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Abstract:   The purpose of this paper is to study chaos anti-synchronization of identical T systems (Tigan and Opris, 2008), identical Cai systems 

(Cai and Tan, 2007), and non-identical T and Cai chaotic systems using active nonlinear control. Sufficient conditions for achieving anti-

synchronization of the identical and different T and Cai systems using active nonlinear control are derived based on Lyapunov stability theory. 

Since the Lyapunov exponents are not required for these calculations, the nonlinear feedback control method is effective and convenient to anti-

synchronize identical and different T and Cai systems. Numerical simulations are also given to illustrate and validate the anti-synchronization 

results for T and Cai systems. 
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I. INTRODUCTION  

Chaotic systems are dynamical systems that are highly 

sensitive to initial conditions. This sensitivity is popularly 

referred to as the butterfly effect [1].   

  Since the pioneering work of Pecora and Carroll [2], chaos 

synchronization has attracted a great deal of attention from 

various fields and it has been extensively studied in the last two 

decades [2-17], Chaos theory has been explored in a variety of 

fields including physical [3], chemical [4], ecological [5] 

systems, secure communications [6-8] etc. In the recent years, 

various schemes such as PC method [2], OGY method [9], 

active control [10-12], adaptive control [13-14], time-delay 

feedback approach [15], backstepping design method [16], 

sampled-data feedback synchronization method [17], sliding 

mode control method [18], etc. have been successfully applied 

to achieve chaos synchronization. 

Recently, active control has been applied to anti-

synchronize two identical chaotic systems [19-20] and 

different hyperchaotic systems [21].  

In most of the chaos anti-synchronization approaches, the 

master-slave or drive-response formalism is used. If a 

particular chaotic system is called the master or drive system 

and another chaotic system is called the slave or response 

system, then the idea of the anti-synchronization is to use the 

output of the master system to control the slave system so that 

the states of the slave system have the same amplitude but 

opposite signs as the states of the master system 

asymptotically. In other words, the sum of the states of the 

master and slave systems are expected to converge to zero 

asymptotically when anti-synchronization appears.   

This paper has been organized as follows. In Section II, we 

give the problem statement and our methodology. In Section 

III, we discuss the chaos anti-synchronization of two identical 

T systems ([22], 2008). In Section IV, we discuss the chaos 

anti-synchronization of two identical Cai systems ([23], 2007). 

In Section V, we discuss the anti-synchronization of T and Cai 

systems. In Section VI, we present the conclusions of this 

paper. 

II. PROBLEM STATEMENT AND OUR METHODOLOGY   

Consider the chaotic system described by the dynamics 

               ( )x Ax f x= +�                                        (1) 

where 
n

x ∈ R is the state of the system, A is the n n× matrix 

of the system parameters and : n n
f →R R is the nonlinear 

part of the system. We consider the system (1) as the master or 

drive system.  

As the slave or response system, we consider the following 

chaotic system described by the dynamics 

                    ( )y By g y u= + +�                                     (2) 

where 
n

y ∈ R is the state vector of the response system, B is 

the n n×  matrix of the system parameters, : n n
g →R R is 

the nonlinear part of the response system and 
n

u ∈ R is the 

controller of the response system. 

 If A B= and ,f g= then x and y are the states of two 

identical chaotic systems. If A B≠ and ,f g≠ then x and 

y  are the states of two different chaotic systems. 

For the anti-synchronization of the chaotic systems (1) and 

(2) using active control, we design a feedback controller u  

which anti-synchronizes the states of the master system (1) and 

the slave system (2) for all initial conditions 

(0), (0) .n
x y ∈ R  

 If we define the anti-synchronization error as 

          ,e y x= +                                                         (3) 

then the anti-synchronization error dynamics is obtained as 

               ( ) ( )e By Ax g y f x u= + + + +�                   (4) 
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Thus, the global anti-synchronization problem is essentially 

to find a feedback controller u so as to stabilize the error 

dynamics (4) for all initial conditions (0) ,n
e ∈ R i.e. 

             lim ( ) 0
t

e t
→∞

=                                               (5) 

for all initial conditions (0) .n
e ∈ R  

We use Lyapunov stability theory as our methodology. We 

take as a candidate Lyapunov function 

           ( ) ,T
V e e Pe=                                                 (6) 

where P is a positive definite matrix.  

Note that : n n
V →R R is a positive definite function by 

construction. We assume that the parameters of the master and 

slave systems are known and that the states of both systems (1) 

and (2) are measurable. 

If we find a feedback controller u so that  

                ( ) ,T
V e e Qe= −�                                                  (7) 

where Q  is a positive definite matrix, then : n n
V →� R R is a 

negative definite function. 

Thus, by Lyapunov stability theory [24], the error dynamics 

(4) is globally exponentially stable and hence the condition (5) 

will be satisfied for all initial conditions (0) .n
e R∈  Then the 

states of the master system (1) and slave system (2) will be 

globally exponentially anti-synchronized. 

III. ANTI-SYNCHRONIZATION OF IDENTICAL T SYSTEMS 

In this section, we apply the active nonlinear control 

technique for the anti-synchronization of two identical T 

systems ([22], 2008).  

Thus, the master system is described by the T dynamics 

      

1 2 1

2 1 1 3

3 3 1 2

( )

( )

x a x x

x c a x ax x

x bx x x

= −

= − −

= − +

�

�

�

                                        (8)  

where 1 2 3, ,x x x are the states of the system and  0,a >  

0,b > 0c > are parameters of the system. 

The slave system is also described by the T dynamics as 

           

1 2 1 1

2 1 1 3 2

3 3 1 2 3

( )

( )

y a y y u

y c a y ay y u

y by y y u

= − +

= − − +

= − + +

�

�

�

                               (9) 

where 1 2 3, ,y y y are the states of the system and 

             [ ]1 2 3

T
u u u u=  

is the nonlinear controller to be designed. 

The T system (8) is a new 3-D chaotic system derived from 

the Lorenz system by Tigan and Dumitru ([22], 2008). The 

T system (8) is chaotic when 

     2.1,   0.6a b= =   and  30.c =  

Compared with the Lü system ([25], 2002), the T system 

(8) has a wider parameter range and it displays more complex 

behaviour. 

Figure 1 illustrates the chaotic portrait of the T system (8). 

 
Figure 1. Chaotic Portrait of the T System (8) 

The anti-synchronization error e  is defined by 

          ,       ( 1, 2,3)i i ie y x i= + =                          (10) 

The error dynamics is obtained as 

           

1 2 1 1

2 1 1 3 1 3 2

3 3 1 2 1 2 3

( )

( ) ( )

e a e e u

e c a e a y y x x u

e be y y x x u

= − +

= − − + +

= − + + +

�

�

�

         (11) 

To find an anti-synchronizing controller, we first let 

           
2 2 2

3 3 3

a b

a b

u u u

u u u

= +

= +
                                                (12) 

where 

                
( )2 1 3 1 3

3 1 2 1 2

b

b

u a y y x x

u y y x x

= +

= − −
                                    (13) 

Substituting (12) and (13) into (11), we obtain 

                     

1 2 1 1

2 1 2

3 3 3

( )

( ) a

a

e a e e u

e c a e u

e be u

= − +

= − +

= − +

�

�

�

                                 (14) 

Next, we consider the candidate Lyapunov function 

                  ( )2 2 2

1 2 3

1 1
( )

2 2

T
V e e e e e e= = + +               (15) 

which is a positive definite function on 
3.R  

A simple calculation gives 

  
2 2

1 1 1 1 2 2 2 3 3 3
( )

a a
V e ae e u ce e e u be e u= − + + + − +�   (16) 

Therefore, we choose 

           

1 2

2 2

3 3

a

a

u ce

u e

u be

= −

= −

= −

                                                     (17) 
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Substituting (17) into (14), the error dynamics simplifies to 

       

1 1 2

2 1 2

3 3

( )

( )

2

e ae c a e

e c a e e

e be

= − − −

= − −

= −

�

�

�

                                         (18) 

Substituting (17) into (16), we obtain 

        
2 2 2

1 2 3( ) 2V e ae e be= − − −�                                   (19) 

which is a negative definite function on 
3

R since a and b are 

positive constants. 

