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Abstract: For exploiting the significant diversity in Multiple-Input Multiple-Output (MIMO) wireless systems requires either 
complete channel knowledge or knowledge of the optimal beamforming vector; both are hard to realize. Hence a quantized 
maximum Signal-to-Noise Ratio (SNR) Grassmannian beamforming  and Binary Grassmannian beamforming for MIMO Wireless 
Systems are proposed where the receiver only sends the label of the best beamforming vector using predetermined codebook to 
the transmitter. Grassmannian weightbook gives optimal performance even in high noise environment. The designed Binary 
weightbook gives approximately same performance as that of Grassmannian weightbook but with less complexity.    
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I. INTRODUCTION 

Multiple-input multiple-output (MIMO) wireless systems 
make use of the spatial dimension of the channel to provide 
considerable capacity, increased resilience to fading , or 
combinations of the two[1]. In narrow-band Rayleigh-fading 
matrix channels, MIMO systems can provide a diversity in 
proportion to the product of the number of transmit and 
receive antennas. Diversity in a MIMO system can be 
obtained through the use of space–time codes  or via 
intelligent use of channel state information at the 
transmitter. Transmit beamforming with receive 
combining[2] is one of the simplest approaches to achieving 
full diversity and has been of interest recently [3]–[4]. 
Beamforming and combining in MIMO systems are a 
generalization of the vector channel beamforming and 
combining methods found in Single-Input–Multiple-Output 
(SIMO) combiners and Multiple-Input–Single-Output 
(MISO) beamformers which provide significantly more 
diversity. beamforming and combining systems provide the 
same diversity order as well as significantly more array gain 
[5] at the expense of requiring channel state information at 
the transmitter in the form of the transmit beamforming 
vector. Unfortunately, in systems where the forward and 
reverse channels are not reciprocal, this requires coarsely 
quantizing the channel or beamforming vector to 
accommodate the limited bandwidth of the feedback 
channel.  

 Consider the problem of quantized beamforming for 
independent and identically distributed (i.i.d.) MIMO 
Rayleigh flat-fading channels when the transmitter has 
access to a low-bandwidth feedback channel from the 
receiver and the receiver employs Maximum Ratio 
Combining (MRC)[5]-[7]. To support the limitations of the 
feedback channel, we assume the use of a codebook of 
possible beamforming vectors known to both the transmitter 

and receiver. The codebook is restricted to have fixed 
cardinality N and is designed off-line. The receiver is 
assumed to convey the best beamforming vector from the 
codebook over an error-free, zero-delay feedback channel. A 
primary contribution of this correspondence is to provide a 
constructive method for designing a quantized beamforming 
codebook. We show, using the distribution of the optimal 
unquantized beamforming vector, that the codebook design 
problem is equivalent to the problem of packing one-
dimensional subspaces known as Grassmannian line 
packing. These codebooks are a function of the number of 
transmit antennas and the size of the codebook but are 
independent of the number of receive antennas.  

In today’s hand-held devices with limited memory, size, 
and power , limited feedback [8] weightbooks with smaller 
memory footprint will help to reduce implementation costs. 
Furthermore, reduced search computation will ease stringent 
computational complexity requirements in real-time systems 
and allow systems to quickly adapt to highly mobile 
environments. The weightbooks adopted for recent 
standards demonstrate trends towards systematic finite 
alphabet weightbooks [9, p. 39], [10, pp. 457-466]. Among 
finite alphabet weightbooks, a binary weightbook is the 
simplest form. Thus, investigation of binary weightbooks 
provides performance degradation limits and complexity 
reduction limits compared with infinite alphabet 
weightbooks such as Grassmannian weightbooks. 

We consider Grassmannian weightbook and binary 
weightbook design for MIMO beamforming systems using 
quantized feedback based on the Grassmannian 
beamforming criterion. Using binary weightbooks, the 
computational complexity for finding the optimum 
beamforming weight vector and the storage requirement for 
the weightbook can be reduced. We show that the 
Grassmannian criterion for binary weightbook design is to 
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maximize the minimum Hamming distance of the 
corresponding block code. Thus, a block code that has a 
large minimum Hamming distance is an advantageous 
choice for binary weightbook design for MIMO 
beamforming systems using quantized feedback. 

