
Volume 4, No. 9, July-August 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 188

ISSN No. 0976-5697

HPAARM: Hybrid Parallel Algorithm for Association Rule Mining

Prathyusha Kanakam
Dept. of Computer Science & Engineering
University College of Engineering, JNTUK

Vizianagaram, A.P, India.
prathyusha.kanakam@gmail.com

S Radha Krishna
Assistant Professor of CSE

University College of Engineering, JNTUK
Vizianagaram, A.P, India

rksadhumarch4@rediffmail.com

Abstract: Data mining is one of the vast areas of research and nowadays the research is going on the most important techniques for decision making
processing in data mining. Discovering patterns or frequent episodes in transactions is an important problem in data mining for the purpose of
inferring rules from them. So, mining association rules is considered as powerful technique in the data mining process. The problem of mining
association rules is composed of finding the large itemsets and to generate the association rules from these itemsets. To find the large itemsets, the
dataset must be scanned many times. Many algorithms have been developed to increase the performance of mining association rules through reducing
the number of scans over the dataset. In this paper, we aims to enhance and optimize the process even further by developing techniques to reduce the
number of database scans to just only once. To deal with the huge size of the data, we have designed a parallel algorithm for reducing both the
execution time and the number of scans over the database, in order to minify I/O overheads as much as possible. In this paper, we introduce some
approaches for the implementation of two basic algorithms for association rules discovery (namely Apriori and Eclat). Our approach combines
efficient data structures (Radix Trees) to code different key information (line indexes, candidates). We also introduced different types of efficient
data structures and their merits and de-merits of using them in deducting association rules.

Keywords: Data mining; Patterns, Association Rules; Parallel Algorithm Item Sets; Apriori; Eclat; Radix Trees; Line Indexes;

I. INTRODUCTION

Data mining is an interdisciplinary subfield of computer
science, and it is the computational process of discovering
patterns in large data sets involving methods at the intersection
of artificial intelligence, machine learning, statistics, and
database systems. The overall goal of the data mining process
is to extract information from a data warehouse and transform
it into an understandable structure for further use.

Association Rule Mining (ARM) is one of the most
important data mining tasks. Association rule learning is a
popular and well researched method for discovering interesting
relations between variables in large databases. It is intended to
identify strong rules discovered in databases using different
measures of interestingness [16]. Association rules are
introduced for discovering regularities between products in
large-scale transaction data recorded by point-of-sale (POS)
systems in supermarkets based on the concept of strong rules
[17]. One of the excellent applications of ARM is market-
basket analysis [1], here in the market basket analysis the items
represent products, and the records represent point-of-sales data
at large grocery stores or department stores. For example
association rules might be, “90% of customers buying product
A also buy product B.” like, 80% people who buy a cot may
also buy mattress or who buy a computer may also buy
antivirus software. In addition to the above example from
market basket analysis association rules are employed today in
many application domains including Web usage mining,
intrusion detection, Continuous production, bioinformatics,
Medical diagnosis and Protein sequences, CRM of credit card
business, customer segmentation, catalog design, store layout,
and telecommunication alarm prediction [15].

In ARM for ‘m’ items, there are potentially 2m itemsets,
whose support is above minimum support. Enumerating all
itemsets is thus not realistic. However, for practical cases, only
a small fraction of the whole space of itemsets is above a
minimum support requiring special attention to reduce memory
and I/O overheads. In order to reduce these memory and I/O
overheads, we introduced a hybrid parallel algorithm along
with efficient data structures (Radix trees) to store the dataset
and to perform set operations for the purpose of generating
frequent itemsets and association rules by scanning dataset only
once.

We organized our paper in 8 sections. In section 1, we
introduced ARM. We define our problem statement in section
2. In section 3, we introduce sequential, parallel algorithms and
their characteristics, as well as basic sequential and parallel
frameworks that are widely used in the literature. In section 4,
we introduce different data structures and their merits and de-
merits. Radix Tree data structures and their potential use in the
process of association rules discovery are described in section
5. We proposed a hybrid parallel algorithm for association rule
discovery in order to generate frequent itemsets by combining
the features of both APRIORI and ECLAT algorithms by using
Radix Trees in section 6. We show some results based on our
experimental evaluation in section 7. Finally we conclude our
paper in section 6.

II. PROBLEM STATEMENT

An Association Rule [1] can be formalized as A⇒B, where
A⊂I, B⊂I, and A⋂B=∅. The rule A⇒B holds in the transaction
set D with support s, where s is the percentage of transactions
in D that contain A∪B (i.e., the union of sets A and B, or say,
both A and B). This is taken to be the probability, P (A∪B).

Prathyusha Kanakam et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,188-197

© 2010, IJARCS All Rights Reserved 189

The rule A⇒B has confidence c in the transaction set D, where
c is the percentage of transactions in D containing A that also
contain B. This is taken to be the conditional probability,
P(B∣A).

Rules that satisfy both minimum support threshold (min
sup) and a minimum confidence threshold (min conf) are called
Strong Association Rules. Association rules are created by
analyzing data for frequent patterns and using the criteria
support and confidence to identify the most important
relationships.

Support is an indication of how frequently the items appear
in the database i.e., the occurrence frequency of an itemset is
the number of transactions that contain the itemset [1]. This is
also known, simply, as the frequency, support count, or count
of the itemset.

Confidence indicates the number of times the if/then

statements have been found to be true i.e., It is the
“trustworthiness” of pattern. It is the measure of certainty
associated with validity [1].

To illustrate the concepts, we use a small example from the
Bookshop domain. The set of items is I= {Notebooks, Pens,
Pencils, Textbooks, Magazines} and the different transactions
in the database are,

Table 1:Data Base of Transactions

Transactions Itemsets

T1 {Notebooks, Pens}

T2 {Textbooks, Notebooks, Pens }

T3 {Pencils, Notebooks, Textbooks}

T4 {Magazines, Notebooks}

T5 {Pens, Pencils}

For the above mentioned data in Table I, let us assume

min_sup = 40% (i.e.., support threshold = 2) and min_conf =
80%. Now, we obtain the frequent set = {Pens, Notebooks,
Textbooks, Pencils} with sup = 2/5 and we generate the
following association rules as,

Pens → Notebooks, Textbooks [sup = 2/5, conf = 4/3]
…
…
Pencils → Pens, Notebooks [sup = 2/5, conf = 4/3].
Association rules are useful for analyzing and predicting

customer behavior. They play an important part in shopping
basket data analysis, product clustering, store layout and
catalog design.

III. ASSOCIATION MINING ALGORITHMS AND THEIR
CHARACTERSTICS

Many algorithms are used for generating association rules
and for mining frequent itemsets. Some well known
algorithms are Apriori, Eclat and FP Growth.

A. Sequential Algorithms:
Sequential pattern mining finds interesting patterns in

sequence of sets. Mining sequential patterns has become an
important data mining task with broad applications. For
example, supermarkets often collect customer purchase records
in sequence databases in which a sequential pattern would
indicate a customer’s buying habit.

Sequential pattern mining is commonly defined as finding
the complete set of frequent subsequences in a set of
sequences. Much research has been done to efficiently find
such patterns. But to the best of our knowledge, no research has
examined in detail what patterns are actually generated from
such a definition. In this paper, we examined the results of the
support framework closely to evaluate the frequent patterns.

The design space for the sequential methods is composed of
the following characteristics [3][4].
a. Bottom-up Vs. Hybrid search: ARM Algorithms differ

in the manner in which they search the itemset lattice
spanned by the subset relation. Most approaches use a
level-wise or bottom-up search of the lattice to
enumerate the frequent itemsets. If long frequent itemsets
are expected, a pure top-down approach might be
preferred. Some authors proposed a hybrid search, which
combines top-down and bottom-up approaches.

b. Complete Vs. Heuristic Candidate Generation: ARM
algorithms can differ in the way they generate new
candidates. A complete search, the dominant approach,
guarantees that we can generate and test all frequent
subsets. Here, complete doesn’t mean exhaustive; we can
use pruning to eliminate useless branches in the search
space. Heuristic generation sacrifices completeness for
the sake of speed. At each step, it only examines a
limited number of “good” branches. It is also possible to
locate the maximal frequent itemsets by using Random
Search. Genetic algorithms and simulated annealing are
the various methods used for Heuristic generation.
Because of a strong emphasis on completeness, ARM
literature has not given much attention for these two
methods.

c. All Vs. Maximal Frequent Itemset Enumeration:
Comparing to all algorithms, ARM algorithms were
differ in depending on whether they generate all frequent
subsets or only the maximal ones. In ARM algorithms,
identifying the maximal itemsets is the core task, because
an additional database scan can generate all other
subsets. Nevertheless, the majority of algorithms list all
frequent itemsets.

d. Horizontal Vs.Vertical Data Layout: Most ARM
algorithms use two types of layouts for data as shown
below Table II and Table III. Assume a horizontal
database layout, which stores each customer’s tid along
with the items contained in the transaction. Some
methods also use a vertical database layout, associating
with each item X its tidlist, which is a list of all tids
containing the item.

Prathyusha Kanakam et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,188-197

© 2010, IJARCS All Rights Reserved 190

Table 2: Horizontal Layout

Transactions Itemsets
T1 I1,I2,I3,I5
T2 I2,I3,I4
T3 I4,I5,I6

Table 3: Vertical Layout

Transactions Itemsets
I1 T1
I2 T1, T2
I3 T1, T2
I4 T2, T3
I5 T1, T3

The sequential ARM algorithms developed are designed to

find frequent itemsets and generate association rules. Here, we
discuss few of them. These algorithms are classified on the
basis of data layout and the data structure [4] used as shown in
the following Table IV.

Table 4: Classification of Algorithms

Algorithm Data
layout

Search
Technique
Used

Data
Structure
used

Apriori, DHP Horizontal Bottom-up Hash Tree
SEAR,SPEAR,SPINC Horizontal Bottom-up Prefix Tree
Eclat, Clique Vertical Bottom-up None
Partition Vertical Bottom-up None

MaxEclat,
MaxClique

Vertical Hybrid None

DIC Horizontal Bottom-up Trie
SPTID Vertical Bottom-up Prefix Tree

e. Apriori Algorithm: In this paper, we explained the basic

sequential algorithm: APRIORI. The “Apriori” algorithm
forms the core [5] of all parallel [3] association rules
discovery algorithms. It uses the principle that a subset of
frequent itemset is also frequent, i.e.., frequent k+1 set is
generated if and only if there exists frequent k itemsets.

This algorithm has three main steps, iterated while new
candidates are generated:
Construction of the set of new candidates;
Support Evaluation for each new candidates;
Pruning of candidates that have not a sufficient support
regarding to a minimum support arbitrarily chosen;

The Apriori algorithm is as follows:
Ck:Candidate itemset of size k
Lk: frequent itemset of size k
L1= {frequent items};
for(k= 1; Lk!=∅; k++)
do begin
Ck+1= candidates generated from Lk;
for each transaction t in database do increment the
count of all candidates in Ck+1 that are contained in t
Lk+1= candidates in Ck+1 with min_support;
end
return ∪kLk;

Note that Ck is the Candidate itemset of size k and Lk is the
frequent itemset of size k at transaction t ∊ D (data base).

B. Parllel Algorithms:
Researchers expect parallelism to relieve current ARM

methods from the sequential bottleneck, providing scalability to
massive data sets and improving response time. Achieving

good performance on today’s multiprocessor systems is not
trivial. The main challenges include synchronization and
communication minimization, workload balancing, finding
good data layout and data decomposition, and disk I/O
minimization (which are especially important for ARM).

The parallel design space spans three main components: the
hardware platform (Fig. 1), the type of parallelism, and the
load-balancing strategy [3].
a. Distributed Vs. Shared Memory Systems: Mainly we use

two approaches for multiple processors. They are,
distributed memory (where each processor has a private
memory) and shared memory (where all processors
access common memory) [3][4].

A Shared Memory Processor has direct and equal access to
all the system’s memory and they used to implement parallel
programs on themselves.

Figure 1. List of Parallel association rule mining algorithm developed so far

for homogeneous system that uses static load balancing technique on different
machines i.e. shared memory, distributed and hierarchical memory system.

In Distributed-Memory (DMM) architecture, each
processor has its own local memory which can access directly.
It solves the scalability problem by eliminating the bus, but at
the expense of programming simplicity.
b. Data Vs. Task Parallelism: Task and data parallelism are

the two main paradigms for exploiting algorithm
parallelism as shown in Fig 2. For ARM, data parallelism
corresponds to the case where the database is partitioned
among P processors-logically partitioned for SMPs,
physically for DMMs.

Task parallelism corresponds to the case where the
processors perform different computations independently, such
as counting a disjoint set of candidates, but have or need access
to the entire database.

Figure 2. Categorization of parallel ARM algorithms on the basis of different

Parallelism technique used.

Hybrid parallelism, which combines both task and data
parallelism, is also possible and perhaps desirable for
exploiting all available parallelism in ARM methods [3][4].

Prathyusha Kanakam et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,188-197

© 2010, IJARCS All Rights Reserved 191

c. Static Vs Dynamic Balancing: Static load balancing
initially partitions work among the processors using a
heuristic cost function; no subsequent data or
computation movement is available to correct load
imbalances resulting from ARM algorithms’ dynamic
nature. Dynamic load balancing incurs additional costs
for work and data movement, and also for the mechanism
used to detect whether there is an imbalance. Dynamic
load balancing is especially important in multiuser
environments with transient loads and in heterogeneous
platforms, which have different processor and network
speeds.[3][4].

Here, in our paper, we discuss two basic parallel algorithms
namely count distribution and Eclat algorithm.
d. Count Distribution: The Count Distribution parallel

algorithm is simply a parallel version of Apriori
algorithm. Each processor has a copy of the database. It
computes "local" candidates and evaluates the "local"
supports and transmits them to a dedicated processor to
perform the prefix sum of all of them to obtain the global
support of the itemset[2].

a) It is required to scan the database for each iteration.
Furthermore they enumerate each candidate itemset as
many times as we find it in the database even if the
transactions are identical.

b) The transaction database is considered to have a
horizontal layout.

e. Eclait Algorithm: An advantage of “Eclat” [6] over
“Count Distribution” is that it scans the database only
two times. Firstly it builds the 2-itemsets and secondly to
transform it into a vertical form. Eclat algorithm has
three steps.

a) The initialization phase: construction of the global
counts for the frequent 2-itemsets.

b) The transformation phase: partitioning of the frequent
2-itemsets and scheduling of partitions over the
processors. Vertical transformation of the database.

c) The Asynchronous phase: construction of the frequent
k-itemsets.

Algorithm for Eclat:
Begin Eclat
/*Initialisation phase*/
Scan local database partition
Compute local counts for all 2-itemsets
Construct global L2 count
/*Transformation phase*/
Partition L2 into equivalence classes
Schedule L2 over the set of processors P
Transform local database into vertical form
Transmit relevant tid-lists to other processors
/*Asynchronous Phase*/
for each equivalence class E2 in local L2
ComputeFrequent(E2)
/*Final Reduction Phase*/
Aggregate Results and Output Associations
End Eclat

This algorithm uses an equivalence class partitioning
schema of the database. The equivalence class is based on
common prefix assuming that itemsets are lexicographically
sorted. For instance AB, AC, AD are in the same equivalence
SA class because of the common prefix A. Then candidate
itemsets can be generated by joining the members of the same
equivalence class [2].

We can observe that itemsets produced by an equivalence
class are always different of those produced by a different
class, then the equivalence partitioning scheme can be used to
schedule the work over the processors. This method is used in
other algorithms such as Candidate Distribution [2].

The transformation phase is the most expensive step of the
algorithm. In fact, the processors have to broadcast the local list
corresponding to transaction identifier, for the itemsets to all
other processors [2][6].

IV. DIFFERENT DATA STRUCTURES AND THEIR
MERITS, DE-MERITS

In order to store different transactions, we need data
structures to store the data in the database because it is the
structure to hold the data. There are different types of data
structures available in the literature. Let us discuss a few
among them.

A. Balanced Search Trees:
A tree is balanced of each sub-tree is balanced and the

height of two sub-trees differ by most one. It is also known as
Self-Balancing or Height Balanced binary search tree that
automatically keeps its height (maximal number of levels
below the root) small in the face of arbitrary item insertion and
deletions [8].

The tree is only balanced if
The left and right subtrees heights differ by at most one.
The left sub-tree is balanced.
The right sub-tree is balanced.
In the above Un-Balanced tree, node accesses take 3.27 on

an average while we traverse from the root to the node. In
Balanced tree, node accesses take 3.00 on an average while we
traverse from root to the node. So, the path effort decreased in
balanced tree.

Most operations on a binary search tree (BST) [8] take time
directly proportional to the height of the tree. So it is desirable
to keep the height small. A Binary tree with height h can
contain at most nodes. If
follows that for a tree with n nodes and height h.

a. Merits: These structures provide efficient

implementation for mutable ordered lists, and can be
used for other abstract data structures such as associative
arrays, priority queues and sets.

They justified in the long run by ensuring fast executions of
later operations.
b. De-Merits: They did not permit lookup, insertion,

deletion in O (k) time rather than O(logn). It is not an
advantage since normally k log n.

In a Balanced tree, every comparison is a string comparison
requiring O(k) worst case time.

Prathyusha Kanakam et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,188-197

© 2010, IJARCS All Rights Reserved 192

It takes ‘m’ comparisons to look up a string of length ‘m’.
But radix tree can perform in fewer comparisons.

B. Prefix Tree:
A Prefix tree is also known as ‘trie’. The term trie comes

from retrieval [7] [9]. It is an ordered multi-way tree data
structures which is used to store strings over an alphabet.
Unlike a binary search tree, no need in the tree stores the key
associated with that node; instead its position in the tree shows
what key it is associated with. Each node contains an array of
pointers, one pointer for each character in the alphabet and all
the descendants of a node have a common prefix of the string
associated with that node. The root is associated with the
empty string and values are normally associated with every
node, only with leaves.

A trie is a tree data structure for storing strings or other
sequences in a way that allows for a fast look-up. In its
simplest form it can be used as a list of keywords or a
dictionary. By associating each string with an object it can be
used as an alternative to a hash map.

The basic idea behind a trie is that each successive letter is
stored as a separate node. To find out if the word 'cat' is in the
list you start at the root and look up the 'c' node. Having found
the 'c' node you search the list of c's children for an 'a' node,
and so on. To differentiate between 'cat' and 'catalog' each
word is ended by a special delimiter.

The below Fig. 3 shows a schematic representation of a
partial trie:

Figure 3. Schematic representation of a partial trie.

a. Merits:
Look ing up d ata in a trie is faster in worst case. Ο(m)

time(where m is the length of search string) compared to
imperfect hash table.

There are no collisions of different keys in a trie.
Buckets in a trie which are analogous to hash table buckets

that store key collisions are necessary only if a single key is
associated with more than one value.

There is no need to provide a hash function or to change
hash functions as more keys are added to a trie.

A trie can provide an alphabetical ordering of the entries by
key.

b. De-Merits:
They are slower in some cases than hash tables for looking

up data, especially if the data is directly accessed on a hard disk
drive or some other secondary storage vice where the random
access time is high compared to main memory.

Some keys such as floating point numbers, can lead to long
chains and prefixes that are not particularly meaningful.

Some tries require more space than a hash table, as memory
may be allocated for each character in the search string.

C. Adaptive Radix Tree
Adaptive Radix Tree is the space efficient and solves the

problem of excessive worst case consumption, by adaptively
choosing compact and efficient data structures for internal
nodes [10] as shown in Fig.6.

ART which is fast and space efficient in-memory indexing
structure specifically tuned for modern hardware. ART adapts
the representation of every individual node. By adapting each
inner node locally, it optimizes the local space utilization and
access efficiency at the same time.

Nodes are represented using a small number of efficient
and compact data structures, chosen dynamically depending
on the number of child nodes. Two additional techniques, path
compression and lazy expansion allow ART to efficiently
index long keys by collapsing nodes and thereby decreasing
the tree height.

Figure 4. Adaptively Sized Nodes

Normally, a tree contains two types of nodes: Internal
nodes (or) Inner nodes and Leaf nodes. Unlike other trees (Fig
5.), ART contains special nodes called adaptive nodes [10]
along with these nodes as per Fig.4. These nodes are for pure
lookup performance, it is desirable to have a large span
(determines the height of the tree for a given key length).
When arrays of pointers are used to represent inner nodes,
usage of space can be excessive when most child pointers are
null.

Figure 5. Other Trees with Array Nodes

ART not only uses less space, but also has smaller height
than the trees that only use homogeneous array nodes. The key

Prathyusha Kanakam et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,188-197

© 2010, IJARCS All Rights Reserved 193

idea that achieves both space and time efficiency is to
adaptively use different node sizes with the same, relatively
large span, but with different fan-out. Adaptive nodes do not
affect the structure (height) of the tree, only the sizes of the
nodes. By reducing space consumption, adaptive nodes allow
to use a large span and therefore increase performance too.

Figure 6. ART with Adaptive Node

a. Merits:
It maintains the data in sorted order as hash table.
It performs additional operations like range scan and prefix

lookup.
It solves the problem of excessive worst-case consumption.
It optimizes the local space utilization and access efficiency

at the same time.

b. De-Merits:
Each ART is of variable length.
It is not suitable for comparing two trees which plays a key

role in our paper.
It is very difficult to implement these data structures.

