/4) = 11
N9= floor (3*11/4) = 8
N10= floor (3*8/4) = 6

AgamVerma et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,113-118

© 2010, IJARCS All Rights Reserved 115

N11 = floor (3*6/4) = 4
N12= floor (3*4/4) = 3
N13= floor (3*3/4) = 2
N14= floor (3*2/4) = 1

So the gap sequence for sorting 125 elementsis
(93,69,51,38,28,21,15,11,8,6,4,3,2,1).But inconventional
Shell sort the gap sequence for 125 elements is (40, 13, 4,
1).

Now we apply the Enhanced Gap Sequencing shell sort
for calculating the number of swapsto sort the same problem
as discussed in Insertion sort and Shell Sort).

a. Unsorted list:
22,12,53,94,27,59,50,39,14,88,35,3,115,3,4,230,29,84,6

2,102,14,54,5,3,87,67,16,43,73,19,27,64,16,4,2,85,51,34.
Here n=38,so
N1= floor (3*38/4) = 28
N2= floor (3*28/4) = 21
N3= floor (3*21/4) = 15
N4= floor (3*15/4) = 11
N5= floor (3*11/4) = 8
N6= floor (3*8/4) = 6
N7= floor (3*6/4) = 4
N8= floor (3*4/4) = 3
N9= floor (3*3/4) = 2
N10= floor (3*2/4) = 1

So the gap sequence for 38 elements is
(28,21,15,11,8,6,4,3,2,1). After applyingthe Enhanced Gap
Sequencing shell sort onthis array of numbers,the number of
swapscalculated for sorting it, are 67.

II. COMPARISON OF ABOVE DISCUSSED
THREE TECHNIQUES

Now the comparison for the three techniques is made
here for the same problem.

Table 1: Comparison

Sr. No. Insertion Sort Shell Sort E.G.S. Shell Sort

01 367 170 67

It is apparent that Shell sort reduces thenumber of

swaps up to half as compared tothe number of swaps in
Insertion sort and Enhanced Gap Sequencing Shell Sort
reduces thenumber of swaps further up to less than half as
compared to the number of swaps in Shell Sort, thus
improving the efficiency of the algorithm.

Figure 1: Comparison of Sorting Techniques

III. DETAIL DISCUSSION OF RESULTS FOR
MORE PROBLEMS

It is necessary to execute a detailed comparison of all
three algorithms by applying the algorithms on a wider
variety of data,in order toensure and establish results
concretely.

A. For 25 Elements:
0,1,13,4,14,10,19,11,22,27,14,17,13,20,19,15,16,19,18,

19,18,17,21,20,14.
Number of swaps in Insertion Sort:83
Number of swaps in Shell Sort:47
Number of swaps in E.G.S.Shell Sort:22

B. For 50 Elements:
0,1,21,4,23,16,32,16,40,50,21,28,16,38,33,16,20,39,35,

37,38,40,25,29,37,35,35,33,30,31,31,31,31,31,34,32,35,29,3
2,32,30,35,23,37,40,34,26,42,30,26.
Number of swaps in Insertion Sort:464
Number of swaps in Shell Sort:127
Number of swaps in E.G.S.Shell Sort:63

C. For 100 Elements:
1,1,38,6,40,27,59,26,75,98,35,50,21,73,61,18,29,80,70,

75,79,88,36,51,84,77,81,74,53,61,64,60,58,66,39,52,40,62,5
5,55,58,51,66,49,48,54,59,49,56,58,57,51,58,54,55,55,56,56
,56,58,59,53,59,59,58,61,58,66,57,44,70,59,70,71,65,38,62,
60,70,70,70,69,43,35,34,43,59,55,86,81,59,58,50,75,86,41,4
5,25,25,96.
Number of swaps in Insertion Sort:2154
Number of swaps in Shell Sort:419
Number of swaps in E.G.S.Shell Sort:179

