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Abstract: In real-time systems, specification, analysis and verification are very important research topics and practical implementation of real time 
systems need great accuracy. Component-based design is an approach to design and manufacture real-timed systems. This method is a reuse-based 
technique which improves some of requirements such as increasing their usability, flexibility, adaptation, reducing the cost of software products and 
Etc. In this Paper, we present a theory for modelling behaviour, interactions, and processes of component based real-time systems. For this purpose, 
we used concepts of time automata, time interface automata and discrete event components. Each timed component is made based on its 
corresponding timed interface. Timed Interfaces identify all input-output expects and time of occurrence of any processes. One of challenges in 
production of systems based on components is that the component produced conforms to its equivalent interface. We developed a theory to check the 
consistency between timed component and a given timed interface. Theory presented in this paper is considered as a framework for formal 
specification and verification.  
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I. INTRODUCTION 

Verification of systems is the main and principal part in 
development of systems. This process is very important in 
systems such as real-time systems which have critical 
processes. In real-time systems [20] not only logical accuracy 
of operations and processes, but also execution time should be 
considered. These systems include time limitation and if the 
operation is not executed on demanded time, the system is 
failed and causes heavy damages such as loss of resources or 
even endangering the human lives. These systems need 
precision and speed. For example, air bag system in a car is a 
simple sample of real-time systems. This system should 
operate in a short time and if is not completed in time 
limitation; it means system is failed.  

Some examples of these systems include digital control 
system, signal process, telecommunication system, and 
industrial systems. Component-based design [19] is a useful 
way todesign and develops real time systems. Since use of 
components in industry is increased during recent years, there 
is more attempts for designing efficient components based on 
principles and structure of systems designed. The method used 
for modeling of component based real time systems should 
have appropriate syntax and semantic able to precise 
specification of timed components, and provide faultless way 
to their composition and break or reduce the state space 
explosion (One of the problems in checking consistency). 

To solve the state space explosion problem a variety of 
approaches have been proposed. These methods are classified 
into multiple categories such as abstraction [21, 22], on the fly 
model checking [15] and compositional verification [16, 17 
and 18]. In this paper for attacking the state space explosion 
we used compositional verification which is based on “divided 
and conquer”. This method break up a complex system into 
subtasks which involves the checking of its components and 
each subtask verified independently on the equivalent 
component. 

In this paper, we want to extend a formal definition of 
timed discrete event component (TDEC) and verify 
consistency with using the promoted theories of Timed 
Automata [1], Timed Interface Automata [2] and Discrete 
Event Components [3]. 

 
a. Timed automata [1, 10],is a theory for description, 

analyzes and verify timed systems. In this paper we use 
the work of Alur and Dill [1] which extended finite 
automata with a set of clock-variables. Each transition 
associated with a set of clock-variables and clock-guards; 
if current clock-variables satisfy the clock guard then a 
transition can be take place. The clock-values increase 
with the same rate and before starting of any transition 
set to zero. 
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b. A timed interface automaton [2], a precise definition of 
components interaction with each other and with the 
environment, is independent components specified by 
their interfaces. In [2] Alfaro and Henzinger established a 
framework successfully for timed Interface automata 
which modeled as a two player game: the input player is 
the inputs that each component accepts from the 
environment, and the player output is the achievable 
outputs of component. The component is usable in any 
design if its corresponding TI will be a well-formed, this 
means that, there is some environment which satisfies 
component expects. 
 

c. In [3], Jin promoted a formal syntax for discrete event 
component and used interface automata (IAs) to describe 
component assumptions. Interface automata is a 
formalism that proposed by Alfaro and Henzinger [6, 7]. 
In Jin’s theory are general definitions of Reactive 
Transition Systems. The conformances of a component 
to an IA determined by calculating local state space of 
component with regard to IA and search for error states 
in this local space. Local state space is Synchronized 
product of two composed components. 
 