II. SYSTEM MODEL 

Consider a MIMO beamforming system with t transmit 
antennas and r receive antennas. We assume that Maximal 
Ratio Combining (MRC) is used at the receiver. An -array 
symbol  with unit average energy is pre-encoded by a 
beamforming weight vector 

                     
from a binary weightbook , where (.)  denotes matrix 
transpose and 

                        
Note that wi = 1 or −1 for all  =1, 2...Mi, for a binary 
weightbook. The transmitted signal is given by  

                        

  
               Fig 2.1 Block diagram for MIMO Systems 
 

Where  is the transmit symbol energy. Thus, the 
transmit energy per antenna is / t. We will denote the 

transmit bit energy which is equal to / M2log , by . 

We will use a weightbook that consists of 2^F beamforming 
weight vectors, where  is the number of feedback bits. The 
receiver sends a feedback signal that the transmitter uses to 
select w from a weightbook . The output signal of the 
maximal ratio combiner at the receiver is given by 

 
Where H is the r × t channel gain matrix whose entries 

h ,  are independent and identically distributed (iid) 
circularly symmetric complex Gaussian fading gains with 
unit variance. The gain from the J th transmit antenna to the 
th receive antenna is h , , and n is a r × 1 additive white 

Gaussian noise (AWGN) vector with variance 0/2 per 
dimension. The combining weight vector at the receiver, z, 
is equal to Hw. 

The instantaneous signal-to-noise ratio (SNR) at the 
receiver after MRC is given by  

                      
We use (.)H for matrix conjugate transpose, and .  for 

vector two-norm. 

III. GRASSMANNIAN WEIGHT BOOK AND BINARY 

WEIGHT BOOK DESIGN 

A. Grassmannian line packing : Grassmannian line 
packing is the problem of optimally packing one-
dimensional subspaces[11] . It is similar to the problem of 
spherical code design with one important difference: 
spherical codes are points on the unit sphere while 
Grassmannian line packings are lines passing through the 
origin in a vector space. Grassmannian line packing forms 
the basis for our quantized beamforming codebook design. 

B. Grassmannian Beamforming Criterion: Design the set 

of codebook vectors 
N

iiw 1}{   [12],[13] such that the 

corresponding codebook matrix w maximizes 

                  
This criterion captures the essential point about quantized 

beamforming codebook design for Rayleigh-fading MIMO 
wireless systems: Grassmannian line packings are the key to 
codebook construction. Thus, beamforming codebooks can 
be designed without regard to the number of receive 
antennas by thinking of the codebook as an optimal packing 
of lines instead of a set of points on the complex unit sphere. 

One benefit of making the connection between codebook 
construction and Grassmannian line packing is that it 
provides an approach for finding good codebooks, namely, 
leveraging work that has already been done on finding 
optimal line packings.  

The codebook matrix W must  satisfy 

                   
Where N

M t
I is given by the set of matrices in N

M t
U  where 

each column can be represented as the normalized sum of 

unique column vectors of 
tMI  . Since N

M t
I   has finite 

cardinality, the global maximum [13]can be obtained by 

performing a brute-force search over all matrices in N
M t

I  . 

GSS codebooks provide better performance than selection 
diversity because additional vectors are included to allow a 
better quantization of the optimal beamforming vector. 

 
C. Binary Weight book design: We derive the 
Grassmannian beamforming criterion for binary weightbook 
design. First, we define binary phase shift keying (BPSK) 
mapping, BPSK(.), as follows 
                     BPSK(0) = 1 
                     BPSK(1) = −1. 

Then, we define inverse BPSK mapping, 1BPSK (.), as 
follows 

                  1BPSK (1) = 0 
                 1BPSK (−1) = 1 

Using the inverse BPSK mapping, we map a beamforming 
weight vector w = [ 1, 2, ..., t ]  from a weightbook 

 into c = [ 1, 2, ..., t ]  in a binary code , where  
= 1BPSK  ( ) for  = 1, 2, ..., t. For convenience, we will 
use the notations BPSK(.) and 1BPSK  (.) also for vector 
inputs. Thus, BPSK(c) = w and 1BPSK  (w) = c. Then, 
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binary weightbook design for MIMO beamforming systems 
can be thought of as a corresponding binary block code 
design, where the block length of the block code is equal to 

 = t and the number of codewords is equal to 2^F 

                The Grassmannian beamforming criterion for 
weightbook design is to maximize 

 
Where w ,w  are beamforming weight vectors in a 
Weightbook . For binary weightbook design, above  can 
be written as 

             

      

 

 
 

Where w  = BPSK(c ), w  = BPSK(c ), and H(c , c  ) is 
the Hamming distance between c  and c  in the code C. 

complementary code,
_

C  , of the code C as follows 

         

                     
The Grassmannian beamforming criterion for binary 
eightbook design is to maximize the minimum distance of 
the unified code 

                        
 

D. Binary Weight book design for linear block codes:                                   

We can design a binary weightbook using a given linear 
block code as follows. Suppose we have an ( , ) linear 
binary block code, where  is the block length and  is the 
dimension of the code. 

If a ( , ) linear code  includes the codeword [1, 1, ..., 
1]T, a generator matrix  can have   [1, 1, ..., 1] as a row 
vector. Thus, any codeword in the ( , ) linear block code C 
can be represented as an unique linear combination of b1, 
b2, ..., b −1,         [1, 1,..., 1]T, where { b1, b2, ..., b −1, 
[1, 1, ..., 1]T} constitute a basis of the block code. Half of 
the codewords have zero as the coefficient of [1, 1, ..., 1]T, 
and the other half of the codewords have one as the 
coefficient of [1, 1, ..., 1]T. By BPSK mapping of the former 
half of the codewords, we can have a binary weightbook for 
MIMO beamforming systems. The performance of this 
weightbook depends on the minimum Hamming distance of 
the ( , ) linear block code C, where  = t and  =  + 1. 

Given t and , we can find a good weightbook using a 
well-known linear block code as follows. First, we find a 
( t,  +1) linear block code that has [1, 1, ..., 1]T as a 
codeword and a large minimum Hamming distance. Then, 
the half of the codewords of the linear block code that start 
with zero can be used as beamforming weight vectors. 

Binary weightbooks based on the Grassmannian 
beamforming criterion given the number of transmit 
antennas, t and the number of feedback bits, . Given t 
and , we will design a code  of which the column vectors 
are the 2^F codewords. Then, the corresponding binary 
weightbook can be found using BPSK mapping. The 
optimal codes 

 t = 2,  = 1 

                  
The minimum Hamming distance of the unified code, 

min( ), is one. This code is the optimum binary code since 
min( ) of other codes would be zero given t = 2 and  = 

1. In general, for an arbitrary t and   = t − 1, the 
optimum binary code based on the Grassmannian 
beamforming criterion can be found by generating all the 
binary t-tuples of which the first element is zero 

 t = 3,  = 1 

 
The minimum Hamming distance for the unified code is 
one. Since this code achieves the bound, it is optimum. 

 t = 4,  = 2 

 
The code is linear. The minimum nonzero Hamming weight 
for the corresponding unified code for this code is two. 
Thus, the minimum Hamming distance for the unified code 
is two 

 t = 4,  = 3 
The optimum code consists of all the binary 4-tuples that 
start with zero. 

 t = 5,  = 1 

 
The minimum Hamming distance for the unified code is 

two min( ) ≤ 2. Since this code achieves the bound, it is 
optimum. 

We cannot use a binary weightbook for  ≥ t. In these 
cases, the number of symbols in the code must be greater 
than two. For  ≥ t, at least a ternary weightbook is 
required. 

 Note that  that a binary weightbook has the all-zero 
vector as a member without loss of generality. Suppose we 
have a weightbook  = {w1,w2, ...,w }, where w  = [ 1, 

2, ..., t ]. Note that  = 1 or −1 or all  and  for a 
binary weightbook. From a weightbook , we can make a 
weightbook  whose weight vectors {v1, v2, ..., v  }are 
generated using v  = w(.) c, where (.) is the Schur product, 
i.e. element-wise product between two vectors, c = [ 1, 2, 
..., t ] is an arbitrary vector, and  = 1 or −1 for all . 
Then, the metric between w  and w , which is given 
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by j
H
i ww , is the same as the metric between the 

corresponding v  and v  , which is given by j
H
i vv . If we 

choose the vector c the same as w1, then  v1 = w1 (.) c = w1 
(.) w1 = [1, 1, ..., 1]. 

The weightbook  contains the weight vector [1, 1, ..., 1], 
which corresponds to the all zero codeword by the inverse 
BPSK mapping. Since we can find the weightbