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Abstract: Data mining is one of the vast areas of research and nowadays the research is going on the most important techniques for decision making 
processing in data mining. Discovering patterns or frequent episodes in transactions is an important problem in data mining for the purpose of 
inferring rules from them. So, mining association rules is considered as powerful technique in the data mining process. The problem of mining 
association rules is composed of finding the large itemsets and to generate the association rules from these itemsets. To find the large itemsets, the 
dataset must be scanned many times. Many algorithms have been developed to increase the performance of mining association rules through reducing 
the number of scans over the dataset. In this paper, we aims to enhance and optimize the process even further by developing techniques to reduce the 
number of database scans to just only once. To deal with the huge size of the data, we have designed a parallel algorithm for reducing both the 
execution time and the number of scans over the database, in order to minify I/O overheads as much as possible. In this paper, we introduce some 
approaches for the implementation of two basic algorithms for association rules discovery (namely Apriori and Eclat). Our approach combines 
efficient data structures (Radix Trees) to code different key information (line indexes, candidates). We also introduced different types of efficient 
data structures and their merits and de-merits of using them in deducting association rules. 
 
Keywords: Data mining; Patterns, Association Rules; Parallel Algorithm Item Sets; Apriori; Eclat; Radix Trees; Line Indexes;  

I. INTRODUCTION 

Data mining is an interdisciplinary subfield of computer 
science, and it is the computational process of discovering 
patterns in large data sets involving methods at the intersection 
of artificial intelligence, machine learning, statistics, and 
database systems. The overall goal of the data mining process 
is to extract information from a data warehouse and transform 
it into an understandable structure for further use.  

Association Rule Mining (ARM) is one of the most 
important data mining tasks. Association rule learning is a 
popular and well researched method for discovering interesting 
relations between variables in large databases. It is intended to 
identify strong rules discovered in databases using different 
measures of interestingness [16]. Association rules are 
introduced for discovering regularities between products in 
large-scale transaction data recorded by point-of-sale (POS) 
systems in supermarkets based on the concept of strong rules 
[17]. One of the excellent applications of ARM is market-
basket analysis [1], here in the market basket analysis the items 
represent products, and the records represent point-of-sales data 
at large grocery stores or department stores. For example 
association rules might be, “90% of customers buying product 
A also buy product B.” like, 80% people who buy a cot may 
also buy mattress or who buy a computer may also buy 
antivirus software. In addition to the above example from 
market basket analysis association rules are employed today in 
many application domains including Web usage mining, 
intrusion detection, Continuous production, bioinformatics, 
Medical diagnosis and Protein sequences, CRM of credit card 
business, customer segmentation, catalog design, store layout, 
and telecommunication alarm prediction [15]. 

In ARM for ‘m’ items, there are potentially 2m itemsets, 
whose support is above minimum support. Enumerating all 
itemsets is thus not realistic. However, for practical cases, only 
a small fraction of the whole space of itemsets is above a 
minimum support requiring special attention to reduce memory 
and I/O overheads. In order to reduce these memory and I/O 
overheads, we introduced a hybrid parallel algorithm along 
with efficient data structures (Radix trees) to store the dataset 
and to perform set operations for the purpose of generating 
frequent itemsets and association rules by scanning dataset only 
once. 

We organized our paper in 8 sections. In section 1, we 
introduced ARM. We define our problem statement in section 
2. In section 3, we introduce sequential, parallel algorithms and 
their characteristics, as well as basic sequential and parallel 
frameworks that are widely used in the literature. In section 4, 
we introduce different data structures and their merits and de-
merits. Radix Tree data structures and their potential use in the 
process of association rules discovery are described in section 
5. We proposed a hybrid parallel algorithm for association rule 
discovery in order to generate frequent itemsets by combining 
the features of both APRIORI and ECLAT algorithms by using 
Radix Trees in section 6. We show some results based on our 
experimental evaluation in section 7. Finally we conclude our 
paper in section 6. 

II. PROBLEM STATEMENT 

An Association Rule [1] can be formalized as A⇒B, where 
A⊂I, B⊂I, and A⋂B=∅. The rule A⇒B holds in the transaction 
set D with support s, where s is the percentage of transactions 
in D that contain A∪B (i.e., the union of sets A and B, or say, 
both A and B). This is taken to be the probability, P (A∪B). 
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The rule A⇒B has confidence c in the transaction set D, where 
c is the percentage of transactions in D containing A that also 
contain B. This is taken to be the conditional probability, 
P(B∣A).  

Rules that satisfy both minimum support threshold (min 
sup) and a minimum confidence threshold (min conf) are called 
Strong Association Rules. Association rules are created by 
analyzing data for frequent patterns and using the criteria 
support and confidence to identify the most important 
relationships. 