Hence, by Lyapunov stability theory [24], the error 

dynamics (18) is globally exponentially stable. 

Combining (12), (13) and (17), the anti-synchronizing 

nonlinear controller u is obtained as 

       

1 2

2 2 1 3 1 3

3 3 1 2 1 2

( )

u ce

u e a y y x x

u be y y x x

= −

= − + +

= − − −

                                (20) 

Thus, we have proved the following result. 

Theorem 1. The identical T systems (8) and (9) are 

exponentially and globally anti-synchronized for any initial 

conditions with the nonlinear controller u defined by (20). � 

Numerical Results  

For the numerical simulations, the fourth-order Runge-

Kutta method with time-step 
610−

 is used to solve the systems 

using MATLAB.  

For the T system (8), the parameter values are taken as 

those which result in the chaotic behaviour of the system, viz. 

2.1,a = 0.6b =  and 30.c =  

The initial values of the master system (8) are taken as 

     1 2 3(0) 5,  (0) 4,  (0) 8x x x= = =  

while the initial values of the slave system (9) are taken as 

          1 2 3(0) 12,  (0) 1,  (0) 3y y y= = =  

Figure 2 shows the anti-synchronization between the states 

of the master system (8) and the slave system (9). 

 
Figure 2. Anti-synchronization of Identical T Systems 

IV. ANTI-SYNCHRONIZATION OF IDENTICAL CAI 

SYSTEMS 

In this section, we apply the active nonlinear control 

technique for the anti-synchronization of two identical Cai 

systems ([23], 2007).  

Thus, the master system is described by the Cai dynamics 

    

1 2 1

2 1 2 1 3

2

3 1 3

( )x x x

x x x x x

x x hx

α

β γ

= −

= + −

= −

�

�

�

                                         (21)  

where 1 2 3, ,x x x are the states of the system and , , , hα β γ     

are positive parameters of the system. 

The slave system is also described by the Cai dynamics as 

           

1 2 1 1

2 1 2 1 3 2

2

3 1 3 3

( )y y y u

y y y y y u

y y hy u

α

β γ

= − +

= + − +

= − +

�

�

�

                               (22) 

where 1 2 3, ,y y y are the states of the system and 

             [ ]1 2 3

T
u u u u=  

is the nonlinear controller to be designed. 

The Cai system (21) is a new 3-D chaotic system derived 

by Cai and Tan ([23], 2007). The Cai system (21) is chaotic 

when 

     20,   14, 10.6α β γ= = =   and  2.8.h =  

Figure 3 illustrates the chaotic portrait of the Cai system 

(21). 

 
Figure 3. Chaotic Portrait of the Cai System (21) 

The anti-synchronization error e  is defined by 

          ,       ( 1, 2,3)i i ie y x i= + =                          (23) 



Dr. V. Sundarapandian et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,378-383 

© 2010, IJARCS All Rights Reserved 
 

The error dynamics is obtained as 

         

1 2 1 1

2 1 2 1 3 1 3 2

2 2

3 3 1 1 3

( )

( )

e e e u

e e e y y x x u

e he y x u

α

β γ

= − +

= + − + +

= − + + +

�

�

�

          (24) 

To find an anti- synchronizing controller, we first let 

           
2 2 2

3 3 3

a b

a b

u u u

u u u

= +

= +
                                              (25) 

where 

                 
2 1 3 1 3

2 2

3 1 1

b

b

u y y x x

u y x

= +

= − −
                                        (26) 

Substituting (25) and (26) into (24), we obtain 

                   

1 2 1 1

2 1 2 2

3 3 3

( )

a

a

e e e u

e e e u

e he u

α

β γ

= − +

= + +

= − +

�

�

�

                                  (27) 

Next, we consider the candidate Lyapunov function 

                  ( )2 2 2

1 2 3

1 1
( )

2 2

T
V e e e e e e= = + +               (28) 

A simple calculation gives 

  
( ) 2 2

1 2 1 1 1 2

2

2 2 3 3 3

( )

          a a

V e e e e e u e

e u he e u

α β α γ= + − + +

+ − +

�

            (29) 

Therefore, we choose 

               

1 2

2 2

3

( )

( 1)

0

a

a

u e

u e

u

α β

γ

= − +

= − +

=

                                           (30)               

Substituting (30) into (27), the error dynamics simplifies to 

         

1 1 2

2 1 2

3 3

e e e

e e e

e he

α β

β

= − −

= −

= −

�

�

�

                                            (31) 

Substituting (30) into (29), we also obtain 

        
2 2 2

1 2 3( )V e e e heα= − − −�                                 (32) 

which is a negative definite function on 
3

R since  α and h are 

positive constants. 

Hence, by Lyapunov stability theory [24], the error 

dynamics (31) is globally exponentially stable. 

Combining (25), (26) and (30), the anti-synchronizing 

nonlinear controller u is obtained as 

      

( )

( )
1 2

2 2 1 3 1 3

2 2

3 1 1

1

u e

u e y y x x

u y x

α β

γ−

= − +

= + + +

= − −

                      (33) 

Thus, we have proved the following result. 

Theorem 2. The identical Cai systems (21) and (22) are 

exponentially and globally anti-synchronized for any initial 

conditions with the nonlinear controller u defined by (33). � 

Numerical Results  

For the numerical simulations, the fourth-order Runge-

Kutta method with time-step 
610−

 is used to solve the systems 

using MATLAB. 

 For the Cai system (20), the parameter values are taken as 

those which result in the chaotic behaviour of the system, viz. 

20,α = 14,β = 10.6γ = and 2.8.h =  

The initial values of the master system (21) are taken as 

     1 2 3(0) 4,  (0) 10,  (0) 6x x x= = =  

while the initial values of the slave system (22) are taken as 

          1 2 3(0) 1,  (0) 5,  (0) 12y y y= = =  

Figure 4 shows the anti-synchronization between the states 

of the master system (21) and the slave system (22). 

 
Figure 4. Anti-Synchronization of Identical Cai Systems 

V. ANTI-SYNCHRONIZATION OF T AND CAI SYSTEMS  

In this section, we apply the active nonlinear control 

technique for the anti-synchronization of non-identical T and 

Cai chaotic systems. As the master system, we consider the T 

system ([22], 2008) described by 

      

1 2 1

2 1 1 3

3 3 1 2

( )

( )

x a x x

x c a x ax x

x bx x x

= −

= − −

= − +

�

�

�

                                        (34)  

As the slave system, we consider the Cai system ([23], 

2007) described by  

           

1 2 1 1

2 1 2 1 3 2

2

3 1 3 3

( )y y y u

y y y y y u

y y hy u

α

β γ

= − +

= + − +

= − +

�

�

�

                               (35) 

where all the parameters , , , , , ,a b c hα β γ are positive real 

constants and   [ ]1 2 3

T
u u u u= is the nonlinear controller 

to be designed. 

The anti-synchronization error e  is defined by 

          ,       ( 1, 2,3)i i ie y x i= + =                           (36) 
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The error dynamics is obtained as 

         

1 2 1 2 1 1

2 1 2 1 2

1 3 1 3 2

2

3 3 3 1 1 2 3

( ) ( )( )

( )

       

( )

e e e a x x u

e e e c a x x

y y ax x u

e he h b x y x x u

α α

β γ β γ

= − + − − +

= + + − − −

− − +

= − + − + + +

�

�

�

           (37) 

To find an anti-synchronizing controller, we first let 

           

1 1 1

2 2 2

3 3 3

a b

a b

a b

u u u

u u u

u u u

= +

= +

= +

                                              (38) 

where 

        

( )( )1 2 1

2 1 2 1 3 1 3

2

3 1 3 1 2

( )

( )

b

b

b

u a x x

u c a x x y y ax x

u y h b x x x

α

β γ

= − − −

= − − − + + +

= − − − −

    (39)                               

Substituting (38) and (39) into (37), we get 

            

1 2 1 1

2 1 2 2

3 3 3

( )
a

a

a

e e e u

e e e u

e he u

α

β γ

= − +

= + +

= − +

�

�

�

                                        (40) 

Next, we consider the candidate Lyapunov function 

                  ( )2 2 2

1 2 3

1 1
( )

2 2

T
V e e e e e e= = + +               (41) 

A simple calculation gives 

    
( ) 2 2

1 2 1 1 1 2

2

2 2 3 3 3

( )

          

a

a a

V e e e e e u e

e u he e u

α β α γ= + − + +

+ − +

�

          (42) 

Therefore, we choose 

      

1 2

2 2

3

( )

( 1)

0

a

a

a

u e

u e

u

α β

γ

= − +

= − +

=

                                               (43) 

Substituting (43) into (40), the error dynamics simplifies to 

        

1 1 2

2 1 2

3 3

e e e

e e e

e he

α β

β

= − −

= −

= −

�

�

�

                                              (44) 

Substituting (43) into (42), we obtain 

          
2 2 2

1 2 3( )V e e e heα= − − −�                                  (45) 

which is a negative definite function on 
3

R since α   and h  

are positive constants. 

Hence, by Lyapunov stability theory [24], the error 

dynamics (44) is globally exponentially stable. 

Combining (38), (39) and (43), the anti-synchronizing 

nonlinear controller u is obtained as 

    
1 2 1 3 1 3

2

1 3 1 2

1 2 2 1

2 2

3

1) ( )

( )

( ) ( )( )

( e c a x x y y ax x

y h b x x x

u e a x x

u

u

γ β γ

α β α

+ − − − + + +

− − − −

= − + − − −

= −

=

 (46)                           

Thus, we have proved the following result. 

Theorem 3. The non-identical T system (34) and Cai system 

(35) are exponentially and globally anti-synchronized for any 

initial conditions with the nonlinear controller u defined by 

(46). � 

Numerical Results  

For the numerical simulations, the fourth-order Runge-

Kutta method with time-step 
610−

 is used to solve the systems 

using MATLAB.  

For the T system (34), the parameter values are taken as 

those which result in the chaotic behaviour of the system, viz. 

2.1,a = 0.6b =  and 30.c =  

For the Cai system (35), the parameter values are taken as 

those which result in the chaotic behaviour of the system, viz. 

20,α = 14,β = 10.6γ = and 2.8.h =  

The initial values of the T system (34) are taken as 

     1 2 3(0) 4,  (0) 8,  (0) 6x x x= = =  

while the initial values of the Cai system (35) are taken as 

          1 2 3(0) 15,  (0) 3,  (0) 10y y y= = =  

Figure 5 shows the anti-synchronization between the states 

of the T system (34) and the Cai system (35). 

 
Figure 5.  Anti-synchronization of T and Cai Systems 

VI. CONCLUSIONS 

In this paper, we have used active control method based 

on Lyapunov stability theory to achieve global chaos anti-

synchronization for the following 3-D chaotic systems. 

(A) Identical T systems (2008) 

(B) Identical Cai systems (2007) 

(C) Non-Identical T and Cai Systems 

Since the Lyapunov exponents are not required for these 

calculations, the nonlinear control method is very effective and 

convenient to achieve global chaos anti-synchronization for 

identical and different T and Cai chaotic systems. Numerical 

simulations are also given to illustrate and validate the 

proposed active control method for the global chaos anti-

synchronization of the chaotic systems addressed in this paper. 
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