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Abstract— As Bayesian classifier is a fundamental classification technique. We focus on an efficient Bayesian classifier programmed in sql 
with PCA. We consider three classifiers: Naive Bayes and a classifier based on class decomposition using K-means clustering and Bayesian 
classifier with dimensionality reduction technique PCA. We consider two complementary tasks: model computation and scoring a data set. We 
introduce one of the dimensionality reduction techniques, Principal component analysis (PCA) to achieve more accuracy and reduction of 
storage space. We study several layouts for tables and several indexing alternatives. We analyse how to transform equations into efficient SQL 
queries. We also analyse how to calculate covariance matrix for PCA using SQL. We perform experiments on wbcancer and bscale datasets to 
evaluate classification accuracy, query optimization & scalability. Our approach shows improvement in accuracy over the existing approach. 
Keywords— Bayesian classification, principal component analysis, covariance matrix, Mean, variance. 

I. INTRODUCTION 

 CLASSIFICATION is a fundamental problem in 
machine learning and statistics. Bayesian classifiers stand 
out for their robustness, interpretability, and accuracy. They 
are deeply related to maximum likelihood estimation and 
discriminant analysis, highlighting their theoretical 
importance. In this work, we focus on Bayesian classifiers 
considering two variants: Naı¨ve Bayes [2] and a Bayesian 
classifier based on class decomposition using clustering [7]. 

In this work, we integrate Bayesian classification 
algorithms into a DBMS. Such integration allows users to 
directly analyze data sets inside the DBMS and to exploit its 
extensive capabilities (storage management, querying, 
concurrency control, fault tolerance, and security). We use 
SQL queries as the programming mechanism, since it is the 
standard language in a DBMS. More importantly, using 
SQL eliminates the need to understand and modify the 
internal source, which is a difficult task. Unfortunately, 

SQL has two important drawbacks: it has limitations to 
manipulate vectors and matrices and has more overhead than 
a systems language like C. Keeping those issues in mind; we 
study how to evaluate mathematical equations with several 
tables’ layouts and optimized SQL queries. 

Our contributions are the following: We present two 
efficient SQL implementations of Naı¨ve Bayes for numeric 
and discrete attributes. We introduce a classification 
algorithm that builds one clustering model per class, which 
is a generalization of K-means [1], [4]. Our main 
contribution is a Bayesian classifier programmed in SQL, 
extending Naı¨ve Bayes, which uses K-means to decompose 
each class into clusters. We generalize queries for clustering 
adding a new problem dimension. That is, our novel queries 
combine three dimensions: attribute, cluster, and class 
subscripts. We identify euclidean distance as the most time-
consuming computation. Thus, we introduce several 
schemes to efficiently compute distance considering 
different storage layouts for the data set and classification 

model. We also develop query optimizations that may be 
applicable to other distance-based algorithms. A horizontal 
layout of the cluster centroids table and a denormalized table 
for sufficient statistics are essential to accelerate queries. 
Past research has shown the main alternatives to integrate 
data mining algorithms without modifying DBMS source 
code are SQL queries. 

The article is organized as follows: Section 2 introduces 
definitions. Section 3 introduces two alternative Bayesian 
classifiers in SQL: Naive Bayes and a Bayesian classifier 
based on K-means. Section 4 presents an experimental 
evaluation on accuracy, optimizations, and scalability. 
Related work is discussed in Section 5. Section 6 concludes 
the paper. 

II. DEFINITION 

We focus on computing classification models on a data 
set X= fx1; . . . ; xng with d attributes X1; . . .;Xd, one 
discrete attribute G (class or target), and n records (points). 
We assume G has m = 2 values. Data set X represents a d≤ n 
matrix, where xi represents a column vector. We study two 
complementary models: 1) each class is approximated by a 
normal distribution or histogram and 2) fitting a mixture 
model with k clusters on each class with K-means. We use 
subscripts i; j; h; g as follows: i = 1 . . . n; j= 1 . . . k; h = 
1 . . . d; g =1 . . .m. The T superscript indicates matrix 
transposition. 