Since specification and implementation in real timed 
systems are very important, the proposed framework in this 
paper should support certain characteristics: simple and 
unambiguous syntax and semantic, which allows to specify the 
set of requirements and assumption of components. The first 
challenge of making component-based real-timed systems is 
well-defined timed components. Structural composition and 
communication, which combine two or more separate 
components, that each of them has their own properties, 
assumptions and specifications. In the composite component, 
interacts can determine by synchronization vectors [8] of input 
and output events. Consistency, components are 
implementation of its corresponding interface, hence, we need 
a reliable method to checking the conformance of TDEC with 
TIAs. 

 

A. Paper Outline:  
Next section includes some definitions of labeled transition 

systems [11, 12], discrete event components [3] and timed 
interface automata [2]. In section 3, we first introduce TDEC 
and the composition of two TDEC by developing the work of 
Jin, for this purpose, we use the regular framework of Arnold 
and Henzinger [2]. Then we check the conformance of TDEC 
to a given TIA with searching in local state space of composite 
TDEC and TIA (synchronized product) for the lack of 
unexpected states. Finally, section 4, constitutes a summary of 
result of this paper and future work.  

 

II. PREVIOUS WORKS 

Due to the need for well-defined specification of 
components and ensure their correctness, many proposal have 
been established. For example, time Petri net, timed automata, 

finite-state machine, labeled transition system, timed interface 
automata, labeled transition systems (LTSs) and discrete event 
component, which are theories in computer sciences and used 
for modeling systems and components. In the following, some 
of these theories that are related work will be summarized. 

 

A. Labeled transition system: 
A labeled transition system is a graph consisting set of 

nodes and set of edges. The nodes present states and 
transitions indicated by the edges which labeled whit actions. 
To test systems by LTSs, we should simulate behavior of 
systems via LTS semantic. For this purpose, we should 
consider quantitative aspects. A LTS is defined as follow: 

 
Definition 1: A labeled transition system is 4-tuple

, where: 
a. S is a non-empty finite set of states; 
b. is the initial state; 
c.  is a set of labels; consists of two countable disjoint 

set of input labels I, and set of output labels O; 
d.  is a set of the transition 

relation; 
B. Discrete event component: 

In [3], Jin introduced general definition of reactive 
transition systems (RTS) which is similar to labeled transition 
systems (LTS). Difference of RTS and LTS is in control of 
actions (called internal event in RTSs and labeled in LTSs). 
RTSs may control input and output actions, but input actions 
are out of control. Input actions are under control of 
environment.  

Synchronization vector is used for composition of RTS. 
This concept presented in [8] by Arnold and Nivate which is 
presented as a general mathematical model for any empty and 
non-empty set of synchronize processes, components may 
accept any number of input at any time, but outputs are 
limited, therefore, author in [3] changed concept of 
synchronization vector in a way that any vector exactly has 
one output and the number of input events:  

 
Definition 2: Consider are the sets of events, 

R is a relation such that , a set  
and  is empty for all i, j which:

. Let projections  for  and sets of 
keys for , then r indexed by 

 if there exists: 
a. for all ; 
b. . 

Since, RTS has limitations and they are not suitable for 
practical use. Therefore, the author in [3] has developed these 
systems as follows:  

 
a. Any event includes two parts of kind and value. Kind is 

used for classification of events and value for exchanged 
data.  

b. Several output-input ports are added to RSTS. Any port 
indicates special type of events. The component shall use 
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these ports for relationship with other components and 
environment. 
 

Definition 3: A discrete event component (DEC) is a 
tuple , where: 

a. S is a set of states; 
b.  is the initial state; 
c.  is a set of ports, which consisting of two disjoint 

ports: input ports  and output ports . 
d. , is a total function which mapping each 

port to a subset of values form the universe; 
e.  is a set of events, where 

 is a set of input events, 
 is a set of output 

events, and set of internal event has not any relation 
with set of port . 

f. ∆ is a set of transition. 
 

C. Time interface: 
Alfaro and Henzinger [2] presented a theory which is able 

to modeling the timing of the behavior and interaction a 
component. We can design component-based real-timed 
systems in the two ways: specification of component interface, 
if an interface is well-formed, then the component is usable in 
any design. Checking for interface compatibility, if 
composition of two interfaces is well-formed, then we can say 
they are compatible. A timed interface automaton defined as 
follow: 

 
Definition 4: (Timed Interface Automata): A TI is a 

tuple , where: 
 
a. S is a set of all state; 
b.  is the initial state; 
c.  is the set of all input action,  which 

 is immediate input. T is a set of timed action; 
d.  is the set of all output action,  

which  is immediate output; 
e.  is the input transition relation; 
f.  is the output transition relation. 

 

III. PROPOSED FORMALISM 

Timed discrete event component, has three kinds of events: 
input events, output events, internal events. Events are 
transitions that occur between components. These transitions 
can be classified in two ways: The Instant transitions, which 
must be done rapidly upon entry to a state. The Timed 
Transition, which describes the time interval for each of 
transition. 

We used definition of Timed Automata [1], Timed 
Interface Automata [2] and Discrete Event Component [3] to 
describe the Timed Discrete Event Components (TDEC) as 
follow: 

 

Definition 5: (Timed Discrete-Event Component): A 
TDEC is a tuple , where: 

a. S is a finite set of state, 
b.  is the initial state, 
c. is a finite set of clocks; 
d. is a set of ports, which consisting of input ports 

and output ports , ; 
e. , which mapping each port to a subset of 

real value; 
f. ∑ is a finite set of all timed events, which consisting 

of three mutually disjoint set of input timed events 
∑I, output timed events ∑O, and internal timed events 
∑H, where ∑H is a pair (t, e) where e is an action 
taken by an automata C after t ∊ R+ and set of internal 
event ∑ H has not any relation with set of port , 

; 
g.  is a function that maps each state of 

TDEC to its invariant, TDEC has three kind of 
invariants: input invariants which specify upper 
bounds (U) and lower bounds (L) for the time of 
input events, output invariants, which specify upper 
bounds and lower bounds for the time of output 
events and internal invariants which specify upper 
bounds and lower bounds for the time of internal 
events. 

h.  is a finite set of 
transitions, and  is a step and we 
often write , state S is the source and  is 
destination of the transition, g is a guard on the clock 
value that specifies when the transition can be taken, 

 is an timed event, and in each transitions r 
resets clock values to 0. 
 

Let V is a function and we use  to mean that the 
clock values satisfy the guard g. If the guard  is false under 
the valuation V, we write . 

 
Definition 6: A timed trace of TDEC is a sequence of 

timed events where  
for all . The trace projection  of ξ 
on C is a timed event sequence consisting of the action that C 
takes which defined by: 

 
 

 

 
a. If TDEC C has no timed events (t, e), then the trace 

projection is empty. 
b. If TDEC C has an internal or output timed event (t, e), 

then (t, e) added to the trace projection. 
c. If (t, e) is an input event from environment or other 

TDEC which corresponds to a synchronization vector r 
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with πc(r) (an input event of c), then πc(r) is added to the 
trace projection. 

d. In otherwise trace projection remains unchanged. 
 

The set of timed enabled events at s are timed event that 
their guards always satisfied, , and there is at least one  
such that , for denote the timed enabled events often 
we write en. en have two kind of disjoint set of input en  
and output en . A TDEC C is input-universal if

. The TDEC C is called mirror if 
and . 
The TDEC may give a rise to two kinds of error: error 

state, where , and timed error, where  
and . The set of trap step in TDEC is 

,Trap step while 
occur that TDEC has an timed event that is not in set of timed 
enable input.If then the input-universal version of 
TDEC defined as follow: 

 
(a).  

