
Volume 4, No. 11, Nov-Dec 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 166

ISSN No. 0976-5697

Software Fault Prediction using Inteligence Techniques
Anita Nair

Department of Computer Science & Engineering,
Shriram college of Engineering & Management (SRCEM)

Banmore, Gwalior, India
anita.nair24@gmail.com

Amit Arya
Asst. Professor Department of CS

Shriram college of Engineering & Management
Banmore, Gwalior, India
amitaryaaol@gmail.com

Anurag Shrivastava

Department of Computer Science & Engineering,
 Arya institute of Engineering & Technology

Jaipur India
Nrg.shrivastava@gmail.com

Vishal Shrivastava
Asso. Professor Department of CS

Arya institute of Engineering &Technology
Jaipur, India

Vishal500371@yahoo.co.in

Abstract— Decision tree (DT) have been successfully applied for solving both classification and regression problems in many applications. This
paper evaluates the capability of DT (Decision Tree) in predicting defect-prone software and compares its prediction performance against three
intelligence technique in the context of PC1 dataset. we have used PC1 dataset (NASA dataset) which has sufficient parameters for analysis. As
PC1 data is highly unbalanced data different balancing techniques have been applied. Ten-fold cross validation is performed throughout the
study.

Keywords—Decision tree (DT), Multilayer Perceptron (MLP), Support Vector Machine (SVM),). synthetic minority over- sampling technique
(SMOTE)

I. INTRODUCTION

Studies have shown that the majority of defects are
often found in only a few software modules[1,2].Such
defective software modules may cause software failures,
increase development and maintenance costs, and decrease
customer satisfaction[3]. software fault prediction models
which allow software engineers to focus development
activities on fault-prone code, thereby improving software
quality and making better use of resources[4]. Identification
of defect-prone software modules is commonly achieved
through binary prediction models that classify a module into
either defective or not-defective category. These prediction
models almost always utilize static product metrics, which
have been associated with defects, as independent
variables[5]. Recently, DT (Decision Tree) have been
introduced as an effective model in both machine learning
and data mining communities for solving both classification
and regression problems [6,7]. It is therefore motivating to
investigate the capability of DT in software fault prediction.

The objective of this paper is to evaluate the capability
of DT in predicting defect-prone software modules and
compare its prediction performance against three well-
known statistical and machine learning models in the
context of PC1 NASA datasets. The compared models are
one statistical classifiers techniques: (i) Logistic Regression
(LR), one neural networks techniques: (i) Multi-layer
Perceptrons (MLP) and one tree structured classifiers
techniques:(i) Decision Trees (DT). For more details on
these techniques see[8,9,10,11].

The rest of this paper is organized as follows. Section 2
reviews the research done in the field of software fault
prediction. Section 3 overviews the data description and data
preparation, Section 4 overviews the techniques applied in

this paper, section 5 presents the results and discussions.
Finally, Section 6 concludes the paper.

II. LITERATURE SURVEY

Software reliability is a critical field in software
engineering and an important facet of software quality.
Every organization wants to assess the quality of the
software product as early as possible so that poor software
design leading to lower quality product can be detected and
hence be improved or redesigned[12]. This would lead to
significant savings in the development costs, decrease the
development time, and make the software more reliable. A
wide range of statistical and machine learning techniques
have been developed and applied to predict defects in
software. Basili et al. investigated the impact of the suite of
object-oriented design metrics on the prediction of fault-
prone classes using logistic regression[13]. Khoshgoftaar et
al. investigated the use of the neural network as a model for
predicting software quality. They used large
telecommunication system to classify modules as fault prone
or not fault-prone[14]. Disadvantage of neural network that
it is learning in form of weights and human cannot interpret
any knowledge from the weights. Khoshgoftaar et al.
applied regression trees with classification rule to classify
fault-prone software modules using a very large
telecommunications system as a case study[15]. the
advantage of DT is giving the if then rules that is human
readable and understandable format. By using these rules we
can design early warning prediction system for software
fault prediction.