Throughout the paper, we will use a small running 
example, where d = 4; k = 3 (for K-means) and m = 2 
(binary). 

III. BAYESIAN CLASSIFIER AND PCA 

A. Pre-processing data set  

Pre-processing of input data includes, removing noise 
and null values. To remove the null values in the dataset we 
use binning, null values are removed by placing mean of 
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each attribute. And we arrange them in proper order to load 
the data set into base table. 

A data set X ={ x1; . . . ; xn} , g with d attributes 
X1; . . .; Xd, one discrete attribute G (class or target), and n 
records (points). We assume G has m =2 values. Data set X 
represents a d *n matrix, where xi represents a column 
vector. 

B. Naïve Bayesian Classification 

In data mining, we have two types of Data sets. First, it 
contains numeric attributes and second, it contains discrete 
attributes [3]. In this naïve Bayesian, numeric attributes will 
be improved with class decomposition. NB assumes 
attributes are independent, and thus, the joint class 
conditional probability can be estimated as the product of 
probabilities of each attribute. In this naïve Bayesian 
classification, it is done based on multivariate Gaussian. NB 
has no input parameters. Each class is modeled as a single 
normal distribution with mean vector Cg and a diagonal 
variance matrix Rg. Scoring assumes a model is available 
and there exists a data set with the same attributes in order to 
predict class G. 

The model is computed in two passes: a first is to get 
the mean per class and a second is to compute the variance 
per class. The mean per class is given by equation 1.1, 
where Yg is subset of X are the records in class g. Equation 
1.2 gives a diagonal variance matrix Rg, which is 
numerically stable, but requires two passes over the data set. 

               … .1.1 

    …..1.2 

The SQL implementation for numeric NB follows the 
mean and variance equations introduced above. We compute 
three aggregations grouping by Cg with two queries. The 
first query computes the mean Cg of class g with a sum 
(Xh)/ count (*) aggregation and class priors πg with a count 
( ) aggregation. The second query computes Rg with sum 
(Xh -µh) 2. Here, the joint probability computation is not 
done. To classify a record, we need to calculate the 
probabilities. For this scoring we use the Gaussian 
parameters as input to classify an input point to the most 
probable class, with one query in one pass over X. Each 
class probability is evaluated as a Gaussian. To avoid 
numerical issues when a variance is zero, the probability is 
set to 1 and the joint probability is computed with a sum of 
probability logarithms instead of a product of probabilities. 
A CASE statement pivots probabilities and avoids a max () 
aggregation. A final query determines the predicted class, 
being the one with maximum probability, obtained with a 
CASE statement. 

We now discuss NB for discrete attributes. For 
numeric NB, we used Gaussians because they work well for 
large data sets and because they are easy to manipulate 
mathematically. That is, NB does not assume any specific 
probability density function (pdf). Assume X1; . . .;Xd can 
be discrete or numeric. If an attribute Xh is discrete 
(categorical) NB simply computes its histogram: 
probabilities are derived with counts per value divided by 
the corresponding number of points in each class. Otherwise, 
if the attribute Xh is numeric then binning is required. 

Binning requires two passes over the data set, pretty much 
like numeric NB. In the first pass, bin boundaries are 
determined. On the second pass, one-dimensional frequency 
histograms are computed on each attribute.  

TABLE 1 
BKM TABLES 

The implementation in SQL of discrete NB is 
straightforward. For discrete attributes, no pre-processing is 
required. For numeric attributes, the minimum, maximum, 
and mean can be determined in one pass in a single query. 
The variance for all numeric attributes is computed on a 
second pass to avoid numerical issues. Then, each attribute 
is discretized finding the interval for each value. Once we 
have a binned version of X, then we compute histograms on 
each attribute with SQL aggregations. Probabilities are 
obtained dividing by the number of records in each class. 
Scoring requires determining the interval for each attribute 
value and retrieving its probability. Each class probability is 
also computed by adding logarithms. NB has an advantage 
over other classifiers: it can handle a data set with mixed 
attribute types (i.e., discrete and numerical). 