D. Radix Tree:
Radix tree plays a crucial role in our paper and we discuss

in next section.

V. ACT OF RADIX TREE IN ASSOCIATION RULE
MINING

A Radix Tree (also patricia trie or radix trie or compact
prefix tree) is a space-optimized trie data structure where each
node with only one child is merged with its child [11] . The
result is that every internal node has at least two children.
Unlike in regular tries, edges can be labeled with sequences of
elements as well as single elements. This makes them much
more efficient for small sets (especially if the strings are long)
and for sets of strings that share long prefixes. As an
optimization, edge labels can be stored in constant size by
using two pointers to a string (for the first and last elements).

The tree shown below in Fig.7 is of three levels deep. When
the kernel goes to look up a specific key, the most significant
six bits will be used to find the appropriate slot in the root
node. The next six bits then index the slot in the middle node,
and the least significant six bits will indicate the slot containing
a pointer to the actual value. Nodes which have no children are
not present in the tree, so a radix tree can provide efficient
storage for sparse trees.

Figure 7. Structure of Radix Tree

Radix Trees [2] are used to store sets of strings over an
alphabet. In this paper, the binary alphabet is used because we
handle integers representing indexes of transactions.

There are two types of Radix Trees based on the kind of
strings we use. If we use Fixed length strings – all strings are
of same length for instance 001,011,101,110 here all the
example strings of same length 3. In these type of radix trees,
all the leaf nodes stores the words (Black nodes indicates that
it stores a string) where as variable length strings are of
different lengths for instance 0, 10, 110, 111 unlike fixed
length strings each are of distinct lengths and the words can be
stored in not only leaf nodes but also internal nodes (Black
nodes indicates that it stores a string).

Figure 8. Fixed Length Strings

Figure 9. Variable Length

Strings

In the above fig. 8 and fig. 9, we represent two types of
nodes: black nodes and white nodes. The white color node
means that no word is stored in a node. Conversely, a black
node means that a word is stored in the node. For instance, if
we are looking for word 1 0 in a Radix Tree with variable
length strings [2], we follow the right edge (1), then we follow
the left edge (0) and we check the color of the node. If the color
is white, then the word does not exist in the tree, otherwise the
color is black by construction.

In a Radix Tree with fixed length strings [2], we don’t need
any color because if a word doesn’t exist then there is no path
for it in the tree. It is more convenient for implementing tree
management operations efficiently and easily by using these
types of structures.

A. Operations on Radix Trees:
Radix Trees represent sets of string in a sorted way. Their

tree structure makes the set operations (union, intersection)
easier to parallelize. In order to do this, the size of data is
constant and known.

The union of two Radix Trees is difficult to implement and
also limits the spatial locality (the “next” element to handle is
located in memory near the “current” element). So, in our

Prathyusha Kanakam et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,188-197

© 2010, IJARCS All Rights Reserved 194

paper we perform intersect operation between two Radix Trees
to discover association rules as shown in the below fig. 10.

Figure 10. Intersection of Two Radix Trees

For instance for the intersect operation [2], we consider the
two roots of two trees to be intersected. If they have two left
children in common, then we add a left child to the new tree
and we start a new pointer in order to build the “left part” of
the intersection. The same procedure is followed for right
child and its part.

B. Storing the data using Radix Trees:
In practical applications, we have to deal with huge

quantity of data so we need methods to store that large data on
disk. In “A hierarchical database management algorithm”, a
method has been introduced and implemented successfully to
store that large amount of data[12]. This method represents the
Radix Tree by bit vectors stored on disk. This solution
implements Radix Trees on disk is to store them on an
organization with multiple files.

A file organization is adapted which consists some files
contained in a directory in order to avoid expensive file system
operations. Too large files cause poor response time for
updates in the same way too mini files in the same directory
could slowdown the application. So, we use a directory
structure containing small files which are quickly updateable.
In [12], the items of the database are indexed by storing their
identifier in a Radix Tree stored in a directory tree structure, in
which each directory contains three files.

A file to store the thesaurus (database item lexicon) of the
items and the offset of their bit vector on the second file (1).

A file to store the bit vectors of the identifiers for level n
(2).

A file to store a permutation of the words giving the
lexicographical order (3).

In order to search the lines where an item appears, we
consult the permutation file (file 3). This gives the position the
word in the thesaurus (file 1) where we can read its bit vector
offset in the file (file2).

The representation of integer set with Radix Trees allows us
to save space and to implement efficient searches. Indeed, the
common prefixes of different integers are stored only once.
The computation of key for efficient parallel implementations
of tree management operations (union, intersection) can be
achieved concurrently on each node at same level in the Radix
Tree. We also use Radix Trees in the context of association
rules discover, for candidate generation.

C. Representation of item:
Radix Trees are used to code the line indexes of each item

in a database [12]. For instance, Consider student table (Table
V) which contains the student details contains columns

student_id, student_name, date of admission, course_name
each of them is treated separately: for each of these columns,
one builds its thesaurus and for each word of the thesaurus we
build the set of line indexes it occurs at.

Table 5. Student Details Table

From the above Table V, we generate association rule as

Course_name = MCA and Student_id = 1004. For
Course_name, it will generate {1,2} and for Student_id {2}
appears. So, the frequent item which satisfies this association
rule is {2}.

The intersection can be implemented efficiently because we
use the number of bits in the representation of integers (in fact
we use fixed size alphabet) and not the number of items in the
two sets.

