
Volume 4, No. 9, July-August 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 108

ISSN No. 0976-5697

Design and Implementation of Testing Tool for Code Smell Rectification Using C-Mean
Algorithm

Gurpreet Singh*1, Vinay Chopra2

Asst.Prof. Deptt. of CSE1,M.Tech Student Deppt. Of CSE2
DAV Institute of Engineering and Technology Kabir Nagar, Jalandhar

Gps_ghotra@yahoo.com1, Vinaychopra222@yahoo.co.in2

Abstract:-A code smell is a hint or the description of a symptom that something has gone wrong somewhere in your code. These are commonly
occurring patterns in source code that indicate poor programming practice or code decay. The presence of code smells can have a severe impact
on the quality of a program, i.e. making system more complex, less understandable and cause maintainability problem. Herein, an automated
tool have been developed that can rectify code smells present in the source code written in java, C# and C++ to support quality assurance of
software. Also, it computes complexity, total memory utilized/wastage, maintainability index of software. In this research paper an approach
used for the design and implementation of testing tool for code smell rectification is discussed and is validated on three different projects.

Keywords: - Code Smell, Refactoring, Maintainability, Memory Utilization, Inspection, McCabe Cyclomatic Complexity, Halstead Measure.

I. INTRODUCTION

The concept of code smell was introduced Fowler and
Beck as an indicator of problems within in the design or
code of software by presenting an informal definition of 22
code smells. Code smells indicate that there are issues with
code quality, such as understandability and changeability,
which can lead to the introduction of faults [1]. A common
set of design principles such as data abstraction,
encapsulation, and modularity should be followed for object
oriented software systems in order to assure the non-
functional requirements[2][3][4]. Although developers are
used to these techniques, but deadline pressure, too much
focus on pure functionality or just inexperience may lead to
violation of these design principle rules.

Code smells are usually not bugs—they are not
technically incorrect and don't currently prevent the program
from functioning. Instead, they indicate weaknesses in
design that may be slowing down development or increasing
the risk of bugs or failures in the future [5]. Each code smell
examines a specific kind of system element (e.g. classes or
methods), that can be evaluated by its inner and external
characteristics. The detection of code smells manually by
code inspection [1], leads to different issues which are
identified by Marinescu[6] as: time-expensive, non-
repeatable and non-scalable. Even more issues concerning
the manual detection of design flaws were identified by
Mäntylä[7][8]. He showed that as the experience a
developer has with a certain software system increases, his
ability to perform an objective evaluation of the system as
well as his ability to detect design flaws decreases. Not
necessarily all the code smells have to be removed: it
depends on the system. When they have to be removed, it is
better to remove them as early as possible. If we want to
remove smells in the code, we have to locate and detect
them; tool support for their detection is particularly useful,
since many code smells can go unnoticed while
programmers are working[9].

In this research paper an automated tool has been
designed and in rest of the paper numbers of questions

wereanswered, i.e. how and which kind of code smells can it
identifies? , how many languages does it support? , what
refactoring has been applied on the code smells identified?
How it computes Maintainability Index, Memory
Utilization. This tool provides range of functionalities that
helps improve quality of code by rectifying various code
smells.

II. DETECTION APPROACH

In the study reported herein, we used automatic
heuristics to detect the smells. These detection strategies
interpret a set of code metrics that are extracted from a
specific system component by using set of threshold filter
rules. The main goal of this approach is to provide engineers
with a mechanism that will allow them to work with metrics
on a more abstract level, which is conceptually much closer
to the real intentions in using metrics. Each detection
strategy is structured in three consecutive elements: 1) A set
of code metrics. 2) A set of filtering rules, one rule for the
interpretation of each metric result. 3) The composition of
filtered result.

C-Mean Algorithm is used to partition the code smells
into different clusters based on the ruleset defined. The C-
Mean algorithm starts with an initial partition then it tries all
possible moving or swapping of data from one group to
others iteratively [10].

a. Initially a set of m objects [O1,O2,…Om] which
must be grouped in c clusters. Each object is
described by a set R={x1,x2,…xn}of features.

b. Iteratively scan the objects and compare the
features based on the rules specified.

c. Update each cluster.
d. Repeat step 2 and 3 until all classes has been

scanned for code smells.
The Ultimate goal of clustering is to provide users with

meaningful insight from the original data, so that they can
effectively solve the problems encountered.The tool
developedherein, is able to detect Long method, Large
Class, Long Parameter list, Duplicated code, Switch
Statements, Dead code, Temporary fields, Lazy Class and

mailto:Vinaychopra222@yahoo.co.in�

Gurpreet Singh et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,108-114

© 2010, IJARCS All Rights Reserved 109

comments code smell. Herein the detection strategy for long
method, large class and duplicated code is discussed.