Support is an indication of how frequently the items appear 
in the database i.e., the occurrence frequency of an itemset is 
the number of transactions that contain the itemset [1]. This is 
also known, simply, as the frequency, support count, or count 
of the itemset. 

 
Confidence indicates the number of times the if/then 

statements have been found to be true i.e., It is the 
“trustworthiness” of pattern. It is the measure of certainty 
associated with validity [1]. 

 

To illustrate the concepts, we use a small example from the 
Bookshop domain. The set of items is I= {Notebooks, Pens, 
Pencils, Textbooks, Magazines} and the different transactions 
in the database are, 

Table 1:Data Base of Transactions 

Transactions Itemsets 

T1 {Notebooks, Pens} 

T2 {Textbooks, Notebooks, Pens } 

T3 {Pencils, Notebooks, Textbooks} 

T4 {Magazines, Notebooks} 

T5 {Pens, Pencils} 

 
For the above mentioned data in Table I, let us assume 

min_sup = 40% (i.e.., support threshold = 2) and min_conf = 
80%. Now, we obtain the frequent set = {Pens, Notebooks, 
Textbooks, Pencils} with sup = 2/5 and we generate the 
following association rules as, 

Pens → Notebooks, Textbooks [sup = 2/5, conf = 4/3]  
… 
… 
Pencils → Pens, Notebooks [sup = 2/5, conf = 4/3]. 
Association rules are useful for analyzing and predicting 

customer behavior. They play an important part in shopping 
basket data analysis, product clustering, store layout and 
catalog design. 

III. ASSOCIATION MINING ALGORITHMS AND THEIR 
CHARACTERSTICS 

Many algorithms are used for generating association rules 
and for mining frequent itemsets. Some well known 
algorithms are Apriori, Eclat and FP Growth. 

A. Sequential Algorithms: 
Sequential pattern mining finds interesting patterns in 

sequence of sets. Mining sequential patterns has become an 
important data mining task with broad applications. For 
example, supermarkets often collect customer purchase records 
in sequence databases in which a sequential pattern would 
indicate a customer’s buying habit. 

Sequential pattern mining is commonly defined as finding 
the complete set of frequent subsequences in a set of 
sequences. Much research has been done to efficiently find 
such patterns. But to the best of our knowledge, no research has 
examined in detail what patterns are actually generated from 
such a definition. In this paper, we examined the results of the 
support framework closely to evaluate the frequent patterns. 

The design space for the sequential methods is composed of 
the following characteristics [3][4]. 
a. Bottom-up Vs. Hybrid search: ARM Algorithms differ 

in the manner in which they search the itemset lattice 
spanned by the subset relation. Most approaches use a 
level-wise or bottom-up search of the lattice to 
enumerate the frequent itemsets. If long frequent itemsets 
are expected, a pure top-down approach might be 
preferred. Some authors proposed a hybrid search, which 
combines top-down and bottom-up approaches. 

b. Complete Vs. Heuristic Candidate Generation: ARM 
algorithms can differ in the way they generate new 
candidates. A complete search, the dominant approach, 
guarantees that we can generate and test all frequent 
subsets. Here, complete doesn’t mean exhaustive; we can 
use pruning to eliminate useless branches in the search 
space. Heuristic generation sacrifices completeness for 
the sake of speed. At each step, it only examines a 
limited number of “good” branches. It is also possible to 
locate the maximal frequent itemsets by using Random 
Search. Genetic algorithms and simulated annealing are 
the various methods used for Heuristic generation. 
Because of a strong emphasis on completeness, ARM 
literature has not given much attention for these two 
methods. 

c. All Vs. Maximal Frequent Itemset Enumeration: 
Comparing to all algorithms, ARM algorithms were 
differ in depending on whether they generate all frequent 
subsets or only the maximal ones. In ARM algorithms, 
identifying the maximal itemsets is the core task, because 
an additional database scan can generate all other 
subsets. Nevertheless, the majority of algorithms list all 
frequent itemsets. 

d. Horizontal Vs.Vertical Data Layout: Most ARM 
algorithms use two types of layouts for data as shown 
below Table II and Table III. Assume a horizontal 
database layout, which stores each customer’s tid along 
with the items contained in the transaction. Some 
methods also use a vertical database layout, associating 
with each item X its tidlist, which is a list of all tids 
containing the item. 
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Table 2: Horizontal Layout 
 

Transactions Itemsets 
T1 I1,I2,I3,I5 
T2 I2,I3,I4 
T3 I4,I5,I6 

Table 3: Vertical Layout 
 

Transactions Itemsets 
I1 T1 
I2 T1, T2 
I3 T1, T2 
I4 T2, T3 
I5 T1, T3 

 
The sequential ARM algorithms developed are designed to 

find frequent itemsets and generate association rules. Here, we 
discuss few of them. These algorithms are classified on the 
basis of data layout and the data structure [4] used as shown in 
the following Table IV. 

Table 4: Classification of Algorithms 

Algorithm Data 
layout 

Search 
Technique  
Used 

Data  
Structure 
used 

Apriori, DHP Horizontal Bottom-up Hash Tree 
SEAR,SPEAR,SPINC Horizontal Bottom-up Prefix Tree 
Eclat, Clique Vertical Bottom-up None 
Partition Vertical Bottom-up None 

MaxEclat, 
MaxClique 

Vertical Hybrid None 

DIC Horizontal Bottom-up Trie 
SPTID Vertical Bottom-up Prefix Tree 

 
e. Apriori Algorithm: In this paper, we explained the basic 

sequential algorithm: APRIORI. The “Apriori” algorithm 
forms the core [5] of all parallel [3] association rules 
discovery algorithms. It uses the principle that a subset of 
frequent itemset is also frequent, i.e.., frequent k+1 set is 
generated if and only if there exists frequent k itemsets. 

This algorithm has three main steps, iterated while new 
candidates are generated: 
Construction of the set of new candidates; 
Support Evaluation for each new candidates; 
Pruning of candidates that have not a sufficient support 
regarding to a minimum support arbitrarily chosen; 

The Apriori algorithm is as follows: 
Ck:Candidate itemset of size k 
Lk: frequent itemset of size k 
L1= {frequent items}; 
for(k= 1; Lk!=∅; k++)  
do begin 
Ck+1= candidates generated from Lk; 
for each transaction t in database do increment the 
count of all candidates in Ck+1 that are contained in t 
Lk+1= candidates in Ck+1 with min_support; 
end 
return ∪kLk; 

Note that Ck is the Candidate itemset of size k and Lk is the 
frequent itemset of size k at transaction t ∊ D (data base). 

B. Parllel Algorithms: 
Researchers expect parallelism to relieve current ARM 

methods from the sequential bottleneck, providing scalability to 
massive data sets and improving response time. Achieving 

good performance on today’s multiprocessor systems is not 
trivial. The main challenges include synchronization and 
communication minimization, workload balancing, finding 
good data layout and data decomposition, and disk I/O 
minimization (which are especially important for ARM). 

The parallel design space spans three main components: the 
hardware platform (Fig. 1), the type of parallelism, and the 
load-balancing strategy [3]. 
a. Distributed Vs. Shared Memory Systems: Mainly we use 

two approaches for multiple processors. They are, 
distributed memory (where each processor has a private 
memory) and shared memory (where all processors 
access common memory) [3][4]. 

A Shared Memory Processor has direct and equal access to 
all the system’s memory and they used to implement parallel 
programs on themselves. 

 
Figure 1. List of Parallel association rule mining algorithm developed so far 

for homogeneous system that uses static load balancing technique on different 
machines i.e. shared memory, distributed and hierarchical memory system. 

In Distributed-Memory (DMM) architecture, each 
processor has its own local memory which can access directly. 
It solves the scalability problem by eliminating the bus, but at 
the expense of programming simplicity. 
b. Data Vs. Task Parallelism: Task and data parallelism are 

the two main paradigms for exploiting algorithm 
parallelism as shown in Fig 2. For ARM, data parallelism 
corresponds to the case where the database is partitioned 
among P processors-logically partitioned for SMPs, 
physically for DMMs. 

Task parallelism corresponds to the case where the 
processors perform different computations independently, such 
as counting a disjoint set of candidates, but have or need access 
to the entire database. 

 
Figure 2. Categorization of parallel ARM algorithms on the basis of different 

Parallelism technique used. 

Hybrid parallelism, which combines both task and data 
parallelism, is also possible and perhaps desirable for 
exploiting all available parallelism in ARM methods [3][4]. 
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c. Static Vs Dynamic Balancing: Static load balancing 
initially partitions work among the processors using a 
heuristic cost function; no subsequent data or 
computation movement is available to correct load 
imbalances resulting from ARM algorithms’ dynamic 
nature. Dynamic load balancing incurs additional costs 
for work and data movement, and also for the mechanism 
used to detect whether there is an imbalance. Dynamic 
load balancing is especially important in multiuser 
environments with transient loads and in heterogeneous 
platforms, which have different processor and network 
speeds.[3][4]. 