C. Bayesian Classifier Based on K-Means 

In this module, first we divide the data set into clusters 
that means we are making the class decomposition by using 
k-means clustering then, we apply Bayesian classification. 
BKM is a generalization of NB; where NB has one cluster 
per class and the Bayesian classifier has k > 1 clusters per 
class. We consider two major tasks for BKM:Model 
computation ,Scoring a data set 

 The most time-consuming phase is building the model. 
Scoring is equivalent to an E step from K-means executed 
on each class. We fit a mixture of k clusters to each class 
with K-means. The output are priors π (same as NB), mk 
weights (W), mk centroids (C), and mk variance matrices 
(R). We generalize NB notation with k clusters [4] per class 
g with notation g:j, meaning the given vector or matrix 
refers to jth cluster from class g. Sums are defined over 
vectors (instead of variables). 

 Class priors are analogous to NB: We now introduce 
sufficient statistics in the generalized notation. Let Xg:j 
represent partition j of points in class g (as determined by K-
means). Then, L, the linear sum of points is: Lg:j = ∑ xi€Xg:j xi 

and the sum of “squared” points for cluster g: j becomes: 
Rg= ∑xi€Xg:j xi xi 

T
  Based on L; Q, the Gaussian parameters 

per class g are:  

 

Qg:j-  

Table Content PK  non-Key Columns 

XH 

CH 

XD 

XN 

NLQ 

WCR 

Normalized data 

Centroids 

Distances 

Nearest cluster 

Suff statistics 

Mixture model 

i,    g,x1,x2,x3,…xd 

g,    C11,C12,C13,…Cdk 

i,g,   d1,d2,d3,..dk 

i,g,   j 

g,j   Ng,L1,L2,…Ld,Q1,Q2,…Qd 

g,j   pi,C1,C2,…Cd,R1,R2,..Rd 
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We generalize K-means to compute m models, fitting a 
mixture model to each class. K-means is initialized, and then, 
it iterates until it converges on all classes.  

The algorithm is as given below [1]:  

Initialization: 
1. Get global N; L; Q and σ, μ; 
2. Get k random points per class to initialize C. 
While not all m models converge: 
1. E step: get k distances j per g; find nearest cluster j 
per g; update N; L; Q per class. 
2. M step: update W; C; R from N; L; Q per class; 

compute model quality per g; monitor convergence. 
 For scoring, in a similar manner to NB, a point is 

assigned to the class by choosing highest probability among 
all the calculated probabilities. The probabilities are 
calculated based on Gaussian parameter equation. The 
probability gets multiplied by the class prior by default, but 
it can be ignored for imbalanced classification problems. We 
now study how to create an efficient implementation of 
BKM in SQL.  

In the following table 3.1, the tables for NB are 
extended with the j subscript and since there is a clustering 
algorithm behind, we introduce tables for distance 
computation. There is a single set of tables for the classifier. 

All m models are updated on the same table scan. This 
eliminates the need to create multiple temporary tables. We 
introduce a fast distance computation mechanism based on a 
flattened version of the Centroids; temporary tables have 
fewer rows. We use a CASE statement to get closest cluster 
avoiding the use of standard SQL aggregations. A join 
between two large tables is avoided. We delete points from 
classes whose model has converged. The algorithm works 
with smaller tables as models converge.  
1. Model Computation 

Model computation is sub module in the Bayesian 
classification; in this sub module, we will build the model 
which results the prior probabilities, mean of each cluster 
and variance of each cluster, for this, we need to initialize 
the CH table with k random points per class; In this manner, 
K-means computes Euclidean distance with all attributes 
being on the same relative scale. The normalized data set is 
stored in table XH, which also has n rows.  

We consider a horizontal scheme to compute distances. 
All k distances per class are computed as SELECT terms. 
This produces a temporary table with mkn rows. Then, the 
temporary table is pivoted and aggregated to produce a table 
having mn rows with k columns. Such a layout enables 
efficient computation of the nearest cluster in a single table 
scan. The SQL code pairs each attribute from X with the 
corresponding attribute from the cluster. Computation is 
efficient because CH has only m rows and the join computes 
a table with n rows (for building the model) or mn rows for 
scoring.  