D. For 200 Elements:
2,1,71,9,76,48,113,45,145,193,62,95,32,142,117,22,45,

162,138,152,162,184,58,93,180,161,173,155,98,122,130,12
0,113,138,50,92,53,129,102,104,114,85,153,76,66,96,129,6
6,110,122,119,51,137,81,101,94,93,113,115,85,75,133,87,9
1,98,84,99,71,105,141,70,99,76,77,90,135,97,100,89,89,91,
93,118,123,123,150,104,107,89,93,104,105,108,99,96,110,1
08,112,112,99,106,106,106,107,105,105,106,107,106,109,1
06,111,101,111,102,104,102,101,105,105,116,112,95,95,10
2,89,87,86,96,106,116,96,118,99,107,125,103,114,89,114,9
6,133,132,119,75,94,95,89,93,93,87,62,114,101,118,59,155,
61,111,134,101,107,92,83,97,72,115,167,65,79,44,112,126,
48,87,98,79,146,134,48,170,38,89,171,52,71,79,38,108,142,
76,139,131,62,22,32,152,123,30,121.
Number of swaps in Insertion Sort:10180
Number of swaps in Shell Sort:886
Number of swaps in E.G.S.Shell Sort:544

E. For 350 Elements:
3,2,121,14,129,81,193,75,250,335,103,162,48,247,202,

28,70,284,241,266,286,328,91,157,323,286,312,276,166,21
2,229,210,195,246,67,153,71,230,173,178,199,137,282,115,
93,160,233,90,191,219,213,51,255,121,171,152,150,201,20
6,127,101,254,132,141,159,120,161,79,179,289,70,161,87,8
8,128,281,150,161,118,119,122,130,231,257,259,226,173,1
86,94,113,173,178,198,137,113,215,206,245,243,106,189,1
82,200,223,143,137,141,156,190,128,197,115,242,141,222,
198,208,210,187,189,140,160,224,218,194,231,235,233,206
,182,160,202,160,194,180,151,186,170,204,171,193,151,15
3,168,212,192,191,195,191,191,194,210,176,184,174,206,1
56,202,178,169,182,180,185,188,183,190,178,167,189,186,

AgamVerma et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,113-118

© 2010, IJARCS All Rights Reserved 116

191,180,178,188,183,181,182,178,179,182,180,181,181,183
,179,180,180,176,182,185,178,185,185,175,169,170,189,18
4,167,184,188,166,196,197,190,198,175,158,194,204,154,1
97,199,208,180,156,153,198,173,152,169,125,180,154,152,
161,171,177,137,135,224,195,158,223,162,199,224,195,210
,181,238,122,242,233,213,176,192,218,187,230,222,193,25
1,187,188,229,239,194,111,250,200,258,154,170,252,251,2
36,232,234,223,208,267,137,245,112,272,233,113,102,137,
126,107,160,223,85,163,150,166,147,222,162,246,73,279,2
56,173,99,270,209,255,79,184,205,281,145,219,243,68,276,
159,243,106,168,189,276,147,84,141,70,53,214,196,256,31
5,262,126,134,165,50,37,276,325,152,103,168,318,234,61,3
8,323,77,237,214,152,68,179,250,88,45,57.
Number of swaps in Insertion Sort:29068
Number of swaps in Shell Sort:2232
Number of swaps in E.G.S.Shell Sort:1079