 

A. Composition of two TDEC:  
Two TDEC p, q are composable if they have no shared 

output actions, . We can compose two 
components as follow: 

 
Definition 7: For two composable TDEC C1 and C2, the 

product C1⨯C2 is the TDEC N, where: 
a.  is a set of timed events consisting of three disjoint 

sets of input timed event  \ shared 
input event (C1, C2) and output timed events 

 and . We let internal timed 
events

. 
b. . 
c. is relation index by

. 
 

A composition of TDEC is called closed of  = 0, or open 
otherwise. We often write N = (W, R) for a close composition 
of TDEC N. 

 
Definition 8: Consider a composite TDEC C = ( , W, R) 

such that all l ∊W are input universal. The synchronized 
product of C is a TDEC , where: 

a. , and ; 
b. Inv (The time bounds (L, U)) in C: 
a) If  then  remain 

unchanged; 
b) If  then its time bounds in C are defined 

as follow: 
. 

c. g is a guard on the clock value that specifies when the 
transition can be taken, the guard expression of the 
transition in C: 

a) If  then g is the 
conjunction of those of gC1 and gC2. 

b) If  and  then g is the same as 
with . 

c) If  and  then g is the same as 
with . 

d. ∆ is a set of transitions  
such as, for i = 1,2: 

a) If  then: 

{(s  s’) | V⊧ g, e ∊ ∑I
C, ∃f ∊ R (R is synchronization 

vector), producerf = env ˄  e = πenv(f)  or (s’ = s)}∪{(s  
s’) | V⊧ g, e ∊ ∑I

C, ∃f ∊ R (R is synchronization vector), 
∃k ∉ W, producerf  = k, e = πk(f) or (s’ = s)}. 

 
The timed input event, which triggered the transition from 

s to s’ has been produced in two different ways: the 
environment and other components. 

 
b) If (t, e)∊ O then: 

 

{(s  s’) | V⊧ g, f ∊ R, ∃L ∊ W, L = producerf˄  e ∊ 
πenv(f) ˄  (sL, gL, πL(f), r, s’L) ∊ ∆L or s’i = si} ∪ {(s  s’) | 
V⊧ g, f ∊ R, ∃L ∊ W, ∃k ∉ W, k = consumer, L = producerf 
˄  e ∊ πk(f) ˄  (sL, gL, πL(f), r, s’L) ∊ ∆L or s’i = si} 

 
Let (t, e) is a timed output event, thus, this timed event 

produced by one of the components which its consumer is the 
environment or other components. 

 
c) If (t, e)∊ # then: 

 

{(si  s’i) | V⊧ g, f ∊ R, ∃L ∊ W, e ∊ ∑H
L˄  (sL, gL, eL, s’L) 

∊ ∆L ˄  ( i ∊ W \ {L}, s’i = si)} ∪ {(s  s’) | V⊧ g, f ∊ R, 
∃L ∊ W, e ∊ ∑O

L , L = producerf , e ∊πL(f) ˄ πenv(f) =  ˄  
(sL, gL, e, s’L) ∊ ∆L  or s’ = s} ∪ {(s  s’) | V⊧ g, ∃L ∊ W, 
e ∊ ∑L ˄  , (sL, gL, πL(f), r, s’L) ∊ ∆L ˄  ( i ∊ W\{L}, 
s’ = s)} 

 
The Timed internal event can occur in several ways: The 

timed internal event taken by any components in the 
composite TDEC which is a timed internal step of the TDEC. 
The timed output event of any components which has no 
contiguity on environment or other components are not in 
composite TDEC. The timed event can be taken by any 
component but no corresponding synchronization vector 
exists. 

In designing of timed components, the run time of 
transitions should be considered with corresponding interface. 
In so doing, those transitions that are instant transitions should 
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be designed in a way that it could perform immediately, but in 
timed transitions two factors should be considered:  

a. Timed guard (g) that exists in the interface.  
b. Observing upper bound and lower bound.  