In recent years, a number of alternative modeling
techniques have been proposed for software fault prediction.
Alternative models include artificial neural networks,
analogy-based reasoning, fuzzy system and ensemble

Anita Nair et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,166-169

© 2010, IJARCS All Rights Reserved 167

techniques. Ensemble is used to combine the result of
individual methods [16,17]. Unfortunately the accuracy of
these models is not satisfactory so there is always a scope
for new software fault prediction techniques.

III. DATA DESCRIPTION AND DATA
PREPARATION

The dataset used in this study is mission critical NASA
software projects, which are publicly accessible from
PROMISE Software Engineering Repository. data set made
publicly available in order to encourage repeatable,
verifiable, refutable, and/or improvable predictive models of
software engineering. dataset contains 1109 total Number of
instances, each instances contains 21 software metrics
(independent variables) and the associated dependent
Boolean variable: Defective (whether or not the module has
any defects). 21 independent metrics further divided in 5
different lines of code measure, 3 McCabe metrics, 4 base
Halstead measures, 8 derived Halstead measures, and a
branch-count. since data set contain, 93% non-fault and 7%
fault instances. It is clear that the dataset is highly
unbalanced in terms of proportion of fault vs. non-fault.
Consequently, before supplying this data to the intelligence
techniques, balancing is done so that the classifier while
predicting will not be nfluenced by the majority class, that
is, non-fault. The balancing is done using under-sampling
and over-sampling for balancing the data set during cleaning
and data preparation.

We used the WEKA for SMOTE, implementation
available at
http://www.softpedia.com/get/Internet/Servers/Database-
Utils/Weka.shtml.

Finally, we normalized the data set.
SMOTE is a technique in which the minority class is

over-sampled by creating synthetic samples. The minority
class is over-sampled by taking out each sample and
introducing synthetic samples along the line segments
joining any/all of the k minority class nearest neighbours.
This approach effectively forces the decision region of the
minority class to become more general. Further, under-
sampling is a technique in which some of the samples
belonging to the majority class are removed and combined
with the minority class samples. For example, under-
sampling (25%) means that the majority class is reduced to
25% of its original size[18]. Then, over-sampling is a
technique in which the samples belonging to the minority
class are replicated a few times and combined with the
majority class samples. For example, over-sampling (100%)
means that the majority class is replicated once. After the
dataset are balanced using one of the above-mentioned two
methods, intelligence techniques is invoked. Also, ten-fold
cross validation is performed throughout the study. Further,
sensitivity, specificity and accuracy are computed for each
data balancing method.

The quantities employed to measure the quality of the
classifiers are sensitivity, specificity and accuracy, which
are defined as follows[19]:

Sensitivity is the measure of proportion of the true
positives, which are correctly identified.

Sensitivity = True positive / (True positive + False
negative)

Specificity is the measure of proportion of the true
negatives, which are correctly identified.

Specificity = True negative / (True negative + False
positive)

Accuracy is the measure of proportion of true positives
and true negatives, which are correctly identified.

Accuracy = (True positive + True negative) / (True
positive + True negative +False positive + False negative)

IV. OVERVIEW OF TECHNIQUES EMPLOYED

In the following, we now present an overview of the
techniques applied in this paper.

A. Multilayer perceptron (mlp):
Multilayer Perceptron (MLP) is an example of an

artificial neural network. It is used for solving different
problems, example pattern recognition, interpolation, etc. It
is an advancement to the perceptron neural network model.
With one or two hidden layers, they can solve almost any
problem. In a popular form of ANN called the multi-layer
perceptron (MLP), all nodes and layers are arranged in a
feed forward manner. The first or the lowest layer is called
the input layer where external information is received. The
last or the highest layer is called the output layer where the
network produces the model solution. In between, there are
one or more hidden layers, which are critical for ANNs to
identify the complex patterns in the data. A cyclic arcs from
a lower layer to a higher layer connect all nodes in adjacent
layers. The parameters (arc weights) of a neural network
model need to be estimated before the network can be used
for prediction purposes. The process of determining these
weights is called training.

