
Volume 4, No. 9, July-August 2013 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved                                                                                                                                                                                                      21 

ISSN No. 0976-5697 

Clustering algorithm optimized for Cell Broadband Engine Architecture 

Ioan Ungurean 
Department of Computers, Electronics and Automation 

Stefan cel Mare University of Suceava Suceava, Romania 
ioanu@eed.usv.ro 

Abstract: In this paper, we want to evaluate the performance of Cell B.E. processor which is based on the Cell Broadband Engine Architecture 
(CBEA). For this purpose, we chose a clustering algorithm that we have optimized for this architecture by efficiently harnessing the facilities 
provided. Performance of the Cell B.E. processor was evaluated by executing the algorithm using computation in single and double precision. In both 
cases, performance was evaluated with and without SIMDization. For single precision, we obtained a maximum speedup of 29.07 by activating 6 
SPE processors without SIMDization and a speedup of 10.9 for 6 SPE processors with SIMDization. For double precision, we obtained a maximum 
speedup of 14.51 by activating 6 SPE processors without SIMDization and a speedup of 8.34 for 6 SPE processors with SIMDization. 
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I. INTRODUCTION 

In order to meet the computing requirements which, in 
the last decade, are increasingly higher, there are developed 
computer systems that in addition to the central processor 
have acceleration units. An example of this is the Cell BE 
processor [1][2][3]  from the PlayStation3 game consoles 
that has a core processor based on PowerPC architecture and 
eight specialized cores for intensive calculations. In order to 
use at maximum the facilities provided by these computer 
systems, the applications should be developed and optimized 
for these architectures.  

An application developed for the execution on a normal 
processor can be compiled and executed on these systems but 

will not use all available computing facilities. For this reason, 
applications should be developed specifically for these 
architectures.   

In this paper, we want to evaluate performance that can be 
achieved by execution on a clustering algorithm on Cell B.E. 
processor compared to the sequential version executed on 
normal processors. The remainder of this paper is organized as 
follows: Section 2 presents an overview of the Cell Broadband 
Engine architecture, Sections 3 present the algorithm that is 
optimized for Cell Broadband Engine, Sections 4 present the 
optimization and parallelization strategies used, Section 5 
evaluates the performance achieved by execution of the 
algorithm on PlayStation 3, and the final conclusions are drawn 
in Section 6. 

 
Figure 1.  Cell Broadband Engine Architecture[3]   
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II. CELL BROADBAND ENGINE 

For PlayStation3 (PS3) game console, STI consortium 
consisting of Sony, Toshiba, and IBM developed the Cell 
Broadband Engine architecture (CBEA) [3] .  

Cell BE processor was developed based on CBEA 
architecture, which is behind the PS3 game console launched in 
November 2006. CBEA architecture is based on 64bits 
PowerPC architecture to which eight cores for intensive 
calculations were added. Practically, it contains a PowerPC 
processor called PPE (Power PC Element), and 8-acceleration 
cores called SPE (Synergistic Processing Elements) [3].   

 
All these processors are interconnected through a high 

speed bus called EIB (Element Interconnect Bus), as can be 
seen in Figure 1. SPE processors have not cache memory; they 
have just 256KB of local memory for code and data area. 
Application that is executed on the SPE cores must fit into this 
dimension in terms of requirements for code and data. In order 
to access the main memory, the SPE cores can use DMA 
transfers. We can say that the SPE cores are intermediate 
option between the conventional processors with cache 
memory and GPU processors that are used increasingly in HPC 
applications. SPE processors have RISC architecture with a 
SIMD extension with 128-bit registers. 

PS3 game consoles allowed the installation of Linux 
operating systems and allowed programmers to develop 
applications optimized for CBEA architecture. In order to come 
in the aid of application's developers, IBM provides an SDK 
for CBEA architecture. This SDK contains libraries for 
efficient use of DMA transfers between main memory and SPE 
cores and the SIMD extension. 

SPE cores of the Cell BE processor are not optimized for 
computations in double precision; reason for that IBM 
developed the PowerXCell 8i processor in which the SPE cores 
are optimized for computations in double precision. Based on 
these processors, IBM developed the QS20 and QS22 blade 
servers for HPC systems development.  Processors with CBEA 
architecture entered powerful in the HPC field in 2009 when 
Roadrunner supercomputer was the first supercomputer that 
has exceeded 1PFlops for computing power [4].   

