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Abstract:  Optimization of code is the term that was applied to a process in which a code is tuned to be better in some respects: either speed, 
memory consumption, Input/output (disk read and writes or network reads and writes), etc. In Mathematics, Optimization means a process in 
which one finds the values with the best performance. In Computing where programs are very complex, usually optimizing for speed in the 
mathematical sense is impossible. Instead the term has come to mean just advancing in the direction of better performance in one or more 
respects. This document will focus on optimizing code to run faster. However, as you will see later, doing this may involve having to optimize 
the code in a different aspect. Furthermore, often when programmers are trying to optimize one aspect of a program, they are doing so in order to 
increase speed. 
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I. INTRODUCTION 

In computing and computer science, an optimizing 
compiler[5] is a compiler that tries to minimize or maximize 
some attributes of an executable computer program. The 
most common requirement is to minimize the time taken to 
execute a program; a less common one is to minimize the 
amount of memory occupied. The growth of portable 
computers has created a market for minimizing the power 
consumed by a program. Compiler optimization is generally 
implemented using a sequence of optimizing 
transformations, algorithms which take a program and 
transform it to produce a semantically equivalent output 
program that uses fewer resources. 

It has been shown that some code optimization problems 
are NP-complete, or even undecidable. In practice, factors 
such as the programmer's willingness to wait for the 
compiler to complete its task place upper limits on the 
optimizations that a compiler implementor might provide. 
(Optimization is generally a very CPU- and memory-
intensive process)[1]. In the past, computer memory 
limitations were also a major factor in limiting which 
optimizations could be performed. Because of all these 
factors, optimization rarely produces "optimal" output in 
any sense, and in fact an "optimization" may impede 
performance in some cases; rather, they are heuristic 
methods for improving resource usage in typical programs. 

So, the mean objective of the performance improving is 
to write the code in such a way that memory and speed both 
optimize. Several different options exist for measuring 
application performance[5]. Homegrown timing functions 
inserted into the code are a more effective way to gather 
performance data. Other most efficient and accurate ways to 
gather timing data is to use a good performance profiler, 
which show the time spent in each function of the program 
and will also provide an analyses based on this data[1,5]. 

 
 
 

II. TYPES OF OPTIMIZATIONS 

Techniques used in optimization can be broken up 
among various scopes which can affect anything from a 
single statement to the entire program. Generally speaking, 
locally scoped techniques are easier to implement than 
global ones but result in smaller gains[4]. Some examples of 
scopes include: 

a. Peephole optimizations: 
Usually performed late in the compilation process after 

machine code has been generated. This form of optimization 
examines a few adjacent instructions (like "looking through 
a peephole" at the code) to see whether they can be replaced 
by a single instruction or a shorter sequence of instructions. 
For instance, a multiplication of a value by 2 might be more 
efficiently executed by left-shifting the value or by adding 
the value to itself[1]. (This example is also an instance of 
strength reduction.) 

b. Local optimizations: 
These only consider information local to a basic block. 

Since basic blocks have no control flow, these optimizations 
need very little analysis (saving time and reducing storage 
requirements), but this also means that no information is 
preserved across jumps. 

c. Global optimizations: 
These are also called "intra procedural methods" and act 

on whole functions.[2] This gives them more information to 
work with but often makes expensive computations 
necessary[3]. Worst case assumptions have to be made when 
function calls occur or global variables are accessed 
(because little information about them is available). 

d. Loop optimizations: 
These act on the statements which make up a loop, such 

as a for loop (e.g., loop-invariant code motion). Loop 
optimizations can have a significant impact because many 
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programs spend a large percentage of their time inside 
loops[1]. 

Interprocedural, whole-program or link-time 
optimization  

These analyze all of a program's source code. The 
greater quantity of information extracted means that 
optimizations can be more effective compared to when they 
only have access to local information (i.e., within a single 
function). This kind of optimization can also allow new 
techniques to be performed. For instance function inlining, 
where a call to a function is replaced by a copy of the 
function body[5]. 

e. Machine code optimization: 
These analyze the executable task image of the program 

after all of a executable machine code has been linked. 
Some of the techniques that can be applied in a more limited 
scope, such as macro compression (which saves space by 
collapsing common sequences of instructions), are more 
effective when the entire executable task image is available 
for analysis. 

A. Some Experiments And Result Analysis 
Here I depicted some code optimization techniques 

with implementation of C code. Although I use C 
syntax in the examples below, these techniques clearly 
apply to other languages just as well[2].  

a. An example of elimination common sub 
expression: 

Statement of expression is  
M=A*LOG(Y)+(LOG(Y)**2) 
Elimination common sub expression, introducing 

an explicit temporary variable t: 
t=LOG(Y)  
M=A*t+(t**2) 
Saves one 'heavy' function call, by an elimination of 

the common sub-expression LOG(Y), the 
exponentiation now is: 

M = (A + t) * t  

b. Declare local functions as "static" 
Doing so tells the compiler that the function need 

not be so general as to service arbitrary general calls 
from unrelated modules. If the function is small 
enough, it may be inlined without having to maintain 
an external copy[3]. If the function's address is never 
taken, the compiler can try to simplify and rearrange 
usage of it within other functions.  

Before:  
   void swap(int *a, int *b) { 
   int t; 
        t = *b; 
        *b = *a; 
        *a = t; 
    } 
After:  
    static void swap(int *a, int *b) { 
    int t; 
        t = *b; 
        *b = *a; 
        *a = t; 
    } 

c. Remove unnecessary if then Else statement: 
Let’s takes two examples to remove unnecessary if-

else statement[4]. It could be simplified to enhance the 
code's efficiency and reduce its size. 

void main() 
{ 
boolean b; 
void  boolean() 
{ 
if (b)  
{ 
return true; 
} 
else 
{ 
return false; 
} 
} 
} 

       Should be written as: 
Void main() 
{ 
boolean b; 
void boolean () 
{ 
return b;  
} 
} 
With else, smaller code, but slower one  
inline int 
test(int a) 
{ 
 return a > 0 ? 1 : 0; 
} 
Without else, large code but faster one,  
 inline int 
test(int a) 
{ 
 if (a > 0) 
  return 1; 
 /* implied else */ 
 return 0; 
} 
Let’s take another, 
The slowest expression, compiling and running  
int 
max(int a, int b) 
{ 
 if (a > b) 
  return a; 
 else 
  return b; 
} 
Normal expression with inlining,  
inline int 
max(int a, int b) 
{ 
 return ((a > b) ? a : b); 
} 

d. "Else" clause removal 
The performance of if-then-else is one taken jump 
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no matter what. However, often the condition has a lop-
sided probability in which case other approaches 
should be considered. The elimination of branching is 
an important concern with today's deeply pipelined 
processor architectures. The reason is that a 
"mispredicted" branch often costs many cycles[8]. 

Before:                                  
    if( Condition ) { 
        Case M; 
    } else { 
        Case N; 
    } 
After:  
    Case N; 
    if( Condition ) { 
        Undo Case N; 
        Case M; 
    } 
Clearly this only works if Undo Case N; is 

possible. However, if it is, this technique has the 
advantage that the jump taken case can be optimized 
according to the Condition probability and Undo Case 
N; Case M; might be merged together to be more 
optimal than executing each separately[7].  

Obviously you would swap cases M and N 
depending on which way the probability 
goes[7,8].  Also since this optimization is dependent on 
sacrificing performance of one set of circumstances for 
another, you will need to time it to see if it is really 
worth it.  (On  processors such as the ARM or Pentium 
II, you can also use conditional mov instructions to 
achieve a similar result.)   

e. Use finite differences to avoid multiplies: 
Before:  
    for(k=0;k<10;k++) { 
        printf("%d\n",k*10); 
    } 
After:  
for(k=0;k<100;k+=10) { 
        printf("%d\n",k); 
    } 
This one should be fairly obvious, use constant 

increments instead of multiplies if this is possible. 
(Believe it or not, however, some C compilers are 
clever enough to figure this out for you in some simple 
cases.)  

f. Rearrange an array of structures as several 
arrays: 

Instead of processing a single array of aggregate 
objects[6], process in parallel two or more arrays 
having the same length. 

For example, instead of the following code: 
const int n = 10000; 
struct { double a, b, c; } s[n]; 
for (int i = 0; i < n; ++i) { 
    s[i].a = s[i].b + s[i].c; 
} 
the following code may be faster: 
const int n = 10000; 
double a[n], b[n], c[n]; 
for (int i = 0; i < n; ++i) { 
    a[i] = b[i] + c[i]; 

} 
Using this rearrangement, "a", "b", and "c" may be 

processed by array processing instructions that are 
significantly faster than scalar instructions. This 
optimization may have null or adverse results on some 
(simpler) architectures. 

g. Data type considerations: 
Often to conserve on space you will be tempted to 

mix integer data types; chars for small counters, shorts 
for slightly larger counters and only use longs or ints 
when you really have to[4]. While this may seem to 
make sense from a space utilization point of view, most 
CPUs have to end up wasting precious cycles to 
convert from one data type to another, especially when 
preserving sign[3].  

Before:  
    char a; 
    int b; 
        b = a;      
After:  
    int a, b; 
        b = a;    

B. A case of Copy Propagation: 
This optimization is similar to constant propagation, but 

generalized to non-constant values. If we have an 
assignment m = n in our instruction stream, we can replace 
later occurrences of m with n (assuming there are no 
changes to either variable in-between)[2,3]. Given the way 
we generate TAC code, this is a particularly valuable 
optimization since it is able to eliminate a large number of 
instructions that only serve to copy values from one variable 
to another. The code on the left makes a copy of a in b and a 
copy of c in d. In the optimized version on the right, we 
eliminated those unnecessary copies and propagated the 
original variable into the later uses: 

 
before:                       After Copy Propagation: 
b=a;                                 c=a*a; 
c=b*a;                             e=c*a; 
d=c;                                 x=e +c; 
e=c*b;  
x=e + d; 
 

III. CONCLUSION 

Recent research in code optimization has led to the 
development of unified optimizing transformations like the 
generalized code movement transformation of Dhamdhere-
Isaac [6] and Morel-Renvoise[9], and the composite 
hoisting-and-strength reduction transformation of 
Dhamdhere-Isaac[8] and Joshi-Dhamdhere [9]. Using a 
good compiler and some knowledge about optimization 
techniques, developers can much more easily create high 
performance applications. This alternate recompilation does 
not affect the correctness of the application because all 
compilers should be generating correct bytecodes, which 
means that such a situation allows the application to pass all 
regression test suites. But you can end up with the 
production application not running as fast as you expect for 
reasons that are difficult to track down. Speed and 
optimizing other resources are one important factor in the 
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general, abstract quality of programs[4]. If your program is 
slow, it is likely going to make your users frustrated and 
unhappy, which will be a failure in your mission as a 
software developer. So it is important that your program is 
fast enough, if not very much so[9]. 
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