B. Support vector machine (svm):
A Support Vector Machine (SVM) is a learning

technique that is used for classifying unseen data correctly.
For doing this, SVM builds a hyperplane, which separates
the data into different categories. The dataset may or may
not be linearly separable. By "linearly separable" we mean
that the cases can be completely separated (i.e., the cases
with one category are on the one side of the hyperplane and
the cases with the other category are on the other side). . The
SVM is a powerful learning algorithm based on recent
advances in statistical learning theory (Vapnik, 1998).
SVMs are learning systems that use a hypothesis space of
linear functions in a high dimensional space, trained with a
learning algorithm from optimization theory that
implements a learning bias derived from statistical learning
theory (Cristianini and Shawe-Taylor, 2000). SVMs have
recently become one of the popular tools for machine
learning and data mining and can perform both classification
and regression.

C. Decision tree(DT):
A decision tree is a predictive machine-learning model

that decides the target value (dependent variable) of a new
sample based on various attribute values of the available
data. The internal nodes of a decision tree denote the
different attributes, the branches between the nodes tell us
the possible values that these attributes can have in the
observed samples, while the terminal nodes tell us the final
value (classification) of the dependent variable. The J48
Decision tree classifier follows the following simple
algorithm. In order to classify a new item, it first needs to
create a decision tree based on the attribute values of the

Anita Nair et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,166-169

© 2010, IJARCS All Rights Reserved 168

available training data. So, whenever it encounters a set of
items (training set) it identifies the attribute that
discriminates the various instances most clearly. This
feature that is able to tell us most about the data instances so
that we can classify them the best is said to have the highest
information gain. Now, among the possible values of this
feature, if there is any value for which there is no ambiguity,
that is, for which the data instances falling within its
category have the same value for the target variable, then we
terminate that branch and assign to it the target value that we
have obtained.

V. RESULTS

Results of above three techniques is as follows”

A. SVM:
=== Summary ===
Correctly Classified Instances 310 89.0931 %
Incorrectly Classified Instances 23 10.9069 %
Mean absolute error 0.0691
Root mean squared error 0.2628
Relative absolute error 53.131 %
Root relative squared error 103.6412 %
Coverage of cases (0.95 level) 93.0931 %
Mean rel. region size (0.95 level) 50 %
Total Number of Instances 333
=== Confusion Matrix ===
 a b <-- classified as
 0 23 | a = TRUE
 0 310 | b = FALSE

B. J-48:
=== Summary ===
Correctly Classified Instances 310 94.0931 %
Incorrectly Classified Instances 23 6.9069 %
Mean absolute error 0.1131
Root mean squared error 0.2542
Relative absolute error 87.0291 %
Root relative squared error 100.2537 %
Coverage of cases (0.95 level) 100 %
Mean rel. region size (0.95 level) 100 %
Total Number of Instances 333
=== Confusion Matrix ===
 a b <-- classified as
 0 23 | a = TRUE
 0 310 | b = FALSE

C. MLP:
=== Summary ===
Correctly Classified Instances 308 92.4925 %
Incorrectly Classified Instances 25 7.5075 %
Kappa statistic 0.0547
Mean absolute error 0.09
Root mean squared error 0.2562
Relative absolute error 69.259 %
Root relative squared error 101.02 %
Coverage of cases (0.95 level) 95.7958 %
Mean rel. region size (0.95 level) 55.7057 %
Total Number of Instances 333
=== Confusion Matrix ===
 a b <-- classified as
 1 22 | a = TRUE

 3 307 | b = FALSE
From the above result it is clearly seen that Decision

Tree that is J 48 gives the best result in compare to other two
techniques.

VI. CONCLUSION

Fault prediction modeling is an important area of
research and the subject of many previous studies.These
studies typically produce fault prediction models which
allow software engineers to focus development activities on
fault-prone code, thereby improving software qualityand
making better use of resources. The term ‘fault’ is used
interchangeably in this study with the terms ‘defect’ or ‘bug’
to mean a static faultin software code. It does not denote a
‘failure’ (i.e. the possible result of a fault occurrence)This
models help us many ways. In any software project, there
can be a number of faults. It is very essential to deal with
these faults and to try to detect them as early as possible in
the lifecycle of the project development. Predict the fault
from the software helps us to make our software without any
fault.

VII. REFERENCES

[1]. N.Fenton and N.Ohlsson," Quantitative analysis of faults
and failures in a complex software system", IEEE
Transactions on Software Engineering, 2000, pp.797-814

[2]. A. Koru and J. Tian, " An empirical comparison and
characterization of high defect and high complexity modules
", Journal of Systems and Software, 2003, pp. 153-163

[3]. A. Koru and H. Liu, 2005," Building effective defect-
prediction models in practice", IEEE Software, 2005, pp. 23–
29.

[4]. Karim O. Elish and Mahmoud O. Elish,"Predicting defect-
prone software modules using support vector machines", The
Journal of Systems and Software 81,2008,pp.649–660

[5]. K. Emam, S. Benlarbi , N. Goel and S.Rai, " Comparing
case-based reasoning classifiers for predicting high risk
software components", Journal of Systems and Software 55
(3),2001,pp.301–310.

[6]. L.Breiman,"Random forests", Machine Learning
45,2001,pp.5–32.

[7]. T.Khoshgoftaar, E.Allen and J.Deng,"Using regression trees
to classify fault-prone software modules", IEEE Transactions
on Reliability 51 (4),2002,pp. 455–462

[8]. J.Han and M.Kamber, "Data Mining: Concepts and
Techniques "second ed.,2001,Morgan Kauffman

[9]. D. Hosmer and S. Lemeshow, " Applied Logistic
Regression", second ed.,2000 John Wiley & Sons, New
York.

[10]. R.Duda,P. Hart and D. Stork," Pattern Classification",
second ed.,2001,John Wiley & Sons, New York.

[11]. R.Webb," Statistical Pattern Recognition" second ed.,2002,
John Wiley & Sons, New York

[12]. R. Malhotra and A. Jain,"Fault Prediction Using Statistical
and Machine Learning Methods for Improving Software
Quality",Journal of Information Processing Systems, Vol.8,
No.2,2012, pp. 241-262

Anita Nair et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,166-169

© 2010, IJARCS All Rights Reserved 169

[13]. V. Basili,L.Briand and W.Melo," A validation of object-
oriented design metrics as quality indicators", IEEE
Transactions on Software Engineering 22 (10),1996, pp.
751–761.

[14]. T. Khoshgoftaar, E. Allen,J. Hudepohl and S. Aud,"
Application of neural networks to software quality modeling
of a very large telecommunications system", IEEE
Transactions on Neural Networks 8(4),1997, pp. 902–909.

[15]. T. Khoshgoftaar, E. Allen and J. Deng," Using regression
trees to classify fault-prone software modules" IEEE
Transactions on Reliability 51 (4), 2002, pp. 455–462.

[16]. K. Vinay Kumar, V. Ravi and Mahil Carr, “Software Cost
Estimation using Soft Computing Approaches,” Handbook
on Machine Learning Applications and Trends: Algorithms,

Methods and Techniques, Eds. E. Soria, J.D. Martin, R.
Magdalena, M.Martinez, A.J. Serrano, IGI Global, USA,
2009.

[17]. J.S.Pahariya, V. Ravi, M. Carr and M.Vasu,“ Computational
Intelligence Hybrids Applied to Software Cost Estimation”,
International Journal of Computer Information Systems and
Industrial Management Applications, ISSN: 2150-7988
Vol.2,2010, pp.104-112

[18]. D.Anil Kumar and V. Ravi, "Predicting credit card customer
churn in banking using data mining" , international journal of
data analysis techniques and strategies, vol.1(1),2008,pp. 4-
28

[19]. T. Fawcett, "An introduction to ROC analysis", Pattern
Recognition Letters, Vol. 27,2006,pp.861–874.

	REFERENCES

