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Abstract- In real life scheduling, variations of the standard traveling salesman problem is very often encountered. The aim of this work is to 
present a new heuristic method for solving three such special instances with a common approach. The proposed algorithm uses a variant of the 
threshold accepting method, enhanced with intense local search, while the candidate solutions are produced through an insertion heuristic 
scheme. The main characteristic of the algorithm is that it does not require modifications and parameter tuning in order to cope with the three 
different problems. Computational results on a variety of real life and artificial problems are presented at the end of this work and prove the 
efficiency and the ascendancy of the proposed method over other algorithms found in the literature. 

I. INTRODUCTION 

One of the most notorious as well as well studied 
problem in the field of combinatorial optimization is the 
traveling salesman problem (TSP) [15]. The problem is easy 
and straightforward to state, but its solution has obstructed 
researchers.  

In its most simplified form as exhibited by Lawler et al. 
[16] and Reinelt [19], a number of cities and the distances 
between them are given and the task is to find the minimum-
length closed tour that visits each city once and returns to its 
starting point. It can be viewed as a graph-theory problem if 
the cities are identified with the nodes of a graph, and the 
links between the cities are associated with arcs. 
Nevertheless, due to physical or technical constraints, real 
world problems can hardly ever be described by this simple 
form. 

When the distance between any two cities i and j is equal 
to the distance between j and i the problem becomes a 
symmetric TSP (STSP). If these distances are different, the 
problem becomes more general and is called asymmetric 
TSP (ATSP). 

Furthermore, precedence constraints among cities or 
nodes, introduce the sequential ordering problem (SOP). 
According to Escudero [23], it consists of finding a 
minimum weight Hamiltonian cycle (tour) on a directed 
graph with weights on the arcs and the nodes, subject to 
precedence constrains among nodes, where nodes can be 
considered as cities or jobs to be completed. In other words, 
the objective is to find a city or job sequence that minimizes 
the total tour or makes pan, subject to the precedence 
constrains. 

Another family of problems originating from TSP is the 
asymmetric traveling salesman problems with time windows 
(ATSPTW). In ATSPTW problems the arcs of the graph 
correspond to job transitions that is, the set-up times needed 
to start processing a job (node) after the previous job has 
been completed. For every job, the following information is 
given: a processing time p, an earliest time r and a latest 
time d to start processing the job. The interval [r, d] is called 
time window. The problem is to find the minimum cost path 
that visits all nodes and satisfies the time windows 
restrictions, i.e., a node sequence with minimal total cost 

such that, for every node the starting time lies within the 
time window [6,22]. 

The TSP has practical applications and is representative 
of a large class of important scientific and engineering 
problems, like VLSI routing, vehicle routing, mixed Chinese 
postman problems, integrated circuit boardchip insertion 
problems [11,15], workshop scheduling and computer 
wiring [16,23], etc. However, asymmetric models are 
relevant to a wider range of applications and are more 
general than symmetric models. Instances of such problems 
are the tilted drilling machine problem encountered by 
Johnson et al. [17], pay phone collection problems and no-
wait flow shop problems [23,19], vehicle routing 
(distribution of goods and services), robotic motion 
planning, tape drive reading, computer wiring [15], code 
optimization, table compression [17,18] and ATS problem 
of routing in circuit switched telecommunication networks 
[10]. 

Variations of ATSP also cope with a large range of 
applications: Multi-ATSP [15] is used in scheduling two 
(non-identical) machines with sequence dependent set-up 
times and also in hot rolling production scheduling [14]. 
Schneider [12] expanded the ATSP to the time dependent 
traveling salesman problem, where distances between cities 
vary with time. ATSP with knapsack-like constraints on 
subpaths of the tour is a problem that arises in routing 
aircraft problem [12,22]. An m-period TSP solved by Paletta 
[17] is a traveling salesman problem where the salesman 
must visit each city a fixed number of times over a given m-
day planning period. 

Finally the Disk Scheduling Problem is related to the 
special case of the asymmetric traveling salesman problem 
with the triangle inequality (ATSP-n) in which all distances 
are either 0 or equal to some constant x [4,17]. 
The SOP problem occurs as a basic model in many 
industrial problems, such as in scheduling and routing 
decision [22,7,8]. It has found a wide range of applications: 
Timlin [17] applied it to helicopter routing, while Ascheuer 
[9] and Abdel- Hamid et al. [2] used it in stacker crane 
routing in an automatic storage system where the aim is to 
minimize the time needed for the unloading moves. Timlin 
[17] and Timlin and Pulleyblank [18] developed symmetric 
TSP models for minimizing the total distance on a daily 
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helicopter’s set of stops at oil-platforms, satisfying 
precedence constraints and helicopter capacity. 
ATSPTW can also describe accurately many real life 
scheduling problems. Ascheuer et al. [6] simulated the 
control of a stacker crane in a warehouse with an ATSPTW. 
Applegate and Cook [5] related the ATSP-TW to the job-
shop scheduling problem (JSSP) where just one of the 
machines is taken under consideration.   Fagerholta and 
Christiansen [14] imposed on ATSP both precedence 
constrains and time windows (ATSP TW PC) and aimed at 
optimally sequencing a given set of port visits in a real bulk 
ship scheduling problem. Since the applications of ATSPs 
spread on such a wide range of problems, it is obvious that 
there is a great interest for developing efficient and 
extensive algorithms for solving them unobjectionably and 
unexceptionably. Although much work has been done for 
solving TSPs, disproportional work has been carried out for 
ATSPs despite their significant applicability on 
nonacademic practical problems. 

II. DESCRIPTION OF THE ALGORITHM 

A. The threshold accepting method:  
Combined   with gradually reinforced local search The 

basic idea of the threshold accepting algorithm is quite 
simple and  similar to the one used in the simulated 
annealing algorithm. As mentioned in Section 2, in contrast 
to SA, TA does not require the generation of random 
numbers and exponential functions. Assuming that X* is the 
set of all feasible solutions of the problem, TA starts with an 
element x0 2 X*, which may be randomly chosen. Then, the 
method proceeds in an iterative manner. In each iteration the 
algorithm decides if the current solution xc will be replaced 
by a new one xn. The new candidate is chosen (by use of 
local search moves) as a small perturbation of the current 
solution or—speaking in mathematical terms—in a given 
neighborhood of the current solution xc. The value of the 
objective function is calculated for the new candidate and 
the results are compared: Df = f(xn) _ f(xc).  

Up to this point, the procedure is similar to the one of a 
standard or trivial local search algorithm. The decision rule 
in a standard algorithm is to accept xn as the new current 
solution if and only if Df 6 0 (assuming a minimization 
problem). If the number of iterations is large enough, the 
algorithm will end up in a local minimum with certainty. In 
general, the quality of the local minimum will be low, i.e., 
the difference from the global minimum will be large. 
Applications of the trivial local search algorithm to traveling 
salesman problems show differences in the order of 
magnitude of 10%. A further increase in the number of 
iterations cannot improve the quality of the results. 

B. Representation of the solution: 
To our knowledge, in any known heuristic algorithm that 

has been proposed for solving ATSPs or their variances, the 
current solution is an integrated schedule of the cities (jobs) 
to be visited (to be scheduled). In this work we consider as 
current solution a vector x € X*, where X* is the set of all 
possible permutations of the cities. In a specific permutation 
x, the position of each city denotes the order in which it will 
be inserted in the schedule. Thus, for the rest of the paper, 
the name insertion order will be used for the sequence x, 
while the corresponding schedule will be denoted by S. This 
way the searching operations of the algorithm are imposed 

on the unscheduled string x, x in turn is translated into a 
schedule S and the solution x is surveyed right after the 
value of the respective cost has been calculated. 

The proposed methods of insertion, guarantee that for a 
given insertion order the produced schedule is feasible and 
optimum for the two first groups of problems of problems, 
namely ATSPs. 

III.    OPTIMIZATION STRATEGIES 

A. Local optimization: 
In this part, two local optimization approaches, the local 

determinate optimization (LDO) and the local stochastic 
optimization (LSO) are created to enhance the local 
optimization capability of our hybrid approach. The 
mechanism of these two regulations is shown in  Figs. 6  and 
7. The complexity of LDO and LSO is decreased by 
executing them only every several generations. 

B. Global optimization: 
In this part, the GO is established to improve the GO 

capability and convergence speed of our hybrid approach. 
The mechanism of the proposed GO is displayed as  Fig. 8. 
The complexity of GO is decreased by executing it only 
every several generations. 

IV.    EVALUATION AND COMPARATIVE STUDIES 

In this section, the proposed approach is compared with 
other published algorithms on sixteen ATSP instances for 
the effectiveness evaluation. The termination criteria for our 
approach can be listed as follows: (1) the known optimal 
solution is achieved, (2) maximal iterative generation (MG) 
is exhausted and (3) the global best solution from the 
beginning trials is not improved in the successive (SG) 
generations. When one of the termination criteria is 
satisfied, our approach stops and provides the coordinates of 
the located point, and the objective 

 

 
 

 
Figure. 6.  The mechanism of the local determinate optimization. 
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Figure. 7.  The mechanism of the local stochastic optimization. 

Value at this point. In this paper, the global optimal 
value of all ATSP instances is pre-obtained by  Burioletal. 

 

 
Figure. 8.  The mechanism of global optimization. 

V.    CONCLUSIONS 

The contributions of this paper can be summarized as 
follows. A hybrid approach that combines an IGA and 
optimization strategies was presented for solving the ATSP. 
Both the crossover operation and the mutation operation in 
this IGA were enhanced by selecting the optimum from a set 
of solutions. At the same time, three regulations 
(immigration, local optimization and GO) were established 
based on several empirical optimization strategies to 
enhance the evolution of the IGA. The comparative study 
shows that the proposed approach outperforms several other 
published algorithms. 

In the work presented in this paper, the design of the 
abovementioned operators and regulations to some extent 
minimizes the influence of some parameters on optimization 
performance. But, the design of an appropriate parameter 
combination for finding the optimal solution quickly should 
be studied in the future. That is, ‘parameter adaptation 
techniques’ have to be considered for future development to 
make the proposed approach self-adaptive. 
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