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Abstract: Image segmentation is a vital part in today’s technological changes. We proposed an algorithm for deriving the compound structure 
which consists of primitive image objects. Our algorithm works in two phases. Firstly it produces image regions with homogeneous spectral 
content using the segmentation process. Secondly the segmentation is translated into relational graph structure .In relational graph structure each 
node represents the specified region and the edges between them acts as a relation between the regions. The region objects that appear together 
frequently can be considered as strongly related. Experiments are carried out using an Ikonos image which shows that subgraphs found within 
the graph representing the whole image correspond to parts of different high-level compound structures. 
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I. INTRODUCTION 

 
      The objective of object-based image analysis is to 
partition the images into homogeneous regions and classify 
these regions. But the obtained image provides the less details 
.To overcome this problem we have to find the regions that 
are intrinsically heterogeneous. These image regions consist 
of primitive objects of different types which can also be 
referred to as compound objects  Bhagavathy and Manjunath 
[1] build a texture motif model for harbors and golf courses 
from training examples for detecting compound objects of 
predefined types. Dogrusoz and Aksoy [2] detect organized 
and unorganized urban areas by clustering a scene graph 
whose nodes correspond to individual buildings for the same 
reason. Stasolla and Gamba [3] detect built-up areas in high 
resolution SAR images using local autocorrelation. In this 
paper, we propose an algorithm for discovering interesting 
and significant compound objects regardless of their types. 
The method translates image segmentation into a relational 
graph, and applies a graph-based knowledge discovery 
algorithm to find the interesting and repeating substructures 
that may correspond to compound objects. The first step is 
image segmentation where the resulting regions correspond to 
primitive objects that have relatively uniform spectral content. 
The next step is the translation of this segmentation into a 
relational graph structure where the nodes represent the 
regions and the edges represent the relationships between 
these regions. We assume that the region objects that appear 
together frequently can be considered as strongly related. This 
relation is modeled using the transition frequencies between 
neighboring regions. Each transition is represented by a point 
in a multi-dimensional space. This space is modeled by a non-
parametric probability distribution, and the local maxima 
found from the density function are assumed to correspond to 

the most frequently occurring and hence the most significant 
and important transitions. Finally, a graph whose edges 
encode this frequent spatial co-occurrence information is 
constructed, and a sub graph analysis algorithm is used to 
discover substructures that often correspond to groups of 
region objects that occur together in high-level compound 
structures. Proof-of-concept experiments illustrate the 
proposed algorithm on an Ikonos image. 
 

II. SEGMENTATION AND FEATURE 
EXTRACTION OF AN IMAGE 

 
      Image segmentation is the initial step where relatively 
uniform spectral content regions are found which contains 
primitive objects. For this segmentation step we use the 
Recursive Hierarchical Segmentation (RHSEG) algorithm [4]. 
(a) Ikonos image (b) Segmentation Fig. 1. An Ikonos image of 
Antalya, Turkey and its segmentation. RHSEG is a promising 
choice because of three key factors: 
      (i)  It produces high spatial fidelity of image 
segmentations. (ii)It automatically group the spatially 
connected region objects into region classes, and (iii) Its 
automatic production of a hierarchical set of segmentations. It 
is possible to examine how the regions change at each level 
and choose the level of detail at which the particular regions 
of interest are delineated. Figure 1 shows a multi-spectral 
Ikonos image of Antalya, Turkey with 4 m spatial resolution 
and 700 × 600 pixel size, along with its segmentation in false 
color.  
      The segmented regions obtained  are represented using 
their spectral and size information. The spectral features for 
each region are computed using the average red, green and 
blue values of the pixels in that region. The size information 
corresponds to the number of pixels in each region. In our 
work, we use size as a feature to be able to distinguish regions 
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with similar spectral content but significantly different sizes. 
All features are normalized to the [0, 1] range using linear 
scaling. Finally, each region Ri is represented using the 
feature vector yi = (ri, gi, bi, si) with 4 components. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Ikonos image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Segmentation 
Figure 1. An Ikonos image of Antalya, Turkey and its 

segmen-tation. 
 

III. MODELING OF REGION CO-OCCURRENCE 
 
 After the segmentation step the translation of this 
segmentation into a relational graph structure is performed  
where the nodes correspond to the individual regions, and the 
edges model their spatial relationships. In this paper, we 
model the region relationships using the transition frequencies 
between neighboring regions in the image by assuming that 
the region objects that appear together frequently in the image 
can be considered as strongly related. We can calculate the 
inter-region transition frequency is by determining the types 
of the regions and by counting the transitions involving the 
same types of region pairs. However, the determination of 
region types is a challenging and important classification 
problem, and errors at this step will result in misleading 
transition types. In this paper we propose to use a spatial co-
occurrence model that enables transition frequency calculation 
without a preceding transition or region type assignment. This 
model involves a multi-dimensional space where each point 
corresponds to an inter-region transition, and enables the 

incorporation ration of region transition frequencies together 
with region features. The space is modeled by a non-
parametric probability distribution so that the probability 
value for each transition 
point corresponds to the frequency of its occurrence in the 
image. The details of this model are described below. 
 
A. Spatial co-occurrence space 

      Each inter-region transition is defined by the features of 
the corresponding regions so that their contents can be 
incorporated in the model. In an image with NR regions Ri, i 
=1, . . . ,NR, the transition Tij involving the regions Ri and Rj 
is represented by the concatenation of the feature vectors of 
the two regions as yij = (yi, yj).  Given the region feature 
vectors with 4 components, the feature vector for a transition 
corresponds to a point in the 8-dimensional spatial co 
occurrence space. For simplicity, we refer to these points as 
xk 2 Rd, k = 1, . . . ,NT where d = 8 and NT is the number of 
transitions. 
      We assume that the transitions that involve two similar 
region pairs fall close to each other in the spatial co-
occurrence space because regions with similar spectral 
content and sizes are expected to be similar in terms of their 
features. Consequently, the transitions that occur frequently 
cause the accumulation of points in the space. While similar 
transitions are pooled together to form dense clusters, seldom 
transitions are located sparsely. This model provides tolerance 
to small variations and noise in the region features. 
Furthermore, it can easily be extended with additional region 
features.  
    The significance of a particular transition can be 
determined according to its location relative to the dense areas 
in the spatial co-occurrence space. We model this space with a 
Parzen window-based probability density estimate  
 
 

P(x) = 
ଵ

ே೅
∑ ଵ

ሺଶ௽ሻ೏/మ|ு|భ/మ ݁ିଵ/ଶሺ௑ି௑௞ሻ೅ுషభሺ௑ି௑௞ሻே೅
௄ୀଵ  

(1) 
B. Deriving important relations 

      We assume that the dense regions in this space correspond 
to the most frequently occurring and hence the most 
significant and important transitions. These dense regions can 
be found by locating the modes (local maxima) of the 
estimated density. We obtain these modes using the mean-
shift algorithm [6]. Starting from a randomly selected set of 
points, the algorithm computes the mean-shift vector at each 
point x as 
 

m(x) =  
∑ ௑ೖ௘షభ/మ൫೉ష೉ೖ൯

೅
ಹషభሺ೉ష೉ೖሻಿ೅

ೖసభ

∑ ௘షభ/మ൫೉ష೉ೖ൯
೅

ಹషభሺ೉ష೉ೖሻಿ೅
ೖసభ

                    (2)                 

 
      using the Parzen density gradient estimate at that point, 
and moves along this vector by iterating until the difference 
between two successive means is less than a convergence 
threshold or the number of iterations reaches a maximum 
value. The points at which the algorithm converges are 
considered as the candidate modes. 
      The convergence of the mean-shift algorithm is affected 
by the convergence threshold and the number of maximum 
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iterations allowed. Due to local details in the spatial 
cooccurrence space, starting at points that actually belong to 
the same mode may result in convergence at slightly different 
locations. To eliminate such noisy convergence, we merge the 
candidate modes that are closer to each other than the 
bandwidth. Further elimination can be done due to the 
symmetric nature of the co-occurrence space. Since the 
transition Tij is equivalent to transition Tji, we compare the 
corresponding parts of the feature vectors of the candidate 
modes, and eliminate one of such mode pairs corresponding 
to symmetric transitions. The resulting set of modes provide 
an implicit clustering of the spatial co-occurrence space as 
any point in this space can be assigned to its closest mode. 
 

VI. DERIVING COMPOUND STRUCTURES 
 
     After deriving  the important relations  this information is 
employed in the translation of the image segmentation to the 
relational graph structure. The details of graph construction 
and subgraph analysis for finding compound structures are 
described below. 
 

A. Graph construction 

      A relational graph is constructed from the segmentation of 
the whole scene so that the nodes represent the regions and 
there is an edge between the nodes that correspond to the 
adjacent regions. In particular, for each region Ri there is a 
corresponding vertex Ri, and for each transition Tij there is an 
edge connecting the nodes Ri and Rj . It is common to use an 
unweighted graph and let the edges represent only the spatial 
adjacency [7]. However, by using this approach we may lose 
the detailed contextual information and the results may also 
suffer from the errors in segmentation. As described in 
Section 3.2, we assume that the modes of the density estimate 
of the spatial co-occurrence space correspond to the most 
significant and important transitions. This information is 
reflected in the constructed graph edges. First, the candidate 
modes with a probability smaller than a threshold are 
eliminated as such modes are likely to correspond to noisy, 
rare or insignificant transitions in sparse regions of the co-
occurrence space. Then, the graph edges corresponding to the 
transitions that belong to the eliminated modes are removed. 
Furthermore, the graph can also be extended so that 
it reflects the transition type information. The transitions that 
are assigned to the same mode are accepted as a relation of the 
same type, and each transition (and the corresponding edge) is 
assigned an integer label between 1 and NM (the number of 
selected modes). As a result, the relationship information is 
fully encoded in the graph edges and their labels. 
 

B. Subgraph analysis 

      The goal is to find compound structures that are 
comprised of the subgraphs of the complete scene graph. In 
this paper, we use a method that was introduced in [8] and 
was implemented in the Subdue system for graph-based 
knowledge discovery. In our case, the input to the system is 
an undirected graph with labeled edges (the nodes are not 
labeled as we do not perform any classification of the regions 
after segmentation). Subdue searches for substructures 
(subgraphs) of the input graph that best compress this graph. 
The compression of the graph by a subgraph is defined as the 
replacement of this subgraph by a single node in the graph. 

The compression ability of a subgraph during the search is 
computed b the minimum description length heuristic [8] 
 

            Compression = 
஽௅ሺௌሻ ା ஽௅ሺீ|ௌሻ 

஽௅ሺீሻ
                   (3) 

 
     Where S is the subgraph being evaluated, DL(S) is the 
description length of S, DL(G|S) is the description length of 
the input graph G after it has been compressed using S, and 
DL(G) is the description length of G. The description length is 
computed in terms of the number of bits required to encode a 
graph. The best subgraph is the one that minimizes (3). The 
search is performed iteratively by compressing the graph with 
the best subgraph found in each iteration. The output is a list 
of subgraphs (in terms of the nodes and the edges they 
contain) that represent the discovered patterns together with 
all occurrences of each subgraph in the input graph. These 
subgraph instances are expected to constitute parts of 
compound structures in the complex urban scene. 
 

V. EXPERIMENTS 
 
      To illustrate the effectiveness of the proposed method, we 
performed proof-of-concept experiments on the multi-spectral 
Ikonos image shown in Figure 1(a). The third segmentation 
scale (Figure 1(b)) was chosen among the 11 scales produced 
by RHSEG. The 51,558 regions present in this scale resulted 
in 263,246 transitions forming the points in the spatial 
cooccurrence space. By using these data, the bandwidth 
parameter was estimated as _ = 0.0188. The convergence 
threshold for the mean-shift algorithm was empirically set to 
10−6 and the maximum number of iterations allowed was 
4,000. We ran the algorithm 1,400 times starting at different 
sets of randomly selected points. This resulted in 1,197 unique 
candidate modes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a.) 
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(b.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c.) 
Figure 2. Substructures obtained by graph analysis 

 
After mode merging and the elimination of the symmetric 
modes, the number of modes was reduced to 271. 95 modes 
were chosen as significant (NM = 95) by applying a threshold 
to the corresponding probability values. The Subdue 
algorithm was applied to the constructed graph, and the 
resulting substructures (subgraphs) were examined.  
 some example substructures and the corresponding region 
groups are shown in Figure 2. Even though a single 
substructure does not exclusively correspond to a particular 
compound structure, we can observe that different 
substructures constitute parts of different compound 
structures. For example, the substructure instances in Figure 
2(a) mostly constitute the parts of residential areas with low 
height buildings. Similarly, the instances in 2(b) mainly 
correspond to parts of an industrial area and a residential area 
with high buildings, and the instances in 2(c) are contained 
within a forest. We observed that the quality of the initial 
segmentation strongly influences the effectiveness of the 

following graph analysis. Future work includes improving the 
segmentation results and evaluating other graph clustering 
techniques for finding the interesting sub graphs. 
 

VI. CONCLUSIONS 
 
      Different from the conventional object-based image 
analysis approach of finding homogeneous regions, an 
unsupervised method is presented in this very work in a way 
of discovering compound image structures that were content 
with complex groups of simpler primitive objects. We have 
worked by considering the primitive region objects that 
appeared together frequently could be considered as strongly 
related. Such potentially important relations were discovered 
using the modes of a probability distribution estimated using 
the features of the transitions between the neighboring regions 
in the image. The resulting modes were used to construct the 
edges of a graph in which the primitive regions form the 
nodes. In order to obtain the substructures of interest a sub 
graph analysis was used.  Experiments on an Ikonos image 
showed initially that the algorithm has shown immense 
potential for discovering different high-level compound 
structures for very high resolution images and in high spatial 
mode as well. 
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