A. Long Method:
No matter what the program paradigm is, long

procedures, functions or methods are hard to understand[1].
The longer they are, the more parameters and variables they
use, and long methods are more likely to do more than their
name suggests.To detect Long method logical lines of code
(LLOC), McCabe’s Cycomatic complexity, Halstead
volume and number of local variables left unused were
considered.

a. LLOC is a variant of LOC. It shows the count of
logical statements in a program, it only counts the
statements which end at semi-colon. A threshold
equal to 30 is taken for LLOC.

b. Thomas McCabe introduced a metric in 1976 based
on the control flow structure of a program [11].
This metric is known as McCabe cyclomatic
complexity and it has been famous code
complexity metric throughout since it was first
introduced. The McCabe metric is based on
measuring the linearly independent path through a
programand gives cyclomatic complexity of the
program which is represented by a single number.
McCabe noted that a program consists of code
chunks that execute according to the decision and
control statements, e.g. if/else and loop statements.
McCabe metric ignores the size of individual code
chunks when calculating the code complexity but
counts the number of decision and control
statements.Athreshold equal to 10 is taken.

c. A suite of metrics was introduced by Maurice
Howard Halstead in 1977. Halstead volume can be
calculated as:

V=N.log2 ɳ
Where, N= Program length, ɳ= Program vocabulary and

V= program volume. Volume can be interpreted as bits,
hence is the measure of storage volume required to represent
the program [12]. Halstead observed that there is a
relationship between code complexity and program volume.
According to Halstead, code complexity increases as volume
increases.

B. Large Class:
Large Classes are classes with too many responsibilities

[1]. They have too much data and/or too many methods. The
problem behind this smell is that these classes are hard to
maintain and understand because of their size. Large Class
code smells often coincide with Duplicated Code or Shotgun
Surgery smells.

a. If LLOC is greater than 300 and has more than 5
long methods.

b. If number of instance variables and methods are
greater than 15 and 10 respectively.

c. Weighted method count (WMC) is a count of sum
of complexities of all methods in a class. A
threshold of 20 is taken for a class to be large.

d. Depth of Inheritance tree (DIT), it access how
deep, a class is in hierarchy structurei.e.,
maximum inheritance path from a class to the root
class. DIT greater than 6 is considered for a class
to be large.

e. Coupling, when one object interact with another
object that is a coupling. Strong coupling is
discouraged because it results in less flexible, less
scalable application. A threshold of 10 is
considered.

C. Duplicated Code:
The same code structure in two or more places is a good

sign that the code need to be refactored: if you need to
change in one place, you’ll probably need to change the
other one as well, but you might miss it [1][2]. Rabin karp
algorithm is used to detect duplicated code. Given a text
string t and a pattern string p, find all occurrences of p in t
[13].The Rabin-karp string searching algorithm calculates a
hash value for the pattern, and for each M-character
subsequence of text to be compared. if the hash values are
equal, the algorithm will do a brute force comparison
between the pattern and the M-character sequence. Herein
five consecutive lines were considered to find duplicated
code.

D. Long Parameter List:
Long parameter list means that a method takes too many

parameters. Long Parameter lists are prone to change,
difficult to use, and hard to understand. With objects you
don’t need to pass in everything the method needs, instead
you pass in enough so the method can get to everything it
needs [1]. We thus need to decide how many parameters are
too many. McConnell’s guidebook for procedural
programming [14] recommends that the number of
parameters should be limited to seven. Object-oriented
programming generally requires less parameter passing,
since classes can encapsulate data and operations together.
Therefore, we also selected two other parameter limits with
values of three and five. We thus have ended up with three
opinions on what a long parameter list is. The can be
understood as three tolerance levels: low, medium, and high.

a. The maximum number of parameters in these
categories is three for low, five for medium, and
seven for high.

b. If Number of parameters of a method is greater
than Average_Parameters+2 and some of which is
not used, where

Average_parameters= (∑ n parameters of a
method) / M, for all method in C

M=number of methods in a class.