This processor allows achieving a higher performance 
because it allows the SPE core to initiate a DMA transfer 
between the local memory and main memory, and during DMA 
transfer, it can perform other computing tasks. The most 
effective way to exploit this facility is to us double buffered for 
DMA transfers.  In this method computing operations on data 
from local memory are performed in parallel with DMA 
transfers of data that will occur in calculations in the next step. 
It should be noted that the efficiency of this method depends 
very much on the algorithm that is optimized for CBEA 
architecture.  

According to the programming guide of this processor, if 
the facilities provided by these processors are effective used, 
we can achieve a speedup of almost 100 related to the sequence 
variants. From the programmer's point of view, three important 
aspects should be followed to achieve maximum performance, 
namely: SPE cores must perform operations in parallel; each 
SPE must use SIMD in order to maximize the operations that 

they carry out, and double buffed method must be used in order 
to perform DMA transfer operations in parallel with computing 
operations. 

III. OVERVIEW OF THE ALGORITHM 

From the pattern recognition field [5], we chose the k- 
medoids algorithm described in [6]. This algorithm requires 
knowledge of the number M of clusters in which the set of 
patterns will be classified. Initially, the medoids of the M 
clusters are represented by M random patterns from the dataset.  

The remaining patterns are included in the appropriate 
clusters with the nearest medoids. Once all patterns are 
included in one of the clusters, for each class, the centroids are 
calculated (each cluster taken into account all patterns that have 
been assigned). The new medoids of the clusters are the 
patterns that are closest to the centroid. The assignment 
procedure of the patterns is resumed until the centroids 
determined during two consecutive iterations coincide [5]. 

The algorithm has as input the set of patterns, which will be 
classified (N patterns, each pattern having p features) and the 
number of clusters in which will be classified the input dataset. 
In order to avoid the computation, at each iteration, the distance 
between the medoids (which is patterns from input dataset) and 
the patterns a matrix of distances is computed for the set of 
input forms. Algorithm 1 shows the sequential variant of this 
method. 
Algorithm 1. Sequential algorithm. 

Initialize the dynamic medoids attached to those M clusters 
with M random patterns from the input data set. 

Compute the matrix of distances between the N patterns 
from the dataset. 

Repeat 
for each pattern from the input dataset do 

*) includes the pattern in the cluster for which the 
distance between pattern and medoid is minimal 
(determines the minimum from the matrix of 
distances)  

■ 
for each cluster from the M clusters do  

Calculate the centroid of the cluster. 
Find the pattern that is the closest to the centroid. 
Initialize the medoid with the new pattern found. 

■  
Until new medoids coincide with those from the previous step. 

IV. OVERVIEW OF THE ALGORITHM 

The first step in the implementation of the algorithm for the 
CBEA processor is the distribution of computational tasks to 
the SPE cores. In order to split the calculations to SPE cores, 
the matrix of distance is divided equally by the number of the 
SPE processors on which the algorithm is executed. The follow 
up, we provide the method of dividing the matrix of distance to 
the noSPE processors. This problem is reduced to equally split 
the area of a triangle (above the main diagonal). For each 
processor SPE, we must determine the number of rows in the 
matrix associated and the offset from where these rows start. 
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Figure 2.  Splitting the matrix of distances to the SPE processors 

It is considered that the matrix has N rows and N columns, 
so the area of the triangle above the main diagonal is (N*N)/2 
(see Figure 2).  Therefore the area associated to each SPE 
processor is (n*n)/(2*noSPE). 

To find the number of rows associated to the first SPE 
processor (nSPE0) a quadratic equation must be solved: 

 
( 0 0 0)* 0 *

2 2*
n offset n offset nSPE nSPE n n

noSPE
− + − −

=   (1) 

2
20 2*( 0)* 0 0nnSPE n offset nSPE

noSPE
− − + =             (2) 

In the same way, the number of processors assigned to each 
PPE processor is determined by replacing the offset value 
offset0 with the value associated to each processor. 