The following SQL statement computes k distances for 
each point, corresponding to the gth model. This statement is 
also used for scoring, and therefore, it is convenient to 
include g.  

INSERT INTO XD SELECT   i,XH.g ,(X1-
C1_X1)**2 + .. +(X4-C1_X4)**2, ..,(X1-C3_X1)**2 + .. 
+(X4-C3_X4)**2 FROM XH,CH WHERE XH.g=CH.g; 

At this point, we have computed k distances per class 
and we need to determine the closest cluster. There are two 

basic alternatives: pivoting distances and using SQL 
standard aggregations. Using case statements, we determine 
the minimum distance. For the first alternative, XD must be 
pivoted into a bigger table. Then, the minimum distance is 
determined using the min() aggregation. The closest cluster 
is the subscript of the minimum distance, which is 
determined by joining XH [1].  

 In the second alternative, we just need to compare 
every distance against the rest using a CASE statement. 
Since the second alternative does not use joins and is based 
on a single table scan, it is much faster than using a pivoted 
version of XD. The SQL to determine closest cluster per 
class is given as an example below. This statement can also 
be used for scoring. 

INSERT INTO XN SELECT i,g,CASE WHEN 
d1<=d2 AND d1<=d3 THEN 1 d2<=d3 THEN 2 ELSE 3 
END AS j FROM XD; 

 Once we have determined the closest cluster for 
each point on each class, we need to update sufficient 
statistics, which are just sums. This computation requires 
joining XH and XN and partitioning points by class and 
cluster number. Since table NLQ is denormalized, the join 
computation is demanding for joining two tables with rows. 
For BKM, it is unlikely that, variance can have numerical 
issues. But, it is feasible. In such a case, sufficient statistics 
are substituted by a two-pass computation like NB.  

INSERT INTO NLQ SELECT XH.g,j,sum(1.0) as  
Ng     /*N*/ 
,sum(X1) , .. ,sum(X4)    /* L */ 
Sum(X!**2) , .. ,sum(X4**2)  /* Q*/ 

FROM XH,XN WHERE XH.i=XN.i GROUP BY XH.g,j; 

 We now discuss the M step to update W; C; R. 
Computing WCR from NLQ is straightforward since both 
tables have the same structure and they are small. There is a 
Cartesian product between NLQ and the model quality table 
[1]. The latter table has only one row. Finally, to speed up 
computations, we delete points from XH for classes whose 
model has converged: a reduction in   Distance 
Computation size is propagated to the nearest cluster along 
with sufficient statistics queries. 

 INSERT INTO WCR SELECT 
NLQ.g,NLQ.j ,Ng/MODEL.n   /* pi */ 
,L1/Ng, ..,L4/Ng     /* C */ 
,Q1/Ng-(L1/Ng)**2,..,Q4/Ng-(L4/Ng)**2 /*R */ 
 FROM NLQ,MODEL WHERE NLQ.g=MODEL.g; 

2  Scoring  

Scoring is sub module in the Bayesian classification; in 
this submodule we will make the classification. In this 
module, we consider two alternatives: based on probability 
(default) or distance. Scoring is similar to the E step. But, 
there are differences. First, the new data set must be 
normalized with the original variance used to build the 
model. Such variance should be similar to the variance of 
the new data set. Second, we need to compute mk 
probabilities (distances) instead of only k distances because 
we are trying to find the most probable (closest) cluster 
among all. Thus, the join condition between XH and CH 
gets eliminated. Third, once we have mk probabilities 
(distances), we need to pick the maximum (minimum) one 
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and then the point is assigned to the corresponding cluster 
[1]. To have a more elegant implementation, we predict the 
class in two stages.  

First, we determine the most probable cluster per class, 
and then, compare the probabilities of such clusters. Column 
XH.g is not used for scoring purposes, but it is used to 
measure accuracy, when known. 