E. Switch Statements:
Switch Statements also known as State Checking

manifests itself as conditional statements that select an
execution path based on the state of an object. Switch
statements tends to cause duplication [1]. You often find
similar switch statements scattered through the program in
several places. If a new data value is added to the range, you
have to check all the various switch statements. The
presence of this smell essentially signifies a violation of the
Open-Closed Principle [15] since any future modification in
the actions associated with a particular state or the addition
of new states will require the modification of existing code
increasing the required effort and the possibility of
introducing errors.

a. The McCabe cyclomaticgreater than 10 is
considered.

Gurpreet Singh et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,108-114

© 2010, IJARCS All Rights Reserved 110

b. If numbers of cases are greater than 10 and two or
more cases contain duplicated code.

III. REFACTORING

Refactoring is the process of changing a software system
in such a way that it does not alter the external behaviour of
the code yet improves the internal structure[16]. It improves
the design of the software by eliminating redundancy and
reducing complexity. The resulting software is easier to
understand and maintain[17].Refactoring opportunities are
locations in the source where a) there is a need for
improvement regarding a quality attribute; b) a refactoring
can be applied that will reorganize the code while preserving
the behaviour of the software system; and c) the application
of the refactoring will indeed improve the quality attribute.
Major of the refactoring on the code is a manual process.
The task of improving the code is done in three phases:

a. Identify various code smells in the code.
b. Select and apply suitable refactoring.
c. Assess the effect of refactored code i.e., whether

any improvement achieved.
In order to correct Long Method code smell, Extract

Method refactoring is applied. How do you identify the
clumps of code to extract? A good technique is to look for
comments. They often signal this kind of semantic distance.
A block of code with a comment that tells you what it is
doing can be replaced by a method whose name is based on
the comment. Even a single line is worth extracting if it
needs explanation. To break up the class three approaches
are most common, first, Extract class (if you can identify a
new class that has a part of this class’s responsibilities);
secondly, Extract subclass (if you can divide
responsibilities between the class and new sub class); third,
Extract interface (if you can identify subsets of features
that clients use).Use Replace Parameter with
Method when you can get the data in one parameter by
making a request of an object you already know about. This
object might be a field or it might be another parameter.
UsePreserve Whole Object to take a bunch of data gleaned
from an object and replaces it with the object itself. If you
have several data items with no logical object, use Introduce
Parameter Object.

The simplest duplicated code problem is when you have
the same expression in two methods of the same class. Then
all you have to do is Extract Method and invoke the code
from both places.Most times you see a switch statement you
should consider polymorphism. The issue is where the
polymorphism should occur. Often the switch statement
switches on a type code. You want the method or class that
hosts the type code value. So use Extract Method to extract
the switch statement and thenMove Method to get it onto the
class where the polymorphism is needed. At that point you
have to decide whether to Replace Type Code with
Subclasses or Replace Type Code with State/Strategy. When
you have set up the inheritance structure, you can
use Replace Conditional with Polymorphism.

IV. MAINTAINABILITY INDEX

Software maintenance includes all post implementation
changes made to a software entity[18]. IEEE defines

software maintainability as "the ease with which a software
system orcomponent can be modified to correct faults,
improve performance or other attributes, oradapt to a
changed environment. “Maintainability index (MI) is a
single valued metric where index value between 0 - 100
iscalculated to represent the ease of maintainability of the
code or software product. Higheror closer to 100 value of
MI means better maintainable code while low value will
representthe code that will be hard to maintain. The
construction of MI is based on four matric model that
includes McCabe’s Cyclomatic Complexity [19], Halstead
Volume [20], Source line of code (SLOC) and average
number of lines of comment per module.

V. RESULTS AND DISCUSSION

In order to test the tool developed, the source code for
three different projects namely, Banking System, Web
Browser and Hotel management system in .Net (C#), .java
and C++ respectively were downloaded from
http://www.planet-source-code.com/. These source codes
were tested for presence of different code smells so as to
improve its quality further.

Table 1: Description of projects under consideration

S.No Project Name Language LOC

1. Banking Management System C# 2500

2. Web Browser Java 2255

3. Hotel Management System C++ 1900

The tool takes source code as input and identifies

different types of code smells presents in it, computes
memory utilization and maintainability index for the same.
When the above listed projects were analysed by the tool it
was observed that the number of code smells were easily
removed by applying the refactoring described in section III,
moreover the Maintainability index was increased and
memory wastage was less. Below Fig 1 to Fig 9 shows
results computed by the tool for three different projects.

Figure 1: Different types of code smells in Banking System

http://sourcemaking.com/refactoring/replace-parameter-with-method�
http://sourcemaking.com/refactoring/replace-parameter-with-method�
http://sourcemaking.com/refactoring/preserve-whole-object�
http://sourcemaking.com/refactoring/introduce-parameter-object�
http://sourcemaking.com/refactoring/introduce-parameter-object�
http://sourcemaking.com/refactoring/extract-method�
http://sourcemaking.com/refactoring/extract-method�
http://sourcemaking.com/refactoring/move-method�
http://sourcemaking.com/refactoring/replace-type-code-with-subclasses�
http://sourcemaking.com/refactoring/replace-type-code-with-subclasses�
http://sourcemaking.com/refactoring/replace-type-code-with-state-strategy�
http://sourcemaking.com/refactoring/replace-conditional-with-polymorphism�
http://www.planet-source-code.com/�

Gurpreet Singh et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,108-114

© 2010, IJARCS All Rights Reserved 111

Figure 2: Memory Utilization for Banking System Figure 3: Maintainability Index of Banking System

Figure 4: Different types of code smells in Web Browser

Figure 5: Memory Utilization for Web Browser Figure 6: Maintainability Index of Web Browser

Gurpreet Singh et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,108-114

© 2010, IJARCS All Rights Reserved 112

Figure 7: Different types of code smells in Hotel Management System

Figure 8: Memory Utilization for HMS Figure 9: Maintainability Index of HMS

The figures above show the different types of code smells
detected by the tool, memory utilization and maintainability
index for three different projects, i.e. (Banking System,
Hotel Management System, and Web Browser), . In order to
detect different code smells in the source code of different
projects the rule set defined in section II for various code
smells were used. Each code smells contain number of rules
based on the properties they possess, so that maximum
number of code smells presents can be detected and no code
smell is left in the source code. To calculate the
maintainability index of source code of different projects
four metric MI model was used, according to which MI is
calculated as below in Eq. 1.

 Eq. 1

Where,

• MI is a Maintainability index of the module
• aveE is average Halstead effort per module

• aveVG is average cyclomatic complexity per
module

• aveLOC is average lines of code per module
• aveCMT is average number of lines of comments

per module.
Once the various code smells have been detected the next
step is to remove them by applying an appropriate
refactoring specified in section III for each code smells.
Major of the refactoring on the code is a manual
process.When the refactored code is given to the tool as
input, the results show significant improvement. The
numbers of code smells were reduced to larger extent; as a
result which, source code is now well structured. Moreover
the maintainability index of the code in increased that
indicates relative ease of maintaining the code, easy to test
the code and more understandable. This means that the
overall quality of source code is improved.

The table 2 below shows the different number of code
smells detected and corrected in three different projects, and
table 3 shows the MI for each of three projects before and
after correction.

Gurpreet Singh et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,108-114

© 2010, IJARCS All Rights Reserved 113

S.No

Code Smells

Banking System
Hotel Management

System
Web Browser

No. of code

smells

before

correction

No. of code

smells after

correction

No. of code

smells

before

correction

No. of code

smells after

correction

No. of code

smells

before

correction

No. of code

smells after

correction

1. Long Method 21 9 2 0 6 2

2. Long Parameter List 4 0 2 0 0 0

3. Large Class 12 7 2 1 1 1

4. Switch Statement 3 1 0 0 0 0

5. Duplicated Code 5 0 9 0 5 0

6. Lazy Class 5 2 3 1 0 0

7. Dead Code 22 0 70 0 20 0

8. Empty Catch Block 5 0 0 0 7 0

9. Temporary Field 30 0 16 0 43 0

TOTAL 107 18 104 2 82 3

Table 2: Number of Code smells detected and corrected in Banking System, HMS and Web Browser