As redundant data, each SPE processor will know the 
dynamic medoids associated to the M clusters. The algorithm 
executed on the PPE processor is: 

Algorithm 2. The algorithm executed by the PPE processor 
Divide equally input dataset to SPE processors who are 

activated. 
Initialize the medoids attached to the M clusters with M 

random patterns from the input dataset. 
Divide the distance matrix to the SPE processors. 
Send the command to the SPE cores in order to calculate 

the matrix of distances. 
Wait for the SPE processor to complete the assigned jobs. 

Repeat: 
Send the command to each SPE processor in order to 

determine for each associated pattern the cluster to which 
belongs and to determine the local centroid for each cluster 
(the patterns are equally divided to the SPE processors).  

Determine global centroids with local centroids provided 
by each SPE processor. 

Send the command to the SPE processors in order to 
determine the each local pattern that is closest to each centroid 
associated to the M clusters (the patterns are equally divided to 
the SPE processors).  

Wait for the SPE processor to complete the assigned jobs. 
Determine each pattern that are the closer to the each 

centroid using the patterns received from the SPE processors. 
These patterns will be the new medoids. 

Until new medoids coincide with those from the previous 
step. 

 
The algorithm executed on each SPE processor is: 
Algorithm 3. The algorithm executed by the SPE 

processors 

Repeat: 
Wait commands from the PPE processor. 
If is the command for the computing of the matrix of 

distances. 
Take the number of rows associated and offset for the 

matrix and distances.  
Compute the associated part of the matrix (it uses DMA 

transfer in order to access the patterns and the matrix of 
distances from the main memory). 

Signals the PPE processor that the associated operations 
were performed. 

else if is the command to determine the cluster for each 
form and to compute the centroid for each cluster. 

Take the number associated patterns and the offset.  
Determine for each associated pattern the cluster to which 
belongs. 

Compute the centroid for the clusters using local patterns. 
Signals the processor PPE that were made related operations 
and send local centers of gravity calculated. 

else if is the command for determination of patterns closer 
to the centroid. 

Take the number associated patterns and the offset.  
Determine the local patterns which are closer to each centroid.  

Signals the processor PPE that were made related 
operations and send the patterns which are closer to the 
centroids. 

■ 
Until the command to end the application is received. 

V. EXPERIMENTAL RESULTS 

The proposed algorithm was executed on a PlayStation 3 
game console that has a Cell BE processor with 6 SPE cores 
active. For a detailed analysis of the performance of Cell BE 
processor, the algorithm was executed using calculations in 
single and double precision with and without utilization of the 
SIMD library. For comparison, we performed a serial 
implementation of the algorithm which was executed on the 
PPE core of the Cell BE. Input data were generated randomly 
in order to execute different versions of the algorithm in terms 
of the number of patterns and the number of characteristics of 
the patterns. We generated 1000000 test forms with 1024 and 
256 characteristics (p = 256 and p = 1024). 

Figure 3 presents the results obtained for 1000000 patterns 
where we use single precision and M = 100. Figure 3 presents 
the speed-up obtained by activating 1, 2, 3, 4, 5, and 6 SPE 
processors. From this figure, we can see a significant difference 
between the algorithm implementation with utilization of the 
SIMD libraries and without utilization this library. In this case, 
we have achieved a maximum speed-up of 29.07 with SIMD 
library and six SPE processors and 10.9 with six SPE 
processors without SIMD library.  
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Figure 3.  Speed-ups achieved for single precision computing 

 

 
Figure 4.  Speed-ups achieved for double precision computing 

Figure 4 presents the results for 1000000 patterns where we 
use double precision and M = 100. In Figure 4 presents the 
speed-up obtained by activating 1, 2, 3, 4, 5, and 6 SPE 
processors. In this case, we have achieved a maximum speed-
up of 14.51 with six SPE processors and SIMD library and 8.34 

with six SPE processors and without SIMD library. It can be 
seen that in this case, speedup are lower than single precision 
because the volume of transferred data and computational 
effort is much higher than in the first case. 

 

VI. CONCLUSIONS 

From the obtained results, we can see that the speed-up 
reaches high values in relation to the number of cores used. 
Furthermore, to achieve these results, the algorithm has been 
specifically optimized for the CBEA architecture. It is observed 
that the best results are obtained if we use SIMD library. This 
is occurred because the algorithm performs calculations using 
large vectors. If we chose an algorithm that does not make 
calculations on vectors the utilization of the SIMD library will 
not bring in a performance benefit. 
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