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Abstract: Spatial Data Mining is location based Data Mining. This paper shows the basic concept of PCA with its practical implementation in 
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I. INTRODUCTION  

 
Data mining is a step in the KDD process that consists of 

applying data analysis and discovery algorithms that produce a 
particular enumeration  of patterns (or models) over the 
data.[10] 

Analysis is an important part of GIS which allows spatial 
operations with data (e. g. network analysis or filtering of raster 
data), measuring functions (e.g. distance, direction between 
objects), statistic analyses or terrain model analysis (e. g. 
visibility analysis).  

Spatial data mining is a special kind of data mining . The 
main difference between data mining and spatial data mining is 
that in spatial data mining tasks we use not only non-spatial 
attributes (as it is usual in data mining in non-spatial data), but 
also spatial attributes [8]. 

The central idea of principal component analysis is to 
reduce the dimensionality of a data set in which there are a 
large number of interrelated variables, while retaining as much 
as possible of the variation present in the data set. This 
reduction is achieved by transforming to a new set of variables, 
the principal components, which are uncorrelated, and which 
are ordered so that the first few retain most of the variation 
present in all of the original variables. Computation of the 
principal components reduces to the solution of an eigenvalue-
eigenvector problem for a positive-semidefinite symmetric 
matrix.[4]  
Previous Work 

PCA was first formulated in statistics by Pear- son, who 
formulated the analysis as finding “lines and planes of closest 
fit to systems of points in space”. This geometric interpretation 
will be further discussed in Section 4. PCA was briefly 
mentioned by Fisher and MacKenzie as more suitable than 
analysis of variance for the modelling of response data. Fisher 
and MacKen- zie also outlined the NIPALS algorithm, later 
rediscovered by Wold. Hotelling further developed PCA to its 
present stage[9]. 

PCA now goes under many names. Apart from those 
already mentioned, singular value decomposition (SVD) is 
used in numerical analysis and Karhunen-LoCve ex- pansion in 
electrical engineering. Eigenvector analysis and characteristic 
vector analysis are often used in the physical sciences. In image 
analysis, the term Hotelling transformation is often used for a 

principal component projection. Correspon- dence analysis is a 
special double-scaled[9] 

PCA can be used in Simplification, Data Reduction, 
Modeling, Outlier detection, Variable Selection, Classification 
and  Prediction 

II. METHODOLOGY 

Mathematical Definition of PCA 
Principal component analysis (PCA) is a mathematical 

procedure that uses an orthogonal transformation to convert a 
set of observations of possibly correlated variables into a set of 
values of linearly uncorrelated variables called principal 
components.  

If n variables are there in the input then the total number of 
principal components are less than or equal to the number of 
input variables. This transformation is defined in such a way 
that the first principal component has the largest possible 
variance (that is, accounts for as much of the variability in the 
data as possible), and each succeeding component in turn has 
the highest variance possible under the constraint that it be 
orthogonal to (i.e., uncorrelated with) the preceding 
components. 

Image Matrix 
Image Matrix=(Img Vec1,  
           Img Vec2,  
           Img Vec3,…) 
 
Variance and Covariance  
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Covariance Matrix 
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Eigenvector and eigen value 
 
The eigenvector’s matrix V can be computed by the 

following equation, Matrix V diagonalizes the covariance 
matrix C: 

 
V-1CV=D 

where D is the diagonal matrix of eigen values of C. 
Matrix D is in the form of an M × M diagonal matrix, 

where 
D[p,q] =Lm for p=q=m 
is the mth eigen value of the covariance matrix C 
and D[p,q]=0 for p != q 
 
Feature Vector 
Feature Vector=(ev1,ev2,ev3,…) 
 
PCA Image 
Final_data=Row_feature_Vector * row_data_adj 

 
 Figure 1 Image for PCA 

III. ALGORITHM  

Step 1: Input the Image  
Now this image have three bands Red, Green and blue 
Image Matrix=(Img Vec1,  
           Img Vec2,  
           Img Vec3,…) 
 
Step 2: subtract the mean 
Step 3:Calculate the covariance matrix from the formula 

given in methodology 
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Step 4: Calculate the eigenvectors and eigenvalues of the 

covariance matrix 
 V-1CV=D 
Step 5: Choosing components and forming a feature vector 

Feature Vector=(ev1,ev2,ev3,…) 

Step 6: Deriving the new data set 
Final_data=Row_feature_Vector * row_data_adj 

where  
 
Row_feature_Vector  is the matrix with the eigenvectors 

in the columns transposed so that the eigenvectors 
are now in the rows, with the most significant 
eigenvector at the top,and  

row_data_adj is the mean-adjusted data  transposed, ie. 
The data items are in each column, with each row 
holding a separate dimension.  