Here, in our paper, we discuss two basic parallel algorithms 
namely count distribution and Eclat algorithm. 
d. Count Distribution: The Count Distribution parallel 

algorithm is simply a parallel version of Apriori 
algorithm. Each processor has a copy of the database. It 
computes "local" candidates and evaluates the "local" 
supports and transmits them to a dedicated processor to 
perform the prefix sum of all of them to obtain the global 
support of the itemset[2]. 

a) It is required to scan the database for each iteration. 
Furthermore they enumerate each candidate itemset as 
many times as we find it in the database even if the 
transactions are identical. 

b) The transaction database is considered to have a 
horizontal layout. 

e. Eclait Algorithm: An advantage of “Eclat” [6] over 
“Count Distribution” is that it scans the database only 
two times. Firstly it builds the 2-itemsets and secondly to 
transform it into a vertical form. Eclat algorithm has 
three steps. 

a) The initialization phase: construction of the global 
counts for the frequent 2-itemsets. 

b) The transformation phase: partitioning of the frequent 
2-itemsets and scheduling of partitions over the 
processors. Vertical transformation of the database. 

c) The Asynchronous phase: construction of the frequent 
k-itemsets. 

Algorithm for Eclat: 
Begin Eclat 
/*Initialisation phase*/ 
Scan local database partition 
Compute local counts for all 2-itemsets 
Construct global L2 count 
/*Transformation phase*/ 
Partition L2 into equivalence classes 
Schedule L2 over the set of processors P 
Transform local database into vertical form 
Transmit relevant tid-lists to other processors 
/*Asynchronous Phase*/ 
for each equivalence class E2 in local L2 
ComputeFrequent(E2) 
/*Final Reduction Phase*/ 
Aggregate Results and Output Associations 
End Eclat 

 

This algorithm uses an equivalence class partitioning 
schema of the database. The equivalence class is based on 
common prefix assuming that itemsets are lexicographically 
sorted. For instance AB, AC, AD are in the same equivalence 
SA class because of the common prefix A. Then candidate 
itemsets can be generated by joining the members of the same 
equivalence class [2]. 

We can observe that itemsets produced by an equivalence 
class are always different of those produced by a different 
class, then the equivalence partitioning scheme can be used to 
schedule the work over the processors. This method is used in 
other algorithms such as Candidate Distribution [2]. 

The transformation phase is the most expensive step of the 
algorithm. In fact, the processors have to broadcast the local list 
corresponding to transaction identifier, for the itemsets to all 
other processors [2][6]. 

IV. DIFFERENT DATA STRUCTURES AND THEIR 
MERITS, DE-MERITS 

In order to store different transactions, we need data 
structures to store the data in the database because it is the 
structure to hold the data. There are different types of data 
structures available in the literature. Let us discuss a few 
among them. 

A. Balanced Search Trees: 
A tree is balanced of each sub-tree is balanced and the 

height of two sub-trees differ by most one. It is also known as 
Self-Balancing or Height Balanced binary search tree that 
automatically keeps its height (maximal number of levels 
below the root) small in the face of arbitrary item insertion and 
deletions [8]. 

The tree is only balanced if 
The left and right subtrees heights differ by at most one. 
The left sub-tree is balanced. 
The right sub-tree is balanced. 
In the above Un-Balanced tree, node accesses take 3.27 on 

an average while we traverse from the root to the node. In 
Balanced tree, node accesses take 3.00 on an average while we 
traverse from root to the node. So, the path effort decreased in 
balanced tree. 

Most operations on a binary search tree (BST) [8] take time 
directly proportional to the height of the tree. So it is desirable 
to keep the height small. A Binary tree with height h can 
contain at most  nodes. If 
follows that for a tree with n nodes and height h. 

 
a. Merits: These structures provide efficient 

implementation for mutable ordered lists, and can be 
used for other abstract data structures such as associative 
arrays, priority queues and sets. 

They justified in the long run by ensuring fast executions of 
later operations. 
b. De-Merits: They did not permit lookup, insertion, 

deletion in O (k) time rather than O(logn). It is not an 
advantage since normally k  log n. 

In a Balanced tree, every comparison is a string comparison 
requiring O(k) worst case time. 
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It takes ‘m’ comparisons to look up a string of length ‘m’. 
But radix tree can perform in fewer comparisons. 

B. Prefix Tree: 
A Prefix tree is also known as ‘trie’. The term trie comes 

from retrieval [7] [9]. It is an ordered multi-way tree data 
structures which is used to store strings over an alphabet. 
Unlike a binary search tree, no need in the tree stores the key 
associated with that node; instead its position in the tree shows 
what key it is associated with. Each node contains an array of 
pointers, one pointer for each character in the alphabet and all 
the descendants of a node have a common prefix of the string 
associated with that node. The root is associated with the 
empty string and values are normally associated with every 
node, only with leaves.  

A trie is a tree data structure for storing strings or other 
sequences in a way that allows for a fast look-up. In its 
simplest form it can be used as a list of keywords or a 
dictionary. By associating each string with an object it can be 
used as an alternative to a hash map. 

The basic idea behind a trie is that each successive letter is 
stored as a separate node. To find out if the word 'cat' is in the 
list you start at the root and look up the 'c' node. Having found 
the 'c' node you search the list of c's children for an 'a' node, 
and so on. To differentiate between 'cat' and 'catalog' each 
word is ended by a special delimiter. 

The below Fig. 3 shows a schematic representation of a 
partial trie: 

 
Figure 3. Schematic representation of a partial trie. 

a. Merits: 
Look ing  up  d ata in a trie is faster in worst case. Ο(m) 

time(where m is the length of search string) compared to 
imperfect hash table. 

There are no collisions of different keys in a trie. 
Buckets in a trie which are analogous to hash table buckets 

that store key collisions are necessary only if a single key is 
associated with more than one value. 

There is no need to provide a hash function or to change 
hash functions as more keys are added to a trie. 

A trie can provide an alphabetical ordering of the entries by 
key. 

b. De-Merits: 
They are slower in some cases than hash tables for looking 

up data, especially if the data is directly accessed on a hard disk 
drive or some other secondary storage vice where the random 
access time is high compared to main memory. 

Some keys such as floating point numbers, can lead to long 
chains and prefixes that are not particularly meaningful. 

Some tries require more space than a hash table, as memory 
may be allocated for each character in the search string. 

C. Adaptive Radix Tree 
Adaptive Radix Tree is the space efficient and solves the 

problem of excessive worst case consumption, by adaptively 
choosing compact and efficient data structures for internal 
nodes [10] as shown in Fig.6. 

ART which is fast and space efficient in-memory indexing 
structure specifically tuned for modern hardware. ART adapts 
the representation of every individual node. By adapting each 
inner node locally, it optimizes the local space utilization and 
access efficiency at the same time. 

Nodes are represented using a small number of efficient 
and compact data structures, chosen dynamically depending 
on the number of child nodes. Two additional techniques, path 
compression and lazy expansion allow ART to efficiently 
index long keys by collapsing nodes and thereby decreasing 
the tree height. 

 
Figure 4. Adaptively Sized Nodes 

Normally, a tree contains two types of nodes: Internal 
nodes (or) Inner nodes and Leaf nodes. Unlike other trees (Fig 
5.), ART contains special nodes called adaptive nodes [10] 
along with these nodes as per Fig.4. These nodes are for pure 
lookup performance, it is desirable to have a large span 
(determines the height of the tree for a given key length). 
When arrays of pointers are used to represent inner nodes, 
usage of space can be excessive when most child pointers are 
null. 

 
Figure 5. Other Trees with Array Nodes 

ART not only uses less space, but also has smaller height 
than the trees that only use homogeneous array nodes. The key 
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idea that achieves both space and time efficiency is to 
adaptively use different node sizes with the same, relatively 
large span, but with different fan-out. Adaptive nodes do not 
affect the structure (height) of the tree, only the sizes of the 
nodes. By reducing space consumption, adaptive nodes allow 
to use a large span and therefore increase performance too. 

 
Figure 6. ART with Adaptive Node 

a. Merits: 
It maintains the data in sorted order as hash table. 
It performs additional operations like range scan and prefix 

lookup.  
It solves the problem of excessive worst-case consumption. 
It optimizes the local space utilization and access efficiency 

at the same time. 

b. De-Merits: 
Each ART is of variable length. 
It is not suitable for comparing two trees which plays a key 

role in our paper. 
It is very difficult to implement these data structures. 

D. Radix Tree: 
Radix tree plays a crucial role in our paper and we discuss 

in next section. 

V. ACT OF RADIX TREE IN ASSOCIATION RULE 
MINING 

A Radix Tree (also patricia trie or radix trie or compact 
prefix tree) is a space-optimized trie data structure where each 
node with only one child is merged with its child [11] . The 
result is that every internal node has at least two children. 
Unlike in regular tries, edges can be labeled with sequences of 
elements as well as single elements. This makes them much 
more efficient for small sets (especially if the strings are long) 
and for sets of strings that share long prefixes. As an 
optimization, edge labels can be stored in constant size by 
using two pointers to a string (for the first and last elements). 

The tree shown below in Fig.7 is of three levels deep. When 
the kernel goes to look up a specific key, the most significant 
six bits will be used to find the appropriate slot in the root 
node. The next six bits then index the slot in the middle node, 
and the least significant six bits will indicate the slot containing 
a pointer to the actual value. Nodes which have no children are 
not present in the tree, so a radix tree can provide efficient 
storage for sparse trees. 

 
Figure 7. Structure of Radix Tree 

Radix Trees [2] are used to store sets of strings over an 
alphabet. In this paper, the binary alphabet is used because we 
handle integers representing indexes of transactions. 