The candidate’s k-itemsets are then represented in the same
way. For example, if the path in the Radix Tree to the item A is
00 and the path to B is 01, then the path to AB will be 0001.

D. Generation of itemset:
The new candidates for association rules discovery can be

generated by joining the members of a same equivalence
classes the radix tree is same as prefix tree [2]. It is clearly
explained in [2][7][9] respectively.

In order to generate next candidate sets, we have to join the
members of the equivalence classes. According to join
operation, Radix Tree implementation of the itemsets consists
in rooting the initial subtree on each leaf, considering only
leaves obtained by following the left neighbors to the current
itemset.

For instance, consider the following Fig.11. To obtain the
ABC candidate, we join AB and AC with a Radix Tree rooting
operation. To get all the candidate sets, we just have to
proceed the rooting of subtrees (with the elimination of left
nodes) on each leaf. In our case ABC = AB ∪ AC, ABD = AB
∪ AD, ACD = AC ∪ AD.

Figure 11. Candidate Representation

Moreover, by performing the intersection of the identifier
trees in parallel we obtain the support of the new candidate. As
with the Count Distribution Algorithm, we only broadcast local
supports to evaluate the global support.

Student_ id Student_ name Date_Of_
Admission

Course_
name

Index_no

1000 Sampath 02-jun-07 MCA 1
1004 Raju 07-may-07 MCA 2
1007 Jothsna 09-jun-09 MSc 4
1006 Imran 06-may-07 MBA 7

Prathyusha Kanakam et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,188-197

© 2010, IJARCS All Rights Reserved 195

Before obtaining the different supports of a candidate set
we can eliminate the candidates from the local tree that don’t
appear in the local database (i.e supports = 0). If AB doesn’t
appear in the database, ABC cannot appear later. Eliminating
an invalid candidate which is detected after total support
evaluation leads to low cost operation.

VI. EVALUATION OF ASSOCIATION RULES USING
HYBRID PARALLEL ALGORITHM

The key role of our paper is to implement Hybrid parallel
(HP) algorithm for association rule discovery in order to
generate frequent itemsets. HP algorithm is obtained by
combining the features of both APRIORI and ECLAT
algorithms. Unlike Apriori algorithm, HP algorithm generates
the frequent itemsets in only one scan i.e.., frequent k+1 -
itemsets can be generated automatically by using frequent k-
itemsets and the candidates with low support threshold are
automatically eliminated before constructing frequent k+1-
itemsets. We used Radix trees to store the candidates, as they
are the efficient to store the data.

A. HP Algorithm Generation Procedure:
a. Construction of Item Trees: Our algorithm requires only

one pass over the database and this pass is used to build
the radix trees and we operate only on radix trees.

b. Support Evaluation: We can make the count of tree
leaves at the same time we construct the transaction tree
i.e. by doing intersection operations.

The time complexity of an intersection is bounded by the
number of different items in the database and not by the
number of items in the database. This property justifies the use
of Radix Trees.

Thus, the local support is known when the candidate set is
constructed.
c. Weak Candidate Elimination: If an itemset support is

null (i.e. the itemset do not appear in local database), we
can immediately eliminate it, even if the itemset appears
in another partition of the database.

d. Construction of Candidate Set: The construction of new
candidates consists in rooting subtrees on leaves.

B. HP Algorithm:
a. In parallel for each processor:

Scanning of the local database for construction of 1-
itemset tree.

b. In parallel for each processor:
do
Broadcast supports.
/* This part can be de-synchronized */
/* To perform overlapping (see above) */
Wait for all supports from others.
Perform the sum reductions.
Elimination of unsufficient itemsets support.
Lk = rest of Ck
Construction of new candidates sets Ck+1.
while (Ck+1 ≠ ∅)

c. frequent itemsets = U Lk.
We eliminate candidates from the tree that have insufficient

supports and the nodes that make repetition in the subtree

rooted (for instance we don’t add the item A to the itemset
ABCxxx).

To obtain the support of newly created candidates, we need
to proceed to the intersection of the transaction tree of the
added item with the transaction tree of the leaf where it has
been rooted.

VII. EXPERIMENTAL EVALUATION

In our paper, we evaluate our algorithm to generate
association rules by using some synthetic datasets. As per our
dataset in Table VI, we noticed that the data is completely in
unsupervised manner (i.e. macro data).we designed a new data
set which is supervised for our database.

Table 6. Representation of Items with Possible Values
Item No Item Name Possible Values

1 Sweater {1,2}

2 Cap {3,4}

3 Milk {5,6}

4 Shoes {7,8}

5 Wallet {9,10}

6 Jacket {11,12}

23 Cream {45,46}

The data set consists of 23 columns with 2 possibilities for
each column, i.e., first possibility represents shopped items
and Second possibility represents UN shopped items. So, there
are 46 (23 x 2 = 46) items in our dataset as shown in the above
Table VI.

In the above table VI, all the Items are represented as the
pair of even and odd numbers to indicate the status of the item
whether it was shopped or not shopped.

Even number→ the item is shopped.
Odd number → the item is not shopped.

Each item name was assigned with the pair of numbers as
{1, 2} for item 1, {3, 4} for item 2 and so on…. For 23rd item,
the possible values are {45, 46} where,

Value=45→23rd item Cream is not shopped and
Value=46→ 23rd item Cream is shopped.
Now, let us consider Table VII in which our dataset file

consists of 20 transactional records and each record consists of
23 items in the dataset. So, we have (23*2), i.e., 46 possible
values in the dataset and count of each item is calculated by
column wise. If Even number appears throughout the column,
then the item is shopped otherwise it is not shopped.

Table 7. Transaction and Data Record Details

Transaction
No

Data Records for each Transaction

T1 1 3 5 7 9 11 13 15 18 19 21 23 25 27 29 31 34 36 38 39
42 43 45

T2 1 4 6 8 9 12 14 15 17 19 22 23 25 28 29 32 34 36 38 40
42 44 46

T3 2 3 5 7 10 12 13 16 18 19 21 23 26 28 30 32 33 36 38 40
42 44 46

T23 2 3 5 7 9 11 14 15 17 20 22 24 25 27 29 31 34 35 38 40
42 44 46

Prathyusha Kanakam et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,188-197

© 2010, IJARCS All Rights Reserved 196

As we mentioned earlier, each item will have two different
possibilities i.e., even and odd number for making decision (yes
or no). We generating frequent itemsets based on Boolean
association rules i.e., there are only two possibilities (Yes/No)
for each item.

Figure 12. HP Algorithm: Frequent Itemset Generation

The above Fig. 12 provides a high level illustration of the
frequent itemset generation part of HP algorithm for the
transaction shown in the table VII.

If we denote the possibilities in un-supervised learning
there may be some disadvantages like missing values, incorrect
values as the, unsupervised learning refers to the problem of
trying to find hidden structure in unlabeled data. Since the
examples given to the learner are unlabeled, there is no error or
reward signal to evaluate a potential solution. This
distinguishes unsupervised learning from supervised learning
and reinforcement learning. So, in order to secure the dataset
we have to denote it in supervised manner.

We assume that support threshold is 75% which is
equivalent to minimum support of 15. Initially candidate 1-
itemset (Table VIII) is generated with support threshold as
specified earlier. By using our HP algorithm, we eliminate the
weak candidate itemsets (whose support count less than
support threshold) before counting the supports by scanning
database only once unlike prior algorithm eliminates itemsets
after counting the supports.

For example, let us take Min Support Count =15, then we
get candidates itemsets as shown in the below.
Table 8. Candidate 1-Itemset

Item Count
{Socks} 15

{Umbrella} 16

{Jug} 19

{Cream} 20

Table 9. Candidate 2-Itemset

Itemset Count
{Umbrella , Jug} 15
{Socks, Cream} 15

{Umbrella , Cream} 16
{Jug, Cream} 19

Table 10. Candidate 3-Itemset

Itemset Count

{Umbrella , Jug, Cream} 15

Here {Socks, Umbrella}, {Socks, Jug} are not generated as

candidate 2-Itemsets in Table IX, because their support is not
satisfied the support threshold (<15). So, they eliminated
automatically. Finally, frequent 3-itemsets are generated as
shown in Table X with support count (=15) in single scan.

In the below Fig. 13, we obtain the graph among the
maximum size of frequent itemsets generated for different
transactional datasets at different intervals of support count,
where number of records were differ in each transactional
dataset.

Figure 13. Maximum Size of Itemsets generation for Different Support

Treshold.

From the above figure we observe that, lowering the
support threshold results in more number of maximum size of
frequent itemsets and it increases the execution time. Thus we
declare maximum size of frequent itemsets increases when
there is low support threshold.

VIII. CONCLUSIONS AND FUTURE WORK

In our paper, we have introduced a hybrid parallel
algorithm using Radix Trees structures in order to discover
association rules in a transaction database. The main aim of
our paper is to generate the frequent itemsets which have
association among them.

Our algorithm has many features. It scans the database
only once, it performs candidate generation in parallel with
only few integer exchanges (representing supports computed
locally) between processors.

By using [12][2], our HP Algorithm will give best results
when compared to previous implementations because the
association mining is performed by intersect operation using
one key and we proposed a new approach to compute the
candidate support by the intersection of Radix Trees.

Radix Trees [12][2] offers a good compromise between the
storage size required to store them and the efficiency to
retrieve any information mapped to integers. We implemented
the Hybrid Parallel algorithm to discover the association rules.

Prathyusha Kanakam et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,188-197

© 2010, IJARCS All Rights Reserved 197

We currently working on Randomized Search Trees [14]
instead of Radix Trees in order to perform intersect operation
between two trees to generate association rules.

IX. REFERENCES

[1] Data Mining Concepts and Techniques, Second Edition,
Jiawei Han and Micheline Kamber.

[2] C.C´erin, Koskas and Le-Mahec, “Efficient data-structures
and parallel algorithms for association rules discovery”. in
3rd International Conference on Parallel Computing Systems
(PCS'04), Colima, Mexico, September 2004.

[3] Mohammed J. Zaki. Parallel and distributed association
mining: A survey. IEEE Concurrency, 7(4):14–25,/1999.

[4] R.Garg, P.K. MishraK, Exploiting parallelism in Association
Rule Mining Algorithms.

[5] Rakesh Agrawal, Tomasz Imielinski, and Arun N.Swami.
Mining association rules between sets of items in large
databases. In P. Buneman and S. Jajodia, editors, Proceedings
of the 1993 ACM SIGMOD Int. Conf. on Management of
Data, pages 207–216, Washington, D.C., 26–28 1993.

[6] Mohammed Javeed Zaki, Srinivasan Parthasarathy, and Wei
Li. A localized algorithm for parallel association mining. In
ACM Symposium on Parallel Algorithms and Architectures,
pages 321–330, 1997.

[7] Trie Trees Laboratory Module D.

[8] http://en.wikipedia.org/wiki/selfbalancing-binarysearchtree.

[9] http://en.wikipedia.org/wiki/trie

[10] Viktor Leis, Alfons Kemper, Thomas Neumann, The
Adaptive Radix Tree: ARTful Indexing for main-memory
databases.

[11] http://en.wikipedia.org/wiki/Radixtree

[12] Michel Koskas. A hierarchical database management
algorithm, To appear in the annales du Lamsade, 2004, url:
http://www.lamsade.dauphine.fr.

[13] Jeffrey D. Ullman and Jennifer D. Widom. First Course in
Database Systems, A, 2/e. Prentice Hall, 2002.

[14] Guy E. Blelloch, Margaret Reid-Miller, Fast Set Operations
using Treaps.

[15] Akash Rajak and Mahendra Kumar Gupta, Association Rule
Mining: Applications in Various Areas.

[16] Piatetsky-Shapiro, Gregory (1991), Discovery, analysis, and
presentation of strong rules, in Piatetsky-Shapiro, Gregory;
and Frawley, William J.; eds., Knowledge Discovery in
Databases, AAAI/MIT Press, Cambridge, MA.

[17] Agrawal, R.Imielinski, T.Swami, A. (1993). "Mining
association rules between sets of items in large databases".
Proceedings of the 1993 ACM SIGMOD international
conference on Management of data - SIGMOD '93. p. 207.
doi:10.1145/170035.170072. ISBN 0897915925.

	INTRODUCTION
	PROBLEM STATEMENT
	ASSOCIATION MINING ALGORITHMS AND THEIR CHARACTERSTICS
	Bottom-up Vs. Hybrid search: ARM Algorithms differ in the manner in which they search the itemset lattice spanned by the subset relation. Most approaches use a level-wise or bottom-up search of the lattice to enumerate the frequent itemsets. If long f...
	Complete Vs. Heuristic Candidate Generation: ARM algorithms can differ in the way they generate new candidates. A complete search, the dominant approach, guarantees that we can generate and test all frequent subsets. Here, complete doesn’t mean exhaus...
	All Vs. Maximal Frequent Itemset Enumeration: Comparing to all algorithms, ARM algorithms were differ in depending on whether they generate all frequent subsets or only the maximal ones. In ARM algorithms, identifying the maximal itemsets is the core ...
	Horizontal Vs.Vertical Data Layout: Most ARM algorithms use two types of layouts for data as shown below Table II and Table III. Assume a horizontal database layout, which stores each customer’s tid along with the items contained in the transaction. S...
	Apriori Algorithm: In this paper, we explained the basic sequential algorithm: APRIORI. The “Apriori” algorithm forms the core [5] of all parallel [3] association rules discovery algorithms. It uses the principle that a subset of frequent itemset is a...
	Distributed Vs. Shared Memory Systems: Mainly we use two approaches for multiple processors. They are, distributed memory (where each processor has a private memory) and shared memory (where all processors access common memory) [3][4].
	A Shared Memory Processor has direct and equal access to all the system’s memory and they used to implement parallel programs on themselves.
	Data Vs. Task Parallelism: Task and data parallelism are the two main paradigms for exploiting algorithm parallelism as shown in Fig 2. For ARM, data parallelism corresponds to the case where the database is partitioned among P processors-logically pa...
	Static Vs Dynamic Balancing: Static load balancing initially partitions work among the processors using a heuristic cost function; no subsequent data or computation movement is available to correct load imbalances resulting from ARM algorithms’ dynami...
	Count Distribution: The Count Distribution parallel algorithm is simply a parallel version of Apriori algorithm. Each processor has a copy of the database. It computes "local" candidates and evaluates the "local" supports and transmits them to a dedic...
	Eclait Algorithm: An advantage of “Eclat” [6] over “Count Distribution” is that it scans the database only two times. Firstly it builds the 2-itemsets and secondly to transform it into a vertical form. Eclat algorithm has three steps.
	The initialization phase: construction of the global counts for the frequent 2-itemsets.
	The transformation phase: partitioning of the frequent 2-itemsets and scheduling of partitions over the processors. Vertical transformation of the database.
	The Asynchronous phase: construction of the frequent k-itemsets.

	DIFFERENT DATA STRUCTURES AND THEIR MERITS, DE-MERITS
	Merits: These structures provide efficient implementation for mutable ordered lists, and can be used for other abstract data structures such as associative arrays, priority queues and sets.
	De-Merits: They did not permit lookup, insertion, deletion in O (k) time rather than O(logn). It is not an advantage since normally k ≥ log n.
	Merits:
	De-Merits:
	Merits:
	De-Merits:

	ACT OF RADIX TREE IN ASSOCIATION RULE MINING
	EVALUATION OF ASSOCIATION RULES USING HYBRID PARALLEL ALGORITHM
	Construction of Item Trees: Our algorithm requires only one pass over the database and this pass is used to build the radix trees and we operate only on radix trees.
	Support Evaluation: We can make the count of tree leaves at the same time we construct the transaction tree i.e. by doing intersection operations.
	Weak Candidate Elimination: If an itemset support is null (i.e. the itemset do not appear in local database), we can immediately eliminate it, even if the itemset appears in another partition of the database.
	Construction of Candidate Set: The construction of new candidates consists in rooting subtrees on leaves.
	HP Algorithm:
	In parallel for each processor:
	In parallel for each processor:
	frequent itemsets = U Lk.

	EXPERIMENTAL EVALUATION
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