D. Principal component analysis (PCA) 

 In this module, PCA is mainly used to reduce the 
dimensionality of the data set by performing a covariance 
analysis between factors. PCA allows us to compute a linear 
transformation that maps data from a high dimensional 
space to a lower dimensional space. Suppose that, the data to 
be reduced consist of tuples or data vectors described by n 
attributes or dimensions [7]. 

In this PCA, we are using the following table to store 
the values and these tables will behave as a input for the 
next tables and from these we are computing the covariance 
matrix. To find the covariance matrix we use the Sql queries. 

TABLE 2 
PCA TABLES 

The first table is the base table to our application, In 
that we have sample data in the form of attribute. It should 
be in the numeric form. To calculate the linear some of each 
attribute of the dataset we will the following query. We are 
computing each attribute sum by using sum ().the result is 
storing in the NL table for future purpose [1]. 

INSERT INTO NL SELECT XH.g,j,sum(1.0) as 
Ng,sum(X1) , .. , sum(X4), WHERE XH GROUP BY g; 

After finding linear sum of each attribute, we have to 
calculate the mean of each attribute .It is very easy process. 
It can be calculated in single step. We have linear sum (Ld) 
and Table number of record (Ng) in each attribute in NL 
Table, by using the following query, we will insert mean of 
each attribute into Mean table   

INSERT INTO MEAN SELECT 
NL.g,Ng ,L1/Ng, ..,L4/Ng , FROM NL ; 

Once we have mean of each attribute, we need to 
subtract each vale from mean, to do that process, we use 
MEAN table and base table (XH), from these two tables we 
calculate the difference of mean and each value and we 
insert those values into AFD table by using single query. 

INSERT INTO AFD SELECT X1-M1,X2-M2,.., 
FROM XH,MEAN WHERE XH.G=MEAN.G; 

From above SQL query we find difference of mean 
and each value in base table. Next step is, we need to 
calculate the covariance matrix [7], by using the following 
query we insert in to COVARIANCE Table. 

INSERT INTO COVARIANCE SELECT 
SUM(X1*X1)/NG,SUM(X1*X2),………. 
SUM(X1*XD …SUM (XD*X1), 
SUM(XD*X2) ,………….. SUM(XD*XD) FROM 
PCAAFM; 

Now, we get covariance matrix, from the covariance 
matrix, we have to calculate Eigen values and Eigen vectors 
to calculate principal components. In Sql, it is very difficult 
process. We studied different methods like QR, LU 
decomposition iteration methods. To optimize that process, 
we select direct method, i.e. eig () in mat lab. From eig () we 
can calculate eigen values and eigen vectors easily. 

IV EXPERIMENTAL EVALUATION 

We analyze three major aspects: 1) classification 
accuracy, 2) query optimization, and 3) time complexity and 
speed. We compare the accuracy of NB, BKM, and decision 
trees (DTs). 

A. Setup 
We used the Teradata DBMS running on a server with 

a 3.2 GHz CPU, 2 GB of RAM, and a 750 GB disk. 
Parameters were set as follows: We set _ ¼ 0:001 for K-
means. 

The number of clusters per class was k ¼ 4 (setting 
experimentally justified). All query optimizations were 
turned on by default (they do not affect model accuracy). 
Experiments with DTs were performed using a data mining 
tool. 

We used real data sets to test classification accuracy 
(from the UCI repository) and synthetic data sets to analyze 
speed (varying d; n). Real data sets include pima (d ¼ 6; n ¼ 
768), spam (d ¼ 7; n ¼ 4;601), bscale (d ¼ 4; n ¼ 625), and 
wbcancer (d ¼ 7; n ¼ 569). Categorical attributes (_3 values) 
were transformed into binary attributes. 

B. Model Accuracy 
We used the system with a configuration 3.2 GHz CPU, 

1 GB of RAM, and a 120 GB disk. We worked on an oracle 
Express edition 10g database. We used real data sets to test 
classification accuracy (from the UCI repository) and 
synthetic data sets to analyze speed (varying d; n). Real data 
sets include bscale (n=4, d=625), and wbcancer (d=7; 
n=569). Categorical attributes (>=3 values) were 
transformed into binary attributes. 

TABLE 3 

ACCURACY BY VARYING K (NUMBER OF CLUSTERS) IN BKM. 

We have concentrated mainly on accuracy; we 
measure the accuracy of predictions when using Bayesian 
classification models. For each run, the data set was 
partitioned into a training set and a test set. The training set 
was used to compute the model, whereas the test set was 
used to independently measure accuracy. The training set 
size was 80 percent and the test set was 20 percent.  

 The number of clusters (k) is the most important 
parameter to tune BKM accuracy. The Table 5.1 shows 
accuracy behaviour as k increases. As size of k increases, it 

Table Content PK  non-Key Columns 

XH 

NL 

MEAN 

AFD 

COVAR 

Normalized data 

Centroids 

Distances 

Nearest cluster 

Covariancematrix 

i,    g,x1,x2,x3,…xd 

g,   L1,L2,L3….Ld 

i,g,  M1,M2,M3,….Md 

i,g,   X!,X2,X3,…..Xd 

g     X!,X2,X3,…..Xd 

Data set k=2 K=3 k=4 k=6 k=8 k=16

Bscale 55% 57% 59% 56% 60% 68% 

wbcancer 93% 94% 92% 93% 93% 89% 
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produces more complex models. Intuitively, a higher k 
should achieve higher accuracy because each class can be 
better approximated with localized clusters.  

 
Fig 1: comparing accuracy of BKM after PCA, before PCA by varying k 

On the other hand, a higher k than necessary can lead 
to empty clusters. As can be seen, a lower k produces better 
models for spam and wbcancer, whereas a higher k produces 
higher accuracy for bscale. Therefore, there is no ideal 
setting for k, but, in general, k <=20 produce good results. 
Based on these results, we set k=3 by default since it 
provides reasonable accuracy for all data sets. 

In the following Table5.2, we compare the accuracy of 
the three models, including the overall accuracy as well as a 
breakdown per class. Accuracy per predicted class is 
important to understand issues with imbalanced classes and 
detecting subsets of highly similar points. 

TABLE 4 
ACCURACY BY VARYING K VALUE FOR NB, BKM, AND BKM 

AFTER PCA. 

In practice, one class is generally more important than 
the other one (asymmetric), depending on whether the 
classification task is to minimize false positives or false 
negatives. This is a summary of findings. First of all, 
considering global accuracy, and next by considering 
individual class. 

 

Fig 2: comparing accuracy of NB, BKM. 

We applied PCA for wbcancer data set and removed 
six attributes (6, 13, 14, 15, 19, 23, and 21) because these 

are showing poor Eigen values and after removing these 
attributes from data set we again applied the BKM and 
compute the results.  

V. CONCLUSIONS 
We presented three Bayesian classifiers programmed 

in SQL: the Naive Bayes classifier (with discrete and 
numeric versions), a generalization of Naive Bayes (BKM), 
based on decomposing classes with K-means clustering and 
BKM with dimensionality reduction technique PCA. And 
we studied two complementary aspects: increasing accuracy 
and generating efficient SQL code. We presented one 
dimensionality reduction technique Principal component 
analysis (PCA) to produce more accurate results in 
classification. The nearest cluster per class, required by K-
means, is efficiently determined avoiding joins and 
aggregations. Experiments with real data sets are performed 
and compared the results of NB, BKM, PCA, BKM after 
PCA, and BKM before PCA. The numeric and discrete 
versions of NB had similar accuracy. BKM was more 
accurate than NB in global accuracy. However, BKM was 
more accurate when computing a breakdown of accuracy per 
class. It was observed that, when the number of clusters 
formed is less, it produced a better result. After applying 
PCA on the dataset, as a result it reduced the number of 
attributes in the dataset and given better result in terms of 
accuracy. 

NB and BKM exhibited linear scalability in data set 
size and dimensionality. There is much scope for future 
work. We can derive incremental versions or sample-based 
methods to accelerate the Bayesian classifier. We are 
interested in combining one more dimensionality reduction 
technique factor analysis with Bayesian classifiers in SQL.   
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