There are two types of Radix Trees based on the kind of 
strings we use. If we use Fixed length strings – all strings are 
of same length for instance 001,011,101,110 here all the 
example strings of same length 3. In these type of radix trees, 
all the leaf nodes stores the words (Black nodes indicates that 
it stores a string) where as variable length strings are of 
different lengths for instance 0, 10, 110, 111 unlike fixed 
length strings each are of distinct lengths and the words can be 
stored in not only leaf nodes but also internal nodes (Black 
nodes indicates that it stores a string). 

 
Figure 8. Fixed Length Strings 

 
Figure 9. Variable Length 

Strings 

In the above fig. 8 and fig. 9, we represent two types of 
nodes: black nodes and white nodes. The white color node 
means that no word is stored in a node. Conversely, a black 
node means that a word is stored in the node. For instance, if 
we are looking for word 1 0 in a Radix Tree with variable 
length strings [2], we follow the right edge (1), then we follow 
the left edge (0) and we check the color of the node. If the color 
is white, then the word does not exist in the tree, otherwise the 
color is black by construction.  

In a Radix Tree with fixed length strings [2], we don’t need 
any color because if a word doesn’t exist then there is no path 
for it in the tree. It is more convenient for implementing tree 
management operations efficiently and easily by using these 
types of structures. 

A. Operations on Radix Trees: 
Radix Trees represent sets of string in a sorted way. Their 

tree structure makes the set operations (union, intersection) 
easier to parallelize. In order to do this, the size of data is 
constant and known.  

The union of two Radix Trees is difficult to implement and 
also limits the spatial locality (the “next” element to handle is 
located in memory near the “current” element). So, in our 
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paper we perform intersect operation between two Radix Trees 
to discover association rules as shown in the below fig. 10.  

 
Figure 10. Intersection of Two Radix Trees 

For instance for the intersect operation [2], we consider the 
two roots of two trees to be intersected. If they have two left 
children in common, then we add a left child to the new tree 
and we start a new pointer in order to build the “left part” of 
the intersection. The same procedure is followed for right 
child and its part. 

B. Storing the data using Radix Trees: 
In practical applications, we have to deal with huge 

quantity of data so we need methods to store that large data on 
disk. In “A hierarchical database management algorithm”, a 
method has been introduced and implemented successfully to 
store that large amount of data[12]. This method represents the 
Radix Tree by bit vectors stored on disk. This solution 
implements Radix Trees on disk is to store them on an 
organization with multiple files. 

A file organization is adapted which consists some files 
contained in a directory in order to avoid expensive file system 
operations. Too large files cause poor response time for 
updates in the same way too mini files in the same directory 
could slowdown the application. So, we use a directory 
structure containing small files which are quickly updateable. 
In [12], the items of the database are indexed by storing their 
identifier in a Radix Tree stored in a directory tree structure, in 
which each directory contains three files. 

A file to store the thesaurus (database item lexicon) of the 
items and the offset of their bit vector on the second file (1). 

A file to store the bit vectors of the identifiers for level n 
(2). 

A file to store a permutation of the words giving the 
lexicographical order (3). 

In order to search the lines where an item appears, we 
consult the permutation file (file 3). This gives the position the 
word in the thesaurus (file 1) where we can read its bit vector 
offset in the file (file2).  

The representation of integer set with Radix Trees allows us 
to save space and to implement efficient searches. Indeed, the 
common prefixes of different integers are stored only once. 
The computation of key for efficient parallel implementations 
of tree management operations (union, intersection) can be 
achieved concurrently on each node at same level in the Radix 
Tree. We also use Radix Trees in the context of association 
rules discover, for candidate generation. 

C. Representation of item: 
Radix Trees are used to code the line indexes of each item 

in a database [12]. For instance, Consider student table (Table 
V) which contains the student details contains columns 

student_id, student_name, date of admission, course_name 
each of them is treated separately: for each of these columns, 
one builds its thesaurus and for each word of the thesaurus we 
build the set of line indexes it occurs at. 

Table 5. Student Details Table 

 
From the above Table V, we generate association rule as 

Course_name = MCA and Student_id = 1004. For 
Course_name, it will generate {1,2} and for Student_id {2} 
appears. So, the frequent item which satisfies this association 
rule is {2}.  

The intersection can be implemented efficiently because we 
use the number of bits in the representation of integers (in fact 
we use fixed size alphabet) and not the number of items in the 
two sets. 

The candidate’s k-itemsets are then represented in the same 
way. For example, if the path in the Radix Tree to the item A is 
00 and the path to B is 01, then the path to AB will be 0001. 

D. Generation of itemset: 
The new candidates for association rules discovery can be 

generated by joining the members of a same equivalence 
classes the radix tree is same as prefix tree [2]. It is clearly 
explained in [2][7][9] respectively.  

In order to generate next candidate sets, we have to join the 
members of the equivalence classes. According to join 
operation, Radix Tree implementation of the itemsets consists 
in rooting the initial subtree on each leaf, considering only 
leaves obtained by following the left neighbors to the current 
itemset.  