F. For 500 Elements:
5,3,172,19,183,114,274,104,355,478,145,228,65,352,28

7,35,95,406,344,381,410,471,124,221,465,412,450,398,233,
303,329,300,278,354,84,214,89,331,245,252,283,189,413,1
55,120,223,337,115,217,316,306,52,373,162,240,210,206,2
88,296,169,126,375,176,191,220,156,223,87,253,436,70,22
2,97,100,166,427,203,221,148,154,168,345,390,395,336,24
2,266,99,132,242,250,287,175,131,320,303,378,374,112,27
2,259,293,338,181,170,176,206,275,148,289,120,385,173,3
43,292,316,320,270,275,165,210,355,342,286,374,383,380,
316,258,204,310,202,290,254,177,270,228,320,229,290,170
,175,219,349,290,288,301,289,290,302,360,239,268,230,35
3,158,343,246,205,264,254,279,294,271,308,243,167,315,2
93,339,248,231,328,279,266,287,212,226,317,190,324,272,
194,306,288,280,314,255,227,279,231,237,288,315,307,225
,245,303,246,237,298,217,218,237,220,268,300,233,218,30
0,233,231,220,258,286,288,237,264,285,267,226,257,277,2
78,270,262,258,282,282,233,249,267,237,263,249,240,251,
247,256,240,270,242,245,249,256,254,250,255,251,252,255
,252,255,255,255,256,257,255,259,257,261,254,256,263,26
4,263,263,264,263,261,271,249,268,243,275,267,241,238,2
46,243,238,251,267,230,251,248,252,246,269,251,277,221,
289,282,254,228,288,267,283,219,257,265,295,242,271,281
,210,295,247,282,225,251,260,298,241,213,238,206,198,27
1,263,291,319,295,230,234,249,192,185,303,328,242,217,2
49,326,284,194,182,331,202,286,274,241,195,255,294,205,
181,187,220,332,238,275,199,190,277,254,174,216,228,355
,226,210,283,189,242,353,187,234,155,192,348,211,160,35
4,337,358,212,280,318,255,351,251,382,312,306,327,188,3
49,309,174,225,366,126,239,298,281,137,390,255,151,301,
148,211,303,399,398,289,161,379,279,123,149,103,247,175
,187,101,393,272,325,116,251,93,225,245,382,248,301,184,
198,347,232,276,315,413,89,205,99,130,124,257,418,113,3
71,178,364,312,115,383,235,247,206,261,359,355,285,114,
346,138,249,176,279,360,402,184,263,110,359,337,431,378
,79,50,117,49,73,312,272,146,286,303,444,62,78,313,406,3
35,461,205,426,42,154,354,192,412,221,196,65.
Number of swaps in Insertion Sort:62679
Number of swaps in Shell Sort:3456
Number of swaps in E.G.S.Shell Sort:1613

G. For 1000 Elements:
10,5,339,36,361,222,542,202,705,953,282,450,119,701,

569,55,177,814,687,763,824,951,234,435,942,832,912,803,
459,605,659,600,552,714,141,417,150,666,482,497,565,361
,848,287,210,435,685,197,541,638,618,53,766,296,470,403,
395,578,598,309,212,777,323,358,425,277,430,114,500,928

,71,427,132,137,293,915,381,424,246,247,260,292,724,835,
848,704,473,532,117,197,471,492,586,302,188,671,628,821
,812,133,549,514,603,724,307,279,294,374,558,214,596,13
5,859,280,747,606,673,686,546,561,249,376,789,754,593,8
51,879,871,685,513,352,669,345,610,500,264,549,420,708,
424,616,233,247,387,809,617,612,656,617,621,663,859,450
,549,419,845,166,814,472,323,538,502,592,648,562,703,46
0,169,732,651,833,477,407,798,601,548,637,324,381,766,2
27,803,579,235,729,651,617,777,502,370,620,386,414,665,
803,767,347,450,760,456,407,741,290,291,398,296,580,774
,368,268,789,355,339,263,522,725,740,370,572,732,594,26
8,515,688,702,639,569,532,769,773,265,432,631,286,604,4
18,298,440,373,508,250,768,242,286,373,528,465,361,485,
324,354,463,256,487,483,346,314,466,733,288,448,270,588
,540,301,306,351,364,361,395,436,283,620,344,679,284,38
0,669,693,608,633,672,554,416,714,545,571,538,576,423,5
43,380,715,320,366,521,655,345,456,377,683,501,467,340,
565,445,408,686,359,541,412,618,525,494,369,555,643,562
,658,679,462,487,408,334,403,575,565,526,665,678,394,33
8,539,595,521,354,448,636,659,356,614,449,473,535,618,5
08,439,595,635,622,565,383,534,477,595,608,474,508,625,
563,545,369,547,567,470,592,525,385,591,533,627,581,400
,557,613,398,418,397,552,481,443,507,413,511,386,453,45
9,441,567,425,460,575,532,415,611,519,473,486,596,406,5
06,582,474,581,537,474,410,412,485,566,429,492,586,569,
595,511,551,544,590,433,497,470,577,508,585,521,511,447
,509,486,537,530,467,516,498,482,445,569,525,563,551,55
2,505,451,553,468,530,472,489,547,469,511,508,519,504,4
79,481,499,539,485,532,507,523,501,485,477,519,504,532,
488,492,477,532,536,525,534,530,498,504,518,502,501,486
,524,522,501,493,499,491,509,495,518,511,501,508,499,50
7,508,511,504,510,503,506,506,505,506,507,505,507,505,5
02,509,508,506,499,503,512,506,507,502,519,498,493,503,
516,526,515,528,510,530,484,518,516,499,511,517,537,507
,541,528,541,493,526,483,507,542,526,469,519,499,535,46
5,462,482,468,528,537,523,514,466,538,449,463,448,455,5
58,451,542,453,551,544,464,438,559,498,467,482,540,580,
488,445,488,545,484,493,505,468,455,586,438,516,575,469
,528,474,507,449,528,504,575,472,517,504,547,440,575,53
3,525,514,469,417,460,564,579,564,604,556,515,529,583,5
94,394,516,620,483,570,577,467,584,571,506,380,570,449,
538,632,558,434,627,641,440,429,403,402,514,596,574,459
,480,377,385,631,450,579,631,362,395,505,543,365,644,40
8,418,407,405,578,553,664,345,571,513,673,462,344,405,5
38,511,677,345,661,566,616,572,366,453,393,514,510,401,
684,650,494,620,452,409,394,381,576,694,324,617,483,678
,698,493,479,448,591,323,547,502,704,459,564,424,457,40
3,669,585,609,330,486,559,642,660,419,567,603,717,305,3
00,643,681,409,383,358,673,388,558,669,605,496,453,513,
355,502,671,299,512,716,354,690,726,390,670,561,628,589
,721,353,527,679,351,390,456,583,742,600,543,429,747,62
4,372,270,505,490,448,455,307,706,683,246,394,732,586,7
06,493,653,430,601,277,220,555,277,673,690,602,514,252,
444,418,648,406,440,611,431,236,567,239,515,216,668,261
,504,652,620,699,658,513,498,714,272,598,378,513,211,25
6,251,307,498,215,242,617,489,627,346,300,197,678,510,8
20,194,368,263,509,311,638,779,686,544,740,415,468,492,
497,235,470,803,474,283,681,692,747,429,654,674,793,194
,310,332,710,606,573,356,662,659,420,635,756,187,540,13
6,382,372,704,674,149,366,314,199,164,455,340,202,748,6
92,401,723,767,838,463,788,711,327,223,671,905,510,363,
871,337,585,854,850,798,597,531,467,225,604,490,129,202
,566,92,859,794,443,313,901,354,280,681,262,768,559,558,

AgamVerma et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,113-118

© 2010, IJARCS All Rights Reserved 117

738,811,885,172,699,654,661,402,228,246,806,714,844,247
,568,440,338,844,657,341,193,293,597,750,731,202,780,12
9,359,502,476,485,118,921,726,774,272,65,391,142,799,20
0,938,571,782,979,576,115,546,430,147,836,394,886,256,9
05,672,152,730,913.
Number of swaps in Insertion Sort:243764
Number of swaps in Shell Sort:8744
Number of swaps in E.G.S.Shell Sort:3934

Table 2: Comparison of all three sorts

Cases Insertion Sort Shell Sort E. G. S. Shell Sort
3.1 83 47 22
3.2 464 127 63

3.3 2154 419 179
3.4 10180 886 544

3.5 29068 2232 1079
3.6 62679 3456 1613
3.7 243764 8744 3934

Figure 2: Comparison graph based on cases

The Enhanced Gap Sequencing Shell Sortingalgorithm
is a good approach towards achievingthe excellence in the
algorithms to provide the more efficient solutions. This has
been achievedby decreasing the number of swaps required
tosort the list of elements.

The results of above solved problems showthat the new
algorithm provides a much efficient way to sort the elements
and hence causesto save the computational resources. It
hasbeen observed that the Enhanced Gap Sequencing Shell
Sorting algorithm can solve the problem in almost 60 times
less swaps as comparedto insertion sort and in almost half
swaps ascompared to the traditional shell sorting algorithm.
Figure 3 shows the detailed overview ofthe number of swaps
required to sort differentnumber of elements.

Figure 3: Graph showing elements-swap ratio

IV. ANALYSIS

In the paper “Analysis of Shellsort and Related
Algorithms”,Robert Sedgewick[4]has described an open
problem, “Are there increment sequences that perform better
than known ones in practice?”, for performance issues and
claims thatfinding a sequence that leads to running times
25% lower than the best known certainly would be of
practical interest, we can reduce the running time by
reducing the number of comparisons for the algorithm. In
our proposed algorithm, we have reduced the number of
comparison up-to 40% to 50% in some ideal cases bur in
many cases up-to 20% to 30%. We compare our algorithm
with insertion sort ant shell sort and get some interesting
results as can be seen in the above given graphs and tables.
MarcinCiura [5] in his paper “Best Increments for the
Average Case of Shell sort”, shows the result for 128
elements where data get sorted in 535(approx.) swaps but in
our case 200 elements takes 544 swaps to get sorted. Thus
the proposed algorithm is better for sorting.

V. CONCLUSION

This research paper focuses on an enhancement and
improvement in existing sorting algorithms.The traditional
Shell sort algorithmresults an average number of
comparisons ofelements but it does not give minimum
numberof swaps. The older approaches of the ShellSort
algorithm have stated that the number ofswaps produced by
Shell Sort can be further reduced by choosing an efficient
gap sequence.

The main purpose of reducing the number ofswaps is to
use the computational resourcesthat are available in terms of
processor speed,memory and storage.

Enhanced Gap Sequencing shell sort algorithm provides
an efficient and better approach todecrease the number of
comparisons as wellas number of swaps. Enhanced Gap
Sequencing shell sort algorithm results least number
ofswaps on any size of data. This algorithm worksmore
efficiently as the size of data grows.

This algorithm has described a simple and easyformula
that calculates the values of N1bythe formula N1= floor
(3n/4), where ‘n’ is the number of elements to be sorted, and
then findvalues of N2;N3; ……….. ; Nkby placing valuesof
N1;N2;N3; ……….; Nk-1in place of `n' in theformula. This
algorithm improves the performance of the existing
algorithms up to 60% insome cases.

VI. ACKNOWLEDGMENT

Anumber of people have made this paper possible. In
particular I wish to thankmy friend, Mr. Jitender Kumar, for
providingmuch needed help and support and my teachersfor
their guidance and displaying inconceivablepatience. My
family and friends for constantly asking me when I would
finish my thesis.And lastly,my mother for teaching me never
to giveup on any endeavor.

VII. REFERENCES

[1]. http://en.wikipedia.org/wiki/Shellsort

[2]. http://faculty.simpson.edu/lydia.sinapova/www/cmsc250/L
N250 Weiss/L12-ShellSort.htm

AgamVerma et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,113-118

© 2010, IJARCS All Rights Reserved 118

[3]. BasitShahzad, and Muhammad Tanvir Afzal, “Enhanced
Shell Sorting Algorithm”, World Academy of Science,
Engineering and Technology 3 2007.

[4]. Robert Sedgewick “Analysis of Shell sort and Related
Algorithms” Proceedings of the Fourth Annual European
Symposiumon Algorithm.

[5]. MarcinCiura “Best Increments for theAverage Case of
Shell sort”,Proceedingsof the 13th International
SymposiumonFundamentals of Computation Theory,2001,
pp: 106117

	Insertion Sort:
	Shell Sort:

