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Abstract:  This paper proposes real time de-noising algorithms for image and audio based on the Wavelet Transform. White noise is located in 
all frequencies and is thus especially hard to detect. We  use the locality of the wavelet function to single out the frequency domains of the signal 
itself and thereby able to denoise it. Perfect denoising is not possible, the higher the threshold coefficient is set, the more the noise is detected, 
but the more the original signal is affected as well. We have implemented a flexible framework for denoising that includes hard and soft 
thresholding, different Wavelet Transforms and different treatments of the padding coefficients. The presented denoiser is a real-time application 
that allows direct subjective judgements of a parameter setting. 
Keywords: Image denoising, wavelet transform, hard thresholding and soft thresholding. 
 

I. INTRODUCTION 
     Denoising, the task of removing or suppressing 
uninformative noise from signals is an important part of many 
signal processing or image processing applications. Wavelets 
are commonly used tools in the field of signal processing. The 
popularity of wavelets in denoising is largely due to the 
computationally efficient algorithm as well as to the sparsity 
of the wavelet representation of data. By sparsity we mean that 
majority of the wavelet coefficients have very small 
magnitudes where as   only a small subset of coefficients have 
large magnitudes. We may informally state that this small 
subset contains the interesting informative part of the signal, 
whereas the rest of the coefficients describe noise and can be 
discarded to give a noise-free reconstruction. The well known 
wavelet denoising methods are thresholding approaches. In 
hard thresholding, all the coefficients with greater magnitudes 
than the threshold are retained as unmodified as they are 
comprise the informative part of data, while the rest of the 
coefficients are considered to represent noise and set to zero. 
However, it is considerable to assume that coefficients are not 
purely either noise or informative but mixtures of those. To 
copeup with this soft thresholding approaches have been 
proposed. In  soft thresholding  the coefficients with 
magnitudes smaller than the threshold are set to zero, but the 
retained coefficients are also shrunk towards zero by the 
amount of the threshold value in order to decrease the effect of 
noise assumed to corrupt all the wavelet coefficients. 
      Discrete wavelet transform can be used for easy and fast 
denoising of a noisy signal. If we take only a limited number 
of highest coefficients of the discrete wavelet transform 
spectrum, and we perform an inverse transform(with the same 
wavelet basis) we can obtain more or less denoised signal. 
There are several ways how to choose the coefficients that will 
be kept. Here, only two most simple methods  were tried – 
hard and soft thersholding. Wavelets are functions defined 

over a finite interval and having an average value of zero. 
The power and magic of wavelet analysis is concept of 
multi-resolution 

  
II. MULTI RESOLUTION ANALYSIS [4]. 

 
     The power of wavelets comes from the usage of multi-
resolution. Rather than examining entire signals through 
the same window, different parts of the wave are viewed 
through size windows (or resolution). High frequency 
parts of the signal use a small window to give good time 
resolution; low frequency parts parts of the signal use a 
big window to get good frequency information. An 
important thing to note is that the ‘window’ have equal 
area even though the height and width may vary in 
wavelet analysis. The area of the window is controlled by 
Heisenberg’s Uncertainity principle, as the frequency 
resolution gets bigger the time resolution must get smaller. 
 

Conditions for Multi-Resolution Analysis [4]: 

1. Subspace Vj must be contained in all subspaces on 
higher resolutions.               

 

2. All square integrable functions must be included at the 
finest resolution level (3) and zero function on the coarsest 
level (4). 

 

 
3. All the spaces {Vj} are scaled versions of the central 
space V0. If f(t) is in space Vj and it contains no details on 
scales smaller than 1/2j+1 and it is from space Vj+1(5). 

 
4. If f(t) є V0, so do its translates by integer k, {f(t-k)}. 

                
5. There exist a function Ø(t), called scaling function, such 
that {Ø(t-k)} is an ortho normal basis of V0.  
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II(a). WAVELET FAMILIES 
 

     There are a number of basis functions that can be used as 
the mother wavelet for a wavelet transformation. Since the 
mother wavelet produces all wavelet functions used in the 
transformation through translation and scaling, it determines 
the characteristics of the resulting Wavelet Transform. 
 

 
Fig.1.Wavelet Families:  (a) Haar (b) Daubechies (c)Coiflets (d) 

Symlets (e) Meyer (f) Morlet (g) Mexican Hat. 
 

     The above figures(fig.1) are some of the commonly used 
wavelet functions. Haar wavelet is one of the oldest and 
simplest wavelet. Therefore, any discussion of wavelets starts 
with the haar wavelet. Daubechies wavelets are the most 
popular wavelets. 
 

III. WAVELET TRANSFORMS: 
      The transform of a signal is just another form of 
representing the signal. It does not change the information 
content present in the signal. Often signals we wish to process 
are in the time-domain, but in order to process them more 
easily other information. Such as frequency, is required. 
Mathematical transforms translate the information of   signals 
into different representations. For example, the fourier 
transform converts a signal between the time and frequency 
domains, such that the frequencies of a signal can be seen. 
However the fourier transform cannot provide information on 
which frequencies occur at specific times in the signal as time 
and frequency are viewed independently. 

The wavelet transform provides a time-frequency 
representing of the signal. While fourier transform and STFT 
use waves to analyze signals. The wavelet transform uses 
wavelets of finite energy. 

 The basic idea of the wavelet transform is to represent any 
arbitrary function as a superposition of a set of such wavelets 
or basis functions. These basis functions or baby wavelets are 
obtained from a single prototype wavelet called the mother 
wavelet, by dilations or contractions (scaling) and translations 
(shifts). 

 
III(a).CONTINOUS WAVELET TRANSFORM 

       The continuous wavelet transform   is the sum over all 
time of scaled and shifted version of the mother wavelet ψ. 
Calculating  the CWT results in many coefficients c, which are 
functions of scale and translation. 

   
    The translation τ, is proportional to time information and 
the scale, s, is proportional to the inverse of the frequency 
information. To find the constituent wavelets of the signal, the 
coefficients should be multiplied by the relevant version of the 
mother wavelet. 
 

 

III(b).DISCRETE WAVELET TRANSFORM 
 

The DWT   provides sufficient information for the 
analysis and synthesis of a signal, but is advantageously, 
much more efficient. Discrete wavelet analysis is 
computed using the concept of filter banks. Filters of 
different cut-off frequencies analyze the signal at different 
scales. Resolution is changed by the filtering; the scale is 
changed by up sampling and downloading. If a signal is 
put through two filters: 
(1)  A high pass filter, high frequency information is kept, 
low frequency information is lost. 
(2) A low pass filter, how frequency information is kept, 
high frequency information is lost. 

 
III(c).TWO DIMENSIONAL DWT (applied for 

images) 

       Discrete wavelet transform for two-dimensional 
signal, or in our case images, can be derived from one 
dimensional DWT. Easiest way for obtaining scaling and 
wavelet function for two-dimensions is by multiplying two  
one-dimensional functions. 

Scaling functions for 2-D DWT can be obtained by 
multiplying two 1-D scaling functions (6). Generally 
different scaling functions can be used for each direction 
but in practice those functions are in most cases the same. 

                Ø(x,y)=Ø(x)Ø(y)                                   (6) 

Recently, discrete wavelet transform has attracted 
more and more interest in image de-noising. The DWT 
can be interpreted as signal decomposition in a set of 
independent, spatially oriented frequency channels. The 
signal S is passed through two complementary filters and 
emerges as two signals, approximation and details. This is 
called decomposition or analysis. The components can be 
assembled back into the original signal without loss of 
information. This process is called reconstruction or 
synthesis. The mathematical manipulation, which implies 
analysis and synthesis, is called discrete wavelet transform 
and inverse wavelet transform. An image can be 
decomposed into a sequence of different spatial resolution 
images using DWT. In case  of  a 2D image, an N level 
decomposition can be performed resulting in 3N+1 
different frequency bands namely, LL,LH,HL and HH as 
shown in figure. The next level of wavelet transforms is 
applied to the low frequency sub band image LL only. The 
noise will nearly be averaged out in low frequency 
wavelet coefficients. Therefore, only the wavelet 
coefficients in the high frequency levels need to be 
thresholded.    

             
Fig.2.Decomposition levels. 
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IV. DENOISING  USING WAVELET 
TRANSFORMS 

      Applications of signal processing all struggle with a major 
problem, noise. A pure and undisturbed signal is 
superimposed by another-unwanted-signal. How to separate 
the one from the other without deterioration of the signal 
itself?  This question accompanies the search for a good 
representation of the signal throughout its encoding process. 
Though the fourier transform (FT) and the windowed fourier 
transform are successfully used, new methods focus on the 
wavelet transform (WT) [4] in order to overcome the FT’s 
disadvantages. Its construction through multi resolution 
analysis proves to reflect the frequency resolution of the 
human ear: lower frequencies are resolved well, while high 
frequencies are only loosely resolved. Furthermore, the 
implementation of the WT is fast enough to allow real-time 
application. 

        All digital images contain some degree of noise. Image 
denoising algorithm attempts to remove this noise from the 
image. Ideally, the resulting de-noised image will not contain 
any noise or added artifacts. De-noising of natural images 
corrupted by Gaussian noise using wavelet  technique is very 
effective because of its ability to capture the energy of a signal 
in few energy transform values. The methodology of the 
discrete wavelet transform based image de-noising has the 
following three steps as shown in fig3.1.Transform the noisy 
image into orthogonal domain by discrete 2D wavelet 
transform. 2. Apply hard or soft thresholding the noisy detail 
coefficients of the wavelet transform. 3. Perform inverse 
discrete wavelet transform to obtain the de-noised image. 
Here, the threshold plays an important role in the de-noising 
process[5]. 

 
Fig.3.Discrete wavelet transform based image denoising. 

SYSTEM MODEL : 

 

Fig.4.Block diagram of proposed wavelet transform algorithm . 

IV(a).THRESHOLDING 

        The wavelet coefficient  corresponding to the signal 
contain important information and their magnitude are large 
but the number is small. However, the coefficients 

corresponding to the noise are commonly distributed and 
the number is large but the magnitudes are relatively 
small. Due to the above fact, the wavelet coefficients 
which are larger than a given threshold are kept or shrunk 
and the other coefficients are eliminated. This technique is 
called thresholding [2]. 

        The wavelet coefficients calculated by a wavelet 
transform represent change in the time series at a 
particular resolution. By looking at the time series in 
various resolutions it should be possible to filter out noise. 
However, the definition of noise is a difficult one. One of 
my colleagues commented once that  “one person’s noise 
is another’s signal”. In part this depends on the resolution 
one is looking at. One algorithm to remove Gaussian 
white noise is summarized in section 10.5, chapter 10, of 
wavelet methods for time series analysis by Percival and 
walden. The algorithm is: 

1. Calculate a wavelet transform and order the coefficients 
by increasing frequency. This will result in an array 
containing the time series average plus a set of coefficients 
of length 1,2,4,8….The noise threshold will be calculated 
on the highest frequency coefficient spectrum(this is the 
largest spectrum). 

2. Calculate the median absolute deviation on the largest 
coefficient spectrum. The median is calculated from the 
absolute value of the coefficients. The equation for the 
median absolute deviation is shown 

 δ(mad)=median{|c0|,|c0|,……|c2
n-1-1|}/0.6745 

Here C0,C1, etc… are the coefficients. The factor 0.6745 in 
the denominator rescales the numerator so that δmad is also 
a suitable estimator for the standard deviation for 
Gaussian white noise (Wavelet methods for time series 
analysis). 

3. For calculating the noise threshold I have used a 
modified version of the equation in wavelet methods for 
time series analysis. This equation has been discussed in 
papers by D.L.Donoho and I.M.Johnstone. this equation is 
shown below: 

                 

In this equation N is the size of the time series. 

4. Apply a threshold algorithm to the coefficients. There 
are two popular versions 

 (i). Hard thresholding: Hard thresholding sets any 
coefficients less than or equal to the threshold      to zero.       
If (coef[i]<=thresh) 

                         Coe[i]=0.0; 

(ii). Soft thresholding: Hard thresholding sets any 
coefficient less than or equal to the threshold to zero. The 
threshold is subtracted from any coefficient that is greater 
than the threshold. This moves the time series toward zero.  
                           If(coef[i]<=thresh) 
                           Coef[i]=0.0 
                           Else 
                           Coef[i]=coef[i]-thresh; 
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Soft thresholding not only smooths the time series, but 
moves it toward zero. 

In this section we consider the problem of  recovering the 
regression function from noisy data based on wavelet 
decomposition. 

The upper two plots in the display show the underlying 
regression function (left) and noisy data (right). The lower two 
plots show the distribution of the wavelet coefficients in the 
time-scale domain for the regression function and the noisy 
data. 

    For simplicity we deal with a regression estimation 
problem. The noise is assumed to be additive and Gaussiam 
with zero mean and unknown variance. Since the wavelet 
transform is an orthogonal transform we can consider the 
filtering problem in the space of wavelet coefficients. One 
takes the wavelet transform of the noisy data and tries to 
estimate the wavelet coefficients. Once the estimator is 
obtained one takes the inverse wavelet transform and recovers 
the unknown regression function. 

To suppress the noise on the data two approaches are 
normally used. The first one is the so-called liner method. The 
wavelet decomposition reflects well the properties of the 
signal in the frequency domain. Roughly speaking, higher 
decomposition scales correspond to higher frequency 
components in the regression function. If we assume that the 
underlying regression is allocated in the low frequency 
domain then the filtering procedure becomes evident. All 
empirical wavelet coefficients beyond some resolution scale 
are estimated by zero. This procedure works well if the signal 
is sufficiently smooth and when there is no boundary in the 
data. But for many practical problems such an approach does 
not seem to be fully appropriate, e.g. images cannot be 
considered as smooth functions. 

IV(b).HARD THRESHOLODING 

  To suppose the noise we apply the following nonlinear 
transform to the empirical wavelet coefficients: 
                                 F(x) =x.I(|x >t) 

Where  t is a certain threshold. The choice of the threshold 
is a very delicate and important statistical problem. 

On the hand, a big threshold leads to a large bias of the 
estimator. But on the other hand, a small threshold increase 
the variance of the smoother. Theoretical considerations yield 
the following value of the threshold: 

                             
Where n is the length of the input vector and σ2 is the 
variances of the noise. The variance of the noice is estimated 
based on the data. We do this by averaging the squares of the 
empirical wavelet coefficients at the highest resolution scale. 

IV(c).SOFT THRESHOLDING 

    Along with hard thresholding [2] in many statistical 
applications soft thresholding procedures are often used. In 
this section, we study the so-called wavelet shrinkage 
procedure for recovering the regression function from noisy 
data. 

.The only difference between the hard and the soft 
thresholding procedure is in the choice of the nonlinear 

transform on the empirical wavelet coefficients. For soft 
thresholding [2] the following nonlinear transform is used: 

                   S(x) = sign(x)( x -t)i( X >T), 

Where t is a threshold. The  menu provides you with 
all possibilities for choosing the threshold and exploring 
the data. 

IV(d).DIFFERENCE–SOFT AND HARD 
THRESHOLDING 

 

Fig.5.Difference between soft and hard thresholding 

In hard thresholding we kept those wavelet coefficients 
remains constant which are larger than threshold level and 
we eliminate the smaller magnitude ones. Hard threshold, 
however, provides better edge preservation in comparison 
with the soft one. 

    In soft thresholding we shrunk the larger magnitude 
coefficient by threshold level and we eliminate the smaller 
magnitude coefficients. It is known that soft thresholding 
provides smoother results in comparison with the hard 
thresholding. 

IV. RESULTS 

For testing the performance of proposed technique one 
image and one dog barking signal taken as input. 

If  we consider a image as shown in  fig(6) and add  
noise to it and if we apply both techniques for this current 
picture. 

 

Fig.6.Original image and Noisy image 

 

Fig.7. Hard and Soft thresholding images 

The above fig (6) shows the original and noisy images 
and fig.(7) shows the comparison of denoised images of  
hard and soft thresholding techniques. 
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The Audio can also be denoised by using this soft 
thresholding technique. Fig.8.shows original audio signal. 
fig.(9) shows noisy audio signal and fig(10) shows denoised 
audio signal 

 

 
Fig.8.Original Audio signal 

 

 
Fig.9.Noisy Audio signal 

 

Fig.10.Denoised Audio signal 

V. CONCLUSION: 

In this paper we have denoised audio and image 
signals using an advanced technique of wavelet transform. 
As a whole, the taken input image and audio were 
denoised using soft thresholding technique. Considering 
perfect threshold levels and taken ideal  characteristic 
input signals, the process of denoising can be further 
optimized. As we used random noise in this paper, it can 
also be implemented to other types of noise and better 
denoising can be achieved. Choosing real-time signals as 
input for this paper can be accomplished by choosing the 
input signal’s characteristics as needed for the coding 
employed internally. 

Using complex wavelet basis functions and employing 
more than one type of threshold techniques this paper can 
be further developed into a good audio and image 
denoiser. 

VI. REFERENCES 

[1] . B. Jai Shankar and K.Durai Swamy” Audio 
Denoising                using Wavelet Transform” 
,IJAET, Jan2012. 

[2].  Sachin D Ruikar and Dharmpal D Doye”Wavelet 
Based Image Denoising Technique”, IJACSA March 
2011. 

[3]. Rafael C.Gonzalez, Richard E. Woods, Steven L.  
Eddins,”Digital Image Processing using MATLAB”, 
Pearson Education Publisher. 

[4]. Raghuveer  M.Rao.Ajit S. Bopardikar,” Wavelet 
Transforms: Introduction to Theor y and  
Applications”, Pearson Education Publisher. 

[5]. Anil K. Jain.” Fundamentals of Digital Image 
Processing”, PHI Publisher.  

 