 
Guards represents as (<, >, =, ), which in checking of 

consistency should be considered to use exactly those which 
are used interface.  

Also the upper bound and lower bound of component 
should not exceed of those that are used in interface. The 
following examples are some cases in which we can design 
some components according to their interfaces. 

In the following, we show Examples of guard expression 
on the timed interface automata and timed discrete event 
components: 

 
 
 

 
 

Figure 1: Timed Interface. 

 

 

 

 
Figure 2: Timed Discrete Event Component. 

 

 

 

 
Figure 3: Timed DEC. 

 

 

 

 
Figure 4: Timed DEC. 

 

 

 

 
Figure 5: Timed DEC. 

Another point is that, a component can accept one or some 
input from the environment or other components. If the 
number of output is smaller than or equal with the number of 
interface outputs, then likely to observe the system safety. In 
other word the output components considered subsets of their 
corresponding output interface. But having any number of 
inputs for a component is allowed because the environment 
will not offer them. The following examples are samples of 

input and output of the components which we can design from 
interface. 

 
 
 
 
 
 
 
 

 
Figure 6: Timed Interface. 

 

 
 

 

 

 

 

Figure 7: Timed DEC. 

 

 
 
 
 
 
 
 

Figure 8: Timed DEC. 

 

Definition 8 (Normalization): Consider TDEC C and TIA 
A. The Normalization operation on C is defined as follow: 
 

 

 

 

 
Let ƞ is a valuation function and we use  to 

mean that upper bound and lower bound πC(q) are consistent 
with corresponding TA A. 

 
To facilitate checking conformance, we need to change the 

interface which can act as a component. The TIA events 
considered as ports and each port has value, the TIA is able to 
produce all permissive data values and we call this the most 
abstract implementations. If MAI of TIA taken an unspecified 
timed input event then it goes to the error state. MAI is an 
input-universal version of TDEC. The most abstract 

a: int b: int 
a.y?

 
b.z! 

X = 0 X = 15 

 S0 

  S1 

 
 S2 

 

a: int b: int 
a.y! b.z! 

X = 0 5 ≤  X≤ 14 

 S0 

  S1 

 
 S2 

 

a: int b: int 
a.y! b.z! 

X = 0 4 ≤  X≤ 15 

 S0 

  S1 

 
 S2 

 

a?  x = 0 c!  x ≤10 

b?  x = 5 

  x = 0 

d!  x ≤  5 

e!  x ≤ 7 

a: int 

b: int d: int 

c: int a?  x = 0 
c!  x ≤ 10 

f?  x = 0 d!  x ≤  5 

c: int e: int 

d: int 

b: int a: int a?  x = 
 

c!  x ≤ 10 

b?  x = 5 e!  x ≤  7 

d!   f
 

f: int 

a? 
 

B! 
 a? b! 

X = 0  5 ≤ x ≤ 15 
  S0 

  S1 

 
 S2 

 

a: int b: int 
a.y?

 

x = 0 
 S0 

  S1 
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implementation (MAI) of TA A is a 
TDEC , where: 

 
b.  
c.  
d.  and 

 and  
 

B. Consistency of Timed Discrete Event Component: 
To define consistency, Jin et al. [3] used alternating 

simulation [6] that always assumed the environment to satisfy 
the assumption of the specification. In this way, the TDEC can 
accept more inputs and provide less output from its TIA and 
lower bound and upper bound of each state of TDEC must not 
exceed of lower bound and upper bound from its 
corresponding TIA states. In the other words, time-conditions 
of component should be subset of TIA time-conditions. 