For instance, consider the following Fig.11. To obtain the 
ABC candidate, we join AB and AC with a Radix Tree rooting 
operation. To get all the candidate sets, we just have to 
proceed the rooting of subtrees (with the elimination of left 
nodes) on each leaf. In our case ABC = AB ∪ AC, ABD = AB 
∪ AD, ACD = AC ∪  AD.  

 
Figure 11. Candidate Representation 

Moreover, by performing the intersection of the identifier 
trees in parallel we obtain the support of the new candidate. As 
with the Count Distribution Algorithm, we only broadcast local 
supports to evaluate the global support.  

Student_ id Student_ name Date_Of_ 
Admission 

Course_ 
name 

Index_no 

1000 Sampath 02-jun-07 MCA 1 
1004 Raju 07-may-07 MCA 2 
1007 Jothsna 09-jun-09 MSc 4 
1006 Imran 06-may-07 MBA 7 
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Before obtaining the different supports of a candidate set 
we can eliminate the candidates from the local tree that don’t 
appear in the local database (i.e supports = 0). If AB doesn’t 
appear in the database, ABC cannot appear later. Eliminating 
an invalid candidate which is detected after total support 
evaluation leads to low cost operation. 

VI. EVALUATION OF ASSOCIATION RULES USING 
HYBRID PARALLEL ALGORITHM 

The key role of our paper is to implement Hybrid parallel 
(HP) algorithm for association rule discovery in order to 
generate frequent itemsets. HP algorithm is obtained by 
combining the features of both APRIORI and ECLAT 
algorithms. Unlike Apriori algorithm, HP algorithm generates 
the frequent itemsets in only one scan i.e.., frequent k+1 -
itemsets can be generated automatically by using frequent k-
itemsets and the candidates with low support threshold are 
automatically eliminated before constructing frequent k+1-
itemsets. We used Radix trees to store the candidates, as they 
are the efficient to store the data. 

A. HP Algorithm Generation Procedure: 
a. Construction of Item Trees: Our algorithm requires only 

one pass over the database and this pass is used to build 
the radix trees and we operate only on radix trees. 

b. Support Evaluation: We can make the count of tree 
leaves at the same time we construct the transaction tree 
i.e. by doing intersection operations. 

The time complexity of an intersection is bounded by the 
number of different items in the database and not by the 
number of items in the database. This property justifies the use 
of Radix Trees. 

Thus, the local support is known when the candidate set is 
constructed. 
c. Weak Candidate Elimination: If an itemset support is 

null (i.e. the itemset do not appear in local database), we 
can immediately eliminate it, even if the itemset appears 
in another partition of the database. 

d. Construction of Candidate Set: The construction of new 
candidates consists in rooting subtrees on leaves. 

B. HP Algorithm: 
a. In parallel for each processor: 

Scanning of the local database for construction of 1-
itemset tree. 

b. In parallel for each processor: 
do 
Broadcast supports. 
/* This part can be de-synchronized */ 
/* To perform overlapping (see above) */ 
Wait for all supports from others. 
Perform the sum reductions. 
Elimination of unsufficient itemsets support. 
Lk = rest of Ck 
Construction of new candidates sets Ck+1. 
while (Ck+1 ≠ ∅ ) 

c. frequent itemsets = U Lk. 
We eliminate candidates from the tree that have insufficient 

supports and the nodes that make repetition in the subtree 

rooted (for instance we don’t add the item A to the itemset 
ABCxxx).           

To obtain the support of newly created candidates, we need 
to proceed to the intersection of the transaction tree of the 
added item with the transaction tree of the leaf where it has 
been rooted. 

VII. EXPERIMENTAL EVALUATION 

In our paper, we evaluate our algorithm to generate 
association rules by using some synthetic datasets. As per our 
dataset in Table VI, we noticed that the data is completely in 
unsupervised manner (i.e. macro data).we designed a new data 
set which is supervised for our database.  

Table 6. Representation of Items with Possible Values 
Item No Item Name Possible Values 

1 Sweater {1,2} 

2 Cap {3,4} 

3 Milk {5,6} 

4 Shoes {7,8} 

5 Wallet {9,10} 

6 Jacket {11,12} 

   

23 Cream {45,46} 

The data set consists of 23 columns with 2 possibilities for 
each column, i.e., first possibility represents   shopped items 
and Second possibility represents UN shopped items. So, there 
are 46 (23 x 2 = 46) items in our dataset as shown in the above 
Table VI. 

In the above table VI, all the Items are represented as the 
pair of even and odd numbers to indicate the status of the item 
whether it was shopped or not shopped.  

Even number→ the item is shopped. 
Odd number → the item is not shopped. 

Each item name was assigned with the pair of numbers as 
{1, 2} for item 1, {3, 4} for item 2 and so on…. For 23rd item, 
the possible values are {45, 46} where, 

Value=45→23rd item Cream is not shopped and 
Value=46→ 23rd item Cream is shopped. 
Now, let us consider Table VII in which our dataset file 

consists of 20 transactional records and each record consists of 
23 items in the dataset. So, we have (23*2), i.e., 46 possible 
values in the dataset and count of each item is calculated by 
column wise. If Even number appears throughout the column, 
then the item is shopped otherwise it is not shopped. 

Table 7. Transaction and Data Record Details 

Transaction 
No 

Data Records for each Transaction 

T1 1 3 5 7 9 11 13 15 18 19 21 23 25 27 29 31 34 36 38 39 
42 43 45 

T2 1 4 6 8 9 12 14 15 17 19 22 23 25 28 29 32 34 36 38 40 
42 44 46 

T3 2 3 5 7 10 12 13 16 18 19 21 23 26 28 30 32 33 36 38 40 
42 44 46 

  
 

T23 2 3 5 7 9 11 14 15 17 20 22 24 25 27 29 31 34 35 38 40 
42 44 46 
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As we mentioned earlier, each item will have two different 
possibilities i.e., even and odd number for making decision (yes 
or no). We generating frequent itemsets based on Boolean 
association rules i.e., there are only two possibilities (Yes/No) 
for each item. 

 

 
Figure 12. HP Algorithm: Frequent Itemset Generation 

The above Fig. 12 provides a high level illustration of the 
frequent itemset generation part of HP algorithm for the 
transaction shown in the table VII. 

If we denote the possibilities in un-supervised learning 
there may be some disadvantages like missing values, incorrect 
values as the, unsupervised learning refers to the problem of 
trying to find hidden structure in unlabeled data. Since the 
examples given to the learner are unlabeled, there is no error or 
reward signal to evaluate a potential solution. This 
distinguishes unsupervised learning from supervised learning 
and reinforcement learning. So, in order to secure the dataset 
we have to denote it in supervised manner.  

We assume that support threshold is 75% which is 
equivalent to minimum support of 15. Initially candidate 1-
itemset (Table VIII) is generated with support threshold as 
specified earlier. By using our HP algorithm, we eliminate the 
weak candidate itemsets (whose support count less than 
support threshold) before counting the supports by scanning 
database only once unlike prior algorithm eliminates itemsets 
after counting the supports. 

For example, let us take Min Support Count =15, then we 
get candidates itemsets as shown in the below. 
Table 8. Candidate 1-Itemset 

Item Count 
{Socks} 15 

{Umbrella} 16 

{Jug} 19 

{Cream} 20 

Table 9. Candidate 2-Itemset 

Itemset Count 
{Umbrella , Jug} 15 
{Socks, Cream} 15 

{Umbrella , Cream} 16 
{Jug, Cream} 19 

 

Table 10. Candidate 3-Itemset 

Itemset Count 

{Umbrella , Jug, Cream} 15 

 
Here {Socks, Umbrella}, {Socks, Jug} are not generated as 

candidate 2-Itemsets in Table IX, because their support is not 
satisfied the support threshold (<15). So, they eliminated 
automatically.  Finally, frequent 3-itemsets are generated as 
shown in Table X with support count (=15) in single scan. 

In the below Fig. 13, we obtain the graph among the 
maximum size of frequent itemsets generated for different 
transactional datasets at different intervals of support count, 
where number of records were differ in each transactional 
dataset. 

 

 
Figure 13. Maximum Size of Itemsets generation for Different Support 

Treshold. 

From the above figure we observe that, lowering the 
support threshold results in more number of maximum size of 
frequent itemsets and it increases the execution time. Thus we 
declare maximum size of frequent itemsets increases when 
there is low support threshold.  

VIII. CONCLUSIONS AND FUTURE WORK 

In our paper, we have introduced a hybrid parallel 
algorithm using Radix Trees structures in order to discover 
association rules in a transaction database. The main aim of 
our paper is to generate the frequent itemsets which have 
association among them. 

Our algorithm has many features. It scans the database 
only once, it performs candidate generation in parallel with 
only few integer exchanges (representing supports computed 
locally) between processors. 

By using [12][2], our HP Algorithm will give best results 
when compared to previous implementations because the 
association mining is performed by intersect operation using 
one key and we proposed a new approach to compute the 
candidate support by the intersection of Radix Trees. 

Radix Trees [12][2] offers a good compromise between the 
storage size required to store them and the efficiency to 
retrieve any information mapped to integers. We implemented 
the Hybrid Parallel algorithm to discover the association rules. 
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We currently working on Randomized Search Trees [14] 
instead of Radix Trees in order to perform intersect operation 
between two trees to generate association rules. 
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