Projects

Total

Cyclomatic

complexity

Total

Halstead

volume

Source

lines of

code

Comment to

Line of code

ratio

Maintainability

index

Banking System

Before

Correction

209 15729 2500 5 18

After

Correction

197 13473 2674 5 49

Hotel

Management

System

Before

Correction

192 1056 2255 132 13

After

Correction

170 1254 2097 20 53

Web Browser

Before

Correction

211 2004 1900 0 52

After

Correction

187 3178 2018 0 81

Table 3: Values of Various parameters to calculate MI for different project

Gurpreet Singh et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,108-114

© 2010, IJARCS All Rights Reserved 114

VI. CONCLUSION AND FUTURE SCOPE

The tool developed is capable of performing code
analysis automatically on regular basis. It can analyse source
code written in three different languages i.e., Java, C++ and
.Net (C#). With the help of this developers can view quality
of their code. As a result of this tool automatic measurement
of source code complexity is possible to implement.
Potentially fault-prone code can easily be identified which
can suggest developers about the code that require
refactoring. It is also possible to identify what parts of code
have changed and how much they are changed. The tool
built can effectively compute the memory utilization and
measures maintainability index value between 0-100 that
represent relative ease of maintaining the code. The results
observed in section V shows significant improvement in the
quality of software. In the future the research work must
focus on the identification and removal of the left code
smells, so as to make source code free from all types of code
smells given by Fowler et.al, 1999.

VII. REFERENCES

[1] Fowler, M. and K. Beck, Refactoring: improving the design
of existing code. 1999: Addison-Wesley Professional.

[2] Johnson, R.E.; Foote, B. Designing reusable classes.
Journal of Object-Oriented Programming, Journal of
Object Oriented Programming, pp. 22-35, 1988

[3] Rising, L.S.; Calliss, F.W. An experiment investigating the
effect of information hiding on maintainability. 12th Ann.
Int. Phoenix Conference on Computers and
Communication, March, pp. 510-516, 1993

[4] Wilde, N.; Mathews, P.; Ross, H. Maintaining Object-
Oriented Software. Addison-Wesley, 1993

[5] Code Smells: http://en.wikipedia.org/wiki/code_smel l.

[6] Marinescu, R. Detecting Design Flaws via Metrics in
Object-Oriented Systems. TOOLS pp. 173-182, 2001

[7] Mäntylä, Mika. Vanhanen, Jari and Lassenius, Casper ,A
Taxonomy and an Initial Empirical Study of Bad Smells in
Code. ICSM, pp.381-384, 2003

[8] Mäntylä, M.; Vanhanen, J.; Lassenius, C. Bad Smells -
Humans as Code Critics. ICSM pp.399-408, 2004

[9] Fontana, F.A. and Braione, P. and Zanoni, M. “Automatic
detection of bad smells in code: An experimental assess”,
Journal of Object Technology, Vol.11 No.2, 2012.

[10] Xu, Rui and Wunsch, Donald and others, Survey of
clustering algorithms, IEEE Transactions on Neural
Networks, vol.16 no.3 pp: 645-678,2005.

[11] T. J. McCabe, “A Complexity Measure,” ICSE '76:
Proceedings of the 2nd international conference on
Software engineering, 1976.

[12] Everald E. Mills, "Software Metrics", Software
Engineering Institute, 1988.

[13] Crespo, Yania, Carlos Lopez, Raul Marticorena, and
Esperanza Manso, "Language independent metrics
support towards refactoring inference,“ in 9th ECOOP
Workshop on QAOOSE 05 (Quantitative Approaches in
Object-Oriented Software Engineering, Glasgow: UK.
ISBN: 2-89522-065-4, July 2005.

[14] S. McConnell, Code Complete, Redmond, Washington,
USA: Microsoft Press, 1993.

[15] R. C. Martin, Agile Software Development: Principles,
Patterns and Practices, Prentice Hall, 2003.

[16] Martin Fowler “Improving the Design of Existing
Code”Addison Wesley, Massachusetts, April 2006.

[17] Van Emden, E. and Moonen, L. “Java quality assurance by
detecting code smells” Proceedings Ninth Working
Conference on Reverse Engineering, IEEE, pp.97-106,
2002.

[18] Young Lee, "Automated Source Code Measurement
Environment for Software Quality",Auburn University
Alabama, December 2007.

[19] T.J. McCabe, “A Complexity Measure, “ICSE ’76:
Proceeding of the 2nd International Conference on Software
Engineering, 19776.

[20] Hamer, P. G. and Frewin, G. D., "M. H. Halstead's
Software Science - A CriticalExamination", in the
Proceedings of the 6th International Conference on
SoftwareEngineering, Tokyo, Japan, 1982.

http://en.wikipedia.org/wiki/code_smel%20l�

