
Volume 4, No. 11, Nov-Dec 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 109

ISSN No. 0976-5697

Testing Aspect Oriented Programs by Automated Process Based on Unified Modelling
Diagrams

Sunidhi Sharma
Department of Computer Science

Chandigarh Engineering College, Landran
Mohali, India

sunidhisharma24@yahoo.com

Geetanjali Babbar
Department of Computer Science

Chandigarh Engineering College, Landran
Mohali, India

cecm.cse.gbi@gmail.com

Abstract: Aspect Oriented Programming is an emerging software engineering paradigm that offers new constructs in order to improve separation
of crosscutting concerns into single units called aspects. AspectJ, the most used aspect-oriented programming language, represents an extension
o java. In all the previous years, object oriented language has been widely used but today Aspect Oriented Programming is gaining a lot of
popularity because this language has solved most of the problems of crosscutting concerns, which makes the code understandable and simplifies
software maintenance and evolution. It provides new constructs namely join points, point cuts, advices and aspects. Because of new constructs,
new types of faults may rise. So, existing testing techniques are not adequate for testing aspect-oriented programs. As a result, we need to add
new techniques in order to get an appropriate solution. In this paper, an approach based upon UML diagrams for testing aspect-oriented
programs automatically is presented. The approach focuses on generating test sequences based on the attributes available in input aspect oriented
code. In the research, I have proposed an automatic fault detection mechanism with the help of UML diagrams which can detect various errors.
Sequences will be generated automatically and fault detection in Aspect-Oriented codes will validate the correct working and errors.

Keywords: Aspect Oriented Programming, Joinpoints, Object Oriented Programming, Pointcuts, UML Class Diagrams, Test Sequences

I. INTRODUCTION

Aspect Oriented Programming is a software engineering
paradigm[1] that offers new constructs, such as join points,
pointcuts, advices, and aspects in order to improve
separation of crosscutting concerns. The new constructs[2]
bring new types of programming faults with respect to
crosscutting concerns, such as incorrect pointcuts, advice, or
aspect precedence. In fact, existing object-oriented testing
techniques are not adequate for testing aspect-oriented
programs[3]. As a result, new testing techniques must be
developed. The Related approach focuses on integration of
one or several crosscutting concerns to a primary concern
and tests whether or not an aspect-oriented program[4]
conforms to its expected crosscutting behavior.

In our scheme, test sequences[5][6] will be generated
based on the attributes available in input Aspect oriented
code. Previously, test sequences will be generated manually.
But in the present research test sequences will be based on
interaction between aspects and primary models[7][8], and
verifies the execution of the selected sequences
automatically. In our research we will propose an automatic
fault detection mechanism with help of uml diagrams[9]
which can detect incorrect advice type errors, weak
pointcuts, incorrect Precedence errors. We have proposed an
automatic scheme [10]rather than the manual selection
which was in use previously. Sequences will be generated
by proposed scheme automatically while detection of faults
in Aspect Oriented codes which will validate the correct
working and starting malfunctioning (errors)[1].
 Purpose of the research work is:
a) To find the faults that specific to aspectual structures.
b) To provide solution for incorrect advice type, strong or

weak pointcut expressions, and incorrect aspect
precedence.

c) To find the faults that are hidden in the Aspect
Oriented Program. Hidden faults are those which does
not effect the working of the program but the actual
results does not match with the expected results.

d) To make whole procedure automatic one, so that with
the simplicity we can get our results and find the faults
easily.

II. RELATED WORK

Testing of aspect oriented programs is a new
programming paradigm. Many researchers had contributed
their research in the field of testing AOP.

Somayeh Madadpour, Seyed-Hassan Mirian [1]
explained that Aspect-Oriented Programming is a software
engineering paradigm that offers new constructs, such as
join points, point cuts, advices, and aspects in order to
improve separation of crosscutting concerns. This paper
provides an activity-based testing approach for aspect-
oriented programs. Proposed approach can help testers
reveal several types of faults that specific to aspectual
structures, such as incorrect advice type, strong or weak
point cut expressions, and incorrect aspect precedence.

Philippe Massicotte, Linda Badri, Mourad Badri [2]
described that Aspect-Oriented Programming is an emerging
software engineering paradigm. It offers new constructs and
tools improving separation of crosscutting concerns into
single units called aspects. Authors present, in this paper, a
new aspects-classes integration testing strategy and the
associated tool. The adopted approach consists of two main
phases: (1) static analysis: generating testing sequences
based on dynamic interactions between aspects and classes,
(2) dynamic analysis: verifying the execution of the selected
sequences. Authors focus, in particular, on the integration of
one or more aspects in the control of collaborating classes.

Sunidhi Sharma et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,109-112

© 2010, IJARCS All Rights Reserved 110

Mayank Singh, Shailendra Mishra [4] says that testing
of aspect oriented programs is a new programming
paradigm. Many researchers had contributed their research
in the field of testing AOP. Mutation testing is an emerging
area of research in testing of aspect oriented programming.
The effectiveness of mutation testing depends on finding
fault types and designing of mutation operators on the basis
of faults identified. Therefore the effectiveness of testing
depends upon the quality of these mutation operators. We
already have the mutation operators for procedural and
object oriented languages, but for aspect oriented language
only a few researchers have contributed. In this paper we
will study in detail about the fault types and related mutation
operators for AspectJ language. This paper also proposes the
implementation framework to implement these mutation
operators automatically.

Swati Tahiliani, Pallavi Pandit [9] explained that apart
from application modeling, the Unified Modeling Language
(UML) is also used for designing the tests on various levels
(unit, integration, system tests). Authors have listed various
approaches based on UML diagrams, and the Use Case
based approaches have been described too. As future work,
these approaches could be further compared and analyzed
for determining the best approach.

Guoquing Xu [13] approach given by Rothermal and
Harrold is based only on static analysis but most of the time
dynamic analysis is required because of calling of external
methods. Guoquing Xu gave an approach which is based on
RETSA framework. He gave another approach on aspect
oriented program. This approach is an extension of JIG used
by Rothermal and Harrold i.e. AJIG (Aspect-J Inter Module
Graph). It is a new control flow representation for aspect-J
softwares which captures the semantic intricacies of aspect-
related interactions.

III. PROPOSED APPROACH: AUTOMATED TESTING
ON ASPECT ORIENTED PROGRAMMING

Our research is focused on providing a testing
environment for AOP based program[11][12]. Aim of this
research is to test an AOP code to find Strong and weak
Point-Cuts and weak join-Points.

In this paper, we present a framework for automated
generation of test data[14] for aspect oriented programs.
Research starts with designing the UML class diagram for
the classes and aspect. UML diagram[15] contains the useful
information about the classes and aspect. We have used
UML design tool i.e. ArgoUml. This tool help in creating
the UML diagram for a class by reading its source code. By
using the source code of the program which is used for
testing, we generate a UML class diagram. As ArgoUml do
not generate UML diagram for aspects, we have created it
our-self by modifing ArgoUml class diagram. After creating
class uml diagram and uml diagram for aspect, we have
created a XMI file based on the uml diagram. This xmi file
is used during testing to get information about our main
classes and aspects.

After creating uml diagram and generating xmi file
from that, next we have developed a program our main
testing program. This program reads the XMI files node by
node, extract useful information, send information to a
helping program to get some information from aspect file
and perform testing based on information. XMI file contain
information in the form of various nodes, and starting from

first node our program can read whole XMI node by node.
In the beginning our program read XMI file and display
node names and attributes on the screen as output. While
reading the XMI file our program looks for main class and
aspect data in the XMI file. Whenever program gets either
main class or aspect data in XMI file it extracts main class
method names and return types and aspect's point-cut name
from the file. This information is stored by the program as it
is needed for testing. After getting required information
from XMI file, aspect name and point-cut name is
forwarded to another program. This program reads the
aspect file and fetch useful information from the file.
Program will use point-cut's name to find the required point-
cut in the file. This point-cut information will be used for
testing.

To extract only required information from the point-
cuts our program uses a processing block, that process the
point-cuts that are stored after separating the user defined
point-cut and parse the unwanted data from the point-cuts.
After parsing the point-cut we are left with the name of join
point(i.e. method that will generate this join-point) and
return type. After getting this information, control will be
returned to main testing program where information
gathered from aspect file and XMI file will be compared. In
comparison we will check if a point-cut has a join point in
the main program and all the required join-points are picked
up in aspect or not .

In main testing program we have defined a method
findFault() this method compare the information collected
from xmi and aspect file and display results in the form of
Strong, weak point-cuts and weak join-points. Following is
the flow chart for flow of control:

Figure 1. Flow Chart of Flow of Control

Sunidhi Sharma et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,109-112

© 2010, IJARCS All Rights Reserved 111

IV. PROPOSED ALGORITHM

Following are the steps of the algorithm:
Step1: Building class model of primary concern.
Step2: Building an Aspect Oriented Code with the main

class and the aspect class.
Step3: Main class containing the actual code of the

problem and Aspect class containing the authentication part.
Step4: Uml diagram will be produced for the Aspect

Oriented Code (main class) with the AgroUML tool.
Step5: Uml diagram will be created for the aspect class.
Step6: XMI file will be created based on the UML

diagrams.
Step7: XMI file will corresponds to main class.
Step8: Main testing tool (program) will be created.
Step9: Extracts useful information from XMI and

aspect file separately.
Step10: Comparison between aspect class and main

class automatically.
Step11: Finding faults.
Step12: End.

V. RESULTS AND DISCUSSIONS

Our research is focused on providing a testing
environment for AOP based program. Aim of this research
is to test an AOP code to find Strong and weak Point-Cuts
and weak join-Points automatically. We will collect the
useful information from the main class and aspect class
through XMI File. We will extract the results by comparing
the XMI from aspect file. In main testing program we have
defined a method findFault(), this method compares the
information collected from xmi and aspect file and display
results in the form of Strong, weak point-cuts and weak join-
points.

Strong point-cuts are those point-cuts which
corresponds to exactly same method in the main program,
weak point-cuts are those point-cuts which are defined in
our aspect but don’t have a corresponding method in the
main program. Weak point-cuts can be a result of type e.g.
we have given a wrong method name in the point-cut or we
have specified a wrong access-specifier. Weak join-points
refer to methods from main class which do not have any
point-cut in the aspect. That means when execution control
will be transferred to these methods aspect code will not be
notified.

If a join-point from the main class is picked up by a
point-cut in the aspect then it is a strong point-cut. Because
when join-point will occur in main program, in aspect
corresponding point-cut will be notified and associated
advice will run and perform the required action. That means
a strong point-cut will result in the expected action.

If a point-cut defined in aspect has no corresponding
join-point in main class then it is a weak point-cut. Because
it is defined unnecessarily and it will never pick any join-
point from the main class. This type of point-cuts are weak
as they have no purpose in the aspect. A weak point-cut may
be a result of a method removal, suppose a method has been
removed from main class, or programmatically error like
programmer has defined a wrong name. Weak point-cut are
hard to find as compiler will not flash any error for a weak
point-cut.

If there is no point-cut defined in aspect for a join-point
from main class then that is a weak join point. Aspect will
never run any advice for a weak join-point as it will never
picked up by any point-cut. As aspect will never get any
notification for a weak join-point therefore aspect will not
perform any action regarding this weak join-point. Now
there are two scenarios, a join-point can be left on a purpose
like we don't need our aspect to perform any action on the
occurrence of the join point. Or it may be a
programmatically error, that join point is left by mistake. In
latter case, where a join-point should be picked out by point-
cut but it is left by mistake, we may expect some unexpected
behaviour and result by the main program. Our testing
program will show all the weak join-points to the
programmer, therefore if any join point left by mistake
program modify aspect accordingly.

Fig ure 2. Result showing the strong pointcuts, weak pointcuts and weak

joinpoints for Aspect Oriented Code.

VI. CONCLUSION

We present in this paper, the UML based testing
approach on Aspect-oriented programs. Our approach is
helpful in finding out the aspectual faults automatically[16]
from the aspect-oriented programs. The faults are of various
kinds like incorrect advice type, weak or strong pointcut
expressions and incorrect precedence[17].

We have worked for this testing in four phases: (1)
Firstly, we will have Aspect Oriented Code which will have
to be tested automatically. (2) Secondly, UML Diagram will
be created by me based on Aspect Oriented Code. Further,
XMI file will be created based on the UML diagram. (3)

Sunidhi Sharma et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,109-112

© 2010, IJARCS All Rights Reserved 112

Thirdly, the main testing application has been developed
through which testing of Aspect Oriented Program will be
done. (4) Finally, in the main step, comparison of Aspect
Class with the main class is done. We have defined a
method named findFault which will find out the hidden
faults and give us the directions to correct it.

Currently, our approach is based on the automatic
testing of aspect code where with the help of single java
application, we are able to find the hidden faults such as
weak pointcuts, weak joinpoints and strong pointcuts. In this
approach, we have used UML Class Diagram. Furthermore,
for the future scope, we will try this automatic procedure on
some other UML Diagrams.

VII. ACKNOWLEDGMENT

It is my pleasure to be indebted to various people, who
directly or indirectly contributed in the development of this
work and who influenced my thinking, behavior and acts
during the course of study.

First and foremost, I would like to express my sincere
gratitude to my guide Mrs. Geetanjali Babbar, Assistant
Professor. I was privileged to experience a sustained
enthusiastic and involved interest from her side. I am
thankful for her support, cooperation and motivation
provided to me during the training for constant inspiration,
presence and blessings. Lastly, I would like to thank the
almighty and my parents for their moral support and my
friends with whom I shared my day-to-day experience and
received lots of suggestions that improved my quality of
work.

VIII. REFERENCES

[1]. Somayeh Madadpour, Seyed-Hassan Mirian-Hosseinabadi,
Vahdat Abdelzad, Testing Aspect-Oriented Programs with
UML Activity Diagrams, International Journal of Computer
Applications, Volume 33, No-8, pp 23-29, November 2011

[2]. Philippe Massicotte, Linda Badri, Mourad Badri, Towards a
Tool Supporting Integration Testing of Aspect-Oriented
Programs, Journal of Object Technology, Volume 6, no. 1
(January 2007), pp. 67-89

[3]. Liu, C. H., and Chang, C. W., A State-Based Testing
Approach for Aspect-oriented Programming, In Journal of
Information Science and Engineering , pp. 11-31, 2008

[4]. Mayank Singh, Shailendra Mishra, Mutant Generation for
Aspect Oriented Programs, Indian Journal of Computer
Science and Engineering, Vol 1, No 4, pp 409-415, 2011.

[5]. Reza Meimandi Parizi, Abdul Azim Abdul Ghani, Rusli
Abdullah, and Rodziah Atan, On the Applicability of
Random Testing for Aspect-Oriented Programs,

International Journal of Software Engineering and its
Applications, Vol. 3, No. 4, October, 2009

[6]. Hilsdale and J. Hugunin, Advice weaving in AspectJ, In
proc 3rd International Conference on Aspect-
OrientedSoftware Development pages 26–35, 2004

[7]. Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott,
C. M., Patton, G. C., and Horowitz, B. M., Model-based
testing in practice, In Proc. of the 21st International Conf.
on Software Engineering (ICSE'99), 1999.

[8]. Xu, W., Xu, D., and Wong, W. E., Testing Aspect-Oriented
Programs with UML Design Models, International Journal
of Software Engineering and Knowledge Engineering, Vol.
18, No. 3, pp. 413-437, May 2008.

[9]. Swati Tahiliani, Pallavi Pandit, A survey of UML- based
approaches to testing, International Journal Of
Computational Engineering Research (ijceronline.com)
Vol. 2 Issue. 5

[10]. Grady Booch, Dr. James Rumbaugh, Dr. Jacobson, The
Unified Modeling Language(Addison-Wesley Professional,
sept 1998).

[11]. Marlon Dumas and Arthur H.M ter Hofstede, UML
Activity diagrams as a Workflos Specification Language, In
proceedings of the UML’2001 conference

[12]. Cui, Z., Wang, L., and Li, X., Modeling and integrating
aspects with uml activity diagrams, Proceedings of the
2009 ACM symposium on Applied Computing, 2009

[13]. G. Xu, A regression tests selection technique for aspect
oriented programs, In Workshop on Testing Aspect-
Oriented Programs, pages 15–20, 2006.

[14]. Badri, B., Badri, L., Fortin, M. B., Automated State-Based
Unit Testing for Aspect-Oriented Programs: A Supporting
Framework, International Journal of Object Technology,
vol. 8, no. 3, pp. 121-126, 2009

[15]. T. Xie and J. Zhao, A framework and tool supports for
generating test inputs of AspectJ programs, InProc. 5th
International Conference on Aspect-Oriented Software
Development pages 190–201, March 2006.

[16]. Xie, T., Zhao, J., Marinov, D., and Notkin, D., Automated
test generation for AspectJ programs, AOSD 2005
Workshop on Testing Aspect-Oriented Programs, Chicago,
2005

[17]. Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C.,
Baumgartner, M., Sostawa, B., Zölch, R., and Stauner, T.,
One evaluation of model-based testing and its automation,
In Proc. of the 27th International Conf.on Software
Engineering (ICSE'05), 2005.

http://www.jot.fm/contents/issue_2007_01.html�
http://www.jot.fm/contents/issue_2007_01.html�
http://www.jot.fm/contents/issue_2007_01.html�

	INTRODUCTION
	RELATED WORK
	PROPOSED APPROACH: AUTOMATED TESTING ON ASPECT ORIENTED PROGRAMMING
	PROPOSED ALGORITHM
	RESULTS AND DISCUSSIONS
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