 
Once we have performed PCA, we have our original data 

in terms of the eigenvectors we found from the covariance 
matrix as shown in figure  

 
Figure 2 Cavariance matrix, Correlation Matrix, Eigen Values and 

Eigenvectors for the image of figure 1 

Now for given image we have three principal components. 
Step 7 Use first Principal component as Red Band(now we 

have most of the details in this band)  

   

Figure 3 Graph between two bands of an image with first Principal 
component. 

 
Figure 4 Second Principal Component 
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First principal component as shown in figure 3 describes 
the direction of maximum variance we use this as the first band 
of the image. Then an orthogonal perpendicular line to PC1 is 
the second principal component (PC2) as shown in figure 4 The 
new axis for the original y-axis, describes the second most 
variance not described by PC1. we use this as our second band 
of the image. 
 
Discovering important structure from data 

Data Mining is a data-driven hypothesis generation process. 
To describe the data we use various data description methods 
like summarizing data using mean, median, mode, and variance  

 
Figure 5. Image after rotating principle component  

IV. EXPERIMENTS AND RESULTS 

  After rotating the principle component we can see from 
the image that now we have more details on first band of the 
image and now it is easy to classify the image from 
unsupervised classification 

V. CONCLUSION 

In this study, we presented the basic concept of principal 
component analysis. We focused on the conversion of an 
Image using PCA method. The advantage of PCA is that we 
have more details on first or second band of an image, which 
is useful in classifying the image. 

VI. REFERENCES 

[1] Ester M., Kriegel H. P., Sander J.: Spatial Data Mining: A 
Database Ap- proach. Proc.of the Fifth Int. Symposium 
on Large Spatial Databases (SSD ’97), Berlin, Germany, 
Lecture Notes in Computer Science, Springer, 1997. 

[2] Fayyad U.M.,Piatetski-Shapiro G., Smyth P., Uthurusamy 
R. (eds.): Advances in Knowledge Discovery and Data 
Mining. AAAI/ MIT Press 1996. 

[3] H. Tang and S. McDonald, “Integrating GIS and spatial 
data mining techniques for target marketing of university 
courses,” Symposium on Geospatial Theory, Processing 
and Applications, Ottawa, 2002. 

[4] I. Jolliffe, Principal component analysis. Wiley Online 
Library, 2005. 

[5] J. Mennis and D. Guo, “Spatial data mining and 
geographic knowledge discovery—An introduction,” 
Computers, Environment and Urban Systems, vol. 33, 
no. 6, pp. 403–408, 2009. 

[6]   K. Koperski, J. Han, and J. Adhikary, “Mining knowledge 
in geographical data,” Communications of the ACM, vol. 
26, no. 1, pp. 65–74, 1998. 

[7]   Koperski K., Han J., Adhikary J.: Mining Knowledge in 
Geographical Data. To appear in Comm. of ACM 1998. 
http:/ / db.cs.sfu.ca/ sections/ publication/ kdd/ kdd.html 

[8]  P. Kuba, “Data structures for spatial data mining,” 
Masaryk University Brno, Czech Republic, September 
2001, 2001. 

[9] S. Wold, K. Esbensen, and P. Geladi, “Principal 
component analysis,” Chemometrics and intelligent 
laboratory systems, vol. 2, no. 1, pp. 37–52, 1987. 

[10]  U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From 
data mining to knowledge discovery in databases,” AI 
magazine, vol. 17, no. 3, p. 37, 1996. 

[11]  V. Bogorny, A. T. Palma, P. Engel, and L. O. Alvares, 
“Weka-gdpm: Integrating classical data mining toolkit to 
geographic information systems,” SBBD Workshop on 
Data Mining Algorithms and Aplications (WAAMD 
2006), Florianopolis, Brasil, October, pp. 16–20, 2006. 

[12]  W. Wu, Modeling Spatial Dependencies for Data 
Mining. University of Minnesota, 2002. 

 