 
Definition 9: Let a TDEC C and corresponding TA A such 

that and . If there exists an alternating 
simulation relation ⊰⊆ SC⨯ g ⨯ SA; we can say C conforms to 
A and written C ⊰ A such that s0

C⊰ s0
A, for q ⊰ s and gq’ ⊰ gs 

three following conditions should be hold: 
a. Since TIA has not any internal timed event, when 

TDEC take an internal step from q the aftereffect of 
TDEC must imitate the previous state s, guard g and 
invariant of TIA:  
e ∊ ∑H

C ˄ v ⊧ g, (q, g, e, r, q’) ∊ ∆C implies q’ ⊰ s, 
gq’ ⊰ gs and (Lq’ and Uq’) ⊰ (Ls and Us). 
 

b. Since the output component isa subset of its 
corresponding interface outputs, the TDEC must not 
produce an output timed event that the TIA cannot 
produce.  
t.x.v ∊ ∑O

C ˄ v ⊧ g, (q, g, t.x.v, r, q’) ∊ ∆C implies 
that (s, g, t.x, r, s’) ∊ ∆A such that q’ ⊰ s’, gq’ ⊰ gs’, ( 
Lq’ and Uq’) ⊰ (Ls’ and Us’). 
 

c. Since the input interface should be a subset of 
component inputs, when the TDEC takes a timed 
event t.x.v from q the resultant state of TDEC must be 
simulate the resultant state of TIA: 
t.x ∊ ∑I

A ˄ v ⊧ g, (s, g, t.x, r, s’) ∊ ∆A implies that 
v ∊ C(x), (q, g, t.x.v, q’) ∊ ∆C such that q’ ⊰ s’, gq’ ⊰ 

gs’, (Lq’ and Uq’) ⊰ (Ls and Us). 
 

Further, The TDEC must simulate guards of TIA and takes 
its timed event when timed event of TIA occurs (condition 2, 
3). 

In the following, theory 1 present a formalism to checking 
consistency of TDECs with using local state space, alternating 
simulation, equal or less output ports of TIA and timed 
conditions that respects time-condition of TIA. 

 
Theorem 1: Let a TDEC C and corresponding TA A that 

∑I
A ⊆ αI

C and αO
C ⊆ ∑O

A, and J be MAI mirror of A. Let N = 

{W, G, R} be a closed composite of TDEC and w = {C, J}. 
Then the local state space of C with respect to A is the 
synchronized product of N and we let L⊗ = { s0

⊗, S⊗,  g⊗, 
∑⊗, ∆⊗} as the local state space. Then we can say C conforms 
to A if and only if ∀s, q ∊ S⊗, πJ(s) ≠ ⊥, ƞ J ⊧ πC(q). 

 
Proof of sufficiency: Consider Θ = {(q, g, s) ∊ L⊗ | q ∊ SC, 

s ∊ SA, g = g⊗}, then using the induction and prove Θ is an 
alternative simulation relation between C and A. First, (q0

C, g, 
s0

A) ∊ Θ because s0
A = s0

J. Next, suppose (q, g, s) ∊ Θ, then: 
 

a) For e ∊ ∑H
C ˄ V ⊧ g, if ∃q C q’, then (q’, s) ∊ S⊗ and 

since time-conditions of TDEC respects TIA time-
condition then ( Lq’ and Uq’) ⊰ (Ls’ and Us’) implies gq’ ⊰ 
gs. Hence  (q’, g, s) ∊Θ; 
 

b) For t.x.v ∊ ∑O
C, t.x ∊ ∑O

A and thus t.x.v ∊ ∑I
J. Since, J is 

input-universal, If ∃q J q’, then ∃s’ ∊ SJ˄ V ⊧ g, (q, 
s) ⊗ (q’, s’). Since (q’, s’) ∊ S⊗, from the condition 
of the theorem, we have s’ ≠ ⊥ and time-conditions of 
TDEC respects TIA time-condition then  

, ≯  and gq’⊰ gs’. Hence s’ ∊ SA, 
ƞ A ⊧ πC(q) and (q’, g, s’) ∊ Θ; 
 

c) For t.x ∊ ∑I
A, t.x ∊ αI

C and v ∊ θC(x), t.x.v ∊ ∑O
J. If ∃s 

A s’, then V⊧ g ˄  s J s’ and q’ ∊ SC, V⊧ g, (q, 
s) (q’, s’) (because C is input-universal). Hence, ƞ A 
⊧ πC(q) and (q’, g, s’) ∊ Θ. 
 

Proof of necessity: Consider an alternating simulation 
relation ⊰ between TDEC C and TI A, and (q, g, s) ∊ S⊗ be a 
state reachable via trace б (б be a trace of L⊗ from s0

⊗). Then 
we prove s ≠⊥, ƞ J ⊧ πC(q), q ⊰ s and gq ⊰ gs by induction on 
the length of б. First, when б = , we know (L, U) (πc (s0)) = (L, 
U) (πj(s0)) = 0, (q, s) = (s0

C, s0
A) = s0

⊗. Hence s ≠⊥, ƞ J ⊧ πC(q) (it 
means L (πc (s)) L (πj(s)), U (πc (s))≯ U(πJ(s))), q ⊰ s and gq ⊰ gs. 
Next, suppose s ≠⊥ ˄ ƞ J ⊧ πC(q) ˄ q ⊰ s ˄ gq ⊰ gs hold for 
any б and we considered that time-conditions of TDEC 
respects TIA time-condition. Since SJ = SA U {⊥}, we know s 
∊ SA. 

 
a) For e ∊ ∑H

C ˄ V ⊧ g, if (q, s) ⊗ (q’, s’), then s’ = s 
(thus s’ ≠⊥) and q C q’. Since q ⊰ s ˄ g q⊰ gs ˄ (L q and 
Uq ) ⊰ (Ls and Us) , we can get q’ ⊰ s ˄ g q’ ⊰ gs. Thus s’ 
≠⊥ ˄ ƞ A ⊧ πC(q). 
 

b) For t.x.v ∊ ∑O
C ˄ V ⊧ g, if ∃(q, s) ⊗ (q’, s’), then q 

C q’. Since q ⊰ s, gq ⊰ gs and A is deterministic, s’ ∊ 
SA, s A s’ and q’ ⊰ s’. Since we considered that time-
conditions of TDEC respects TIA time-condition, then gq’ 
⊰ gs’ and ( Lq’ and Uq’ ) ⊰ ( Ls’ and Us’ ). Thus s’ ≠⊥ ˄ ƞ A 
⊧ πC(q). 
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c) For t.x.v ∊ ∑O
J  ˄ V ⊧ g, if ∃(q, s) ⊗ (q’, s’), Then s 

J s’, gq’⊰ gs’ and (Lq’ and Uq’) ⊰ (Ls and Us). Since t.x 
∊ ∑I

A, s A s’ and s’ ≠⊥ ˄ ƞ A ⊧ πC(q). 
 

IV. CONCLUSION 

In this paper, we have extended a theory for 
specificationand verification the consistency of component-
based real-timed systems based on timed automata, timed 
interface automata and discrete event components. Since real 
time systems have critical processes, the framework which 
proposed should have certain characteristics that defined in 
section 1: 

 
a. The work that presented in this paper has simple and 

unambiguous definition for specifying timed components 
that uses definition of timed automata [1], time interface 
automata [2] and discrete event component [3]. The 
components have a set of variables that simulates clock 
and when the transition started the clock variables 
increase whit the same speed and clock constraint are 
used to restrict the transition.  
 

b. We developed a definition for composition of two 
component and communication between them, described 
by synchronization vector. Two components allowed 
combining if they have not any shared output. 
  

c. For checking the consistency between TDEC and TIA, 
we extended the theory which presented in [3] which 
detected the local state space for the lack of unexpected 
states, also upper bound and lower bound of each timed 
transition in component should not exceed of 
corresponding transition in its timed interface.  
 

Currently, we work on implementing tool based on our 
approach that can automatically verify consistency. To future 
work, we want to extend networks of both DECs and IAs 
defined in [2] and hierarchical components defined in [13] for 
component-based real-time systems. 
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