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Abstract— Decision tree (DT) have been successfully applied for solving both classification and regression problems in many applications. This 
paper evaluates the capability of  DT (Decision Tree) in predicting defect-prone software  and compares its prediction performance against three 
intelligence technique in the context of PC1 dataset. we have used PC1 dataset (NASA dataset) which has sufficient parameters for analysis. As 
PC1 data is highly unbalanced data different balancing techniques have been applied. Ten-fold cross validation is performed throughout the 
study.  
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I. INTRODUCTION 

Studies have shown that the majority of defects are 
often found in only a few software modules[1,2].Such 
defective software modules may cause software failures, 
increase development and maintenance costs, and decrease 
customer satisfaction[3]. software fault prediction models 
which allow software engineers to focus development 
activities on fault-prone code, thereby improving software 
quality and making better use of resources[4]. Identification 
of defect-prone software modules is commonly achieved 
through binary prediction models that classify a module into 
either defective or not-defective category. These prediction 
models almost always utilize static product metrics, which 
have been associated with defects, as independent 
variables[5]. Recently, DT (Decision Tree) have been 
introduced as an effective model in both machine learning 
and data mining communities for solving both classification 
and regression problems [6,7]. It is therefore motivating to 
investigate the capability of DT in software fault prediction. 

The objective of this paper is to evaluate the capability 
of DT in predicting defect-prone software modules and 
compare its prediction performance against three well-
known statistical and machine learning models in the 
context of PC1 NASA datasets. The compared models are 
one statistical classifiers techniques: (i) Logistic Regression 
(LR), one neural networks techniques: (i) Multi-layer 
Perceptrons (MLP) and one tree structured classifiers 
techniques:(i) Decision Trees (DT). For more details on 
these techniques see[8,9,10,11]. 

The rest of this paper is organized as follows. Section 2 
reviews the research done in the field of software fault 
prediction. Section 3 overviews the data description and data 
preparation, Section 4 overviews the techniques applied in 

this paper, section 5 presents the results and discussions. 
Finally, Section 6 concludes the paper. 

II. LITERATURE SURVEY 

Software reliability is a critical field in software 
engineering and an important facet of software quality. 
Every organization wants to assess the quality of the 
software product as early as possible so that poor software 
design leading to lower quality product can be detected and 
hence be improved or redesigned[12]. This would lead to 
significant savings in the development costs, decrease the 
development time, and make the software more reliable. A 
wide range of statistical and machine learning techniques 
have been developed and applied to predict defects in 
software. Basili et al. investigated the impact of the suite of 
object-oriented design metrics on the prediction of fault-
prone classes using logistic regression[13]. Khoshgoftaar et 
al. investigated the use of the neural network as a model for 
predicting software quality. They used large 
telecommunication system to classify modules as fault prone 
or not fault-prone[14]. Disadvantage of  neural network that 
it is learning in form of weights and human  cannot interpret  
any knowledge from the weights. Khoshgoftaar et al. 
applied regression trees with classification rule to classify 
fault-prone software modules using a very large 
telecommunications system as a case study[15]. the 
advantage of DT is giving the if then rules that is human 
readable and understandable format. By using these rules we 
can design early warning prediction system for software 
fault prediction. 

In recent years, a number of alternative modeling 
techniques have been proposed for software fault prediction. 
Alternative models include artificial neural networks, 
analogy-based reasoning, fuzzy system and ensemble 
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techniques. Ensemble is used to combine the result of 
individual methods [16,17]. Unfortunately the accuracy of 
these models is not satisfactory so there is always a scope 
for new software fault prediction techniques. 

III. DATA DESCRIPTION AND DATA 
PREPARATION 

The dataset used in this study is mission critical NASA 
software projects, which are publicly accessible from 
PROMISE Software Engineering Repository. data set made 
publicly available in order to encourage repeatable, 
verifiable, refutable, and/or improvable predictive models of 
software engineering. dataset contains 1109 total Number of 
instances, each instances contains 21 software metrics 
(independent variables) and the associated dependent 
Boolean variable: Defective (whether or not the module has 
any defects). 21 independent metrics further divided in 5 
different lines of code measure, 3 McCabe metrics, 4 base 
Halstead measures, 8 derived Halstead measures, and a 
branch-count. since data set contain, 93% non-fault  and 7% 
fault instances. It is clear that the dataset is highly 
unbalanced in terms of proportion of fault vs. non-fault. 
Consequently, before supplying this data to the intelligence 
techniques, balancing is done so that the classifier while 
predicting will not be nfluenced by the majority class, that 
is, non-fault. The balancing is done using under-sampling 
and over-sampling for balancing the data set during cleaning 
and data preparation. 

We used the WEKA for SMOTE, implementation 
available at 
http://www.softpedia.com/get/Internet/Servers/Database-
Utils/Weka.shtml. 

Finally, we normalized the data set. 
SMOTE is a technique in which the minority class is 

over-sampled by creating synthetic samples. The minority 
class is over-sampled by taking out each sample and 
introducing synthetic samples along the line segments 
joining any/all of the k minority class nearest neighbours. 
This approach effectively forces the decision region of the 
minority class to become more general. Further, under-
sampling is a technique in which some of the samples 
belonging to the majority class are removed and combined 
with the minority class samples. For example, under-
sampling (25%) means that the majority class is reduced to 
25% of its original size[18]. Then, over-sampling is a 
technique in which the samples belonging to the minority 
class are replicated a few times and combined with the 
majority class samples. For example, over-sampling (100%) 
means that the majority class is replicated once. After the 
dataset are balanced using one of the above-mentioned two 
methods, intelligence techniques is invoked. Also, ten-fold 
cross validation is performed throughout the study. Further, 
sensitivity, specificity and accuracy are computed for each 
data balancing method. 

The quantities employed to measure the quality of the 
classifiers are sensitivity, specificity and accuracy, which 
are defined as follows[19]: 

Sensitivity is the measure of proportion of the true 
positives, which are correctly identified. 

Sensitivity =  True positive / (True positive + False 
negative) 

Specificity is the measure of proportion of the true 
negatives, which are correctly identified. 

Specificity = True negative / (True negative + False 
positive) 

Accuracy is the measure of proportion of true positives 
and true negatives, which are correctly identified. 

Accuracy = (True positive + True negative) / (True 
positive + True negative +False positive + False negative) 

IV. OVERVIEW OF TECHNIQUES EMPLOYED 

In the following, we now present an overview of the    
techniques applied in this  paper. 

A. Multilayer perceptron (mlp):  
Multilayer Perceptron (MLP) is an example of an 

artificial neural network. It is used for solving different 
problems, example pattern recognition, interpolation, etc. It 
is an advancement to the perceptron neural network model. 
With one or two hidden layers, they can solve almost any 
problem. In a popular form of ANN called the multi-layer 
perceptron (MLP), all nodes and layers are arranged in a 
feed forward manner. The first or the lowest layer is called 
the input layer where external information is received. The 
last or the highest layer is called the output layer where the 
network produces the model solution. In between, there are 
one or more hidden layers, which are critical for ANNs to 
identify the complex patterns in the data. A cyclic arcs from 
a lower layer to a higher layer connect all nodes in adjacent 
layers. The parameters (arc weights) of a neural network 
model need to be estimated before the network can be used 
for prediction purposes. The process of determining these 
weights is called training. 

B. Support vector machine (svm): 
A Support Vector Machine (SVM) is a learning 

technique that is used for classifying unseen data correctly. 
For doing this, SVM builds a hyperplane, which separates 
the data into different categories. The dataset may or may 
not be linearly separable. By "linearly separable" we mean 
that the cases can be completely separated (i.e., the cases 
with one category are on the one side of the hyperplane and 
the cases with the other category are on the other side). . The 
SVM is a powerful learning algorithm based on recent 
advances in statistical learning theory (Vapnik, 1998). 
SVMs are learning systems that use a hypothesis space of 
linear functions in a high dimensional space, trained with a 
learning algorithm from optimization theory that 
implements a learning bias derived from statistical learning 
theory (Cristianini and Shawe-Taylor, 2000). SVMs have 
recently become one of the popular tools for machine 
learning and data mining and can perform both classification 
and regression. 

C. Decision tree(DT): 
A decision tree is a predictive machine-learning model 

that decides the target value (dependent variable) of a new 
sample based on various attribute values of the available 
data. The internal nodes of a decision tree denote the 
different attributes, the branches between the nodes tell us 
the possible values that these attributes can have in the 
observed samples, while the terminal nodes tell us the final 
value (classification) of the dependent variable. The J48 
Decision tree classifier follows the following simple 
algorithm. In order to classify a new item, it first needs to 
create a decision tree based on the attribute values of the 
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available training data. So, whenever it encounters a set of 
items (training set) it identifies the attribute that 
discriminates the various instances most clearly. This 
feature that is able to tell us most about the data instances so 
that we can classify them the best is said to have the highest 
information gain. Now, among the possible values of this 
feature, if there is any value for which there is no ambiguity, 
that is, for which the data instances falling within its 
category have the same value for the target variable, then we 
terminate that branch and assign to it the target value that we 
have obtained. 

V. RESULTS 

Results of above three techniques is as follows” 

A. SVM: 
=== Summary === 
Correctly Classified Instances         310               89.0931 % 
Incorrectly Classified Instances        23                10.9069 % 
Mean absolute error                          0.0691 
Root mean squared error                   0.2628 
Relative absolute error                      53.131  % 
Root relative squared error               103.6412 % 
Coverage of cases (0.95 level)          93.0931 % 
Mean rel. region size (0.95 level)       50      % 
Total Number of Instances                 333    
=== Confusion Matrix === 
   a      b   <-- classified as 
   0    23 |   a = TRUE 
   0   310 |   b = FALSE 
 

B. J-48: 
=== Summary === 
Correctly Classified Instances         310               94.0931 % 
Incorrectly Classified Instances        23                6.9069 %     
Mean absolute error                      0.1131 
Root mean squared error                  0.2542 
Relative absolute error                 87.0291 % 
Root relative squared error            100.2537 % 
Coverage of cases (0.95 level)         100      % 
Mean rel. region size (0.95 level)     100      % 
Total Number of Instances              333     
=== Confusion Matrix === 
   a    b   <-- classified as 
   0   23 |   a = TRUE 
   0  310 |   b = FALSE 

C. MLP: 
=== Summary === 
Correctly Classified Instances         308               92.4925 % 
Incorrectly Classified Instances        25                7.5075 % 
Kappa statistic                                0.0547 
Mean absolute error                      0.09   
Root mean squared error              0.2562 
Relative absolute error                 69.259  % 
Root relative squared error            101.02   % 
Coverage of cases (0.95 level)      95.7958 % 
Mean rel. region size (0.95 level)   55.7057 % 
Total Number of Instances              333      
=== Confusion Matrix === 
   a     b   <-- classified as 
   1    22 |   a = TRUE 

   3   307 |   b = FALSE 
From the above result it is clearly seen that Decision 

Tree that is J 48 gives the best result in compare to other two 
techniques. 

VI. CONCLUSION 

Fault prediction modeling is an important area of 
research and the subject of many previous studies.These 
studies    typically produce fault prediction models which 
allow software engineers to focus development activities on 
fault-prone code, thereby improving software qualityand 
making better use of resources. The term ‘fault’ is used 
interchangeably in this study with the terms ‘defect’ or ‘bug’ 
to mean a static faultin software code. It does not denote a 
‘failure’ (i.e. the possible result of a fault occurrence)This 
models help us many ways. In any software project, there 
can be a number of    faults. It is very essential to deal with 
these faults and to try to detect them as early as possible in 
the lifecycle of the project development. Predict the fault 
from the software helps us to make our software without any 
fault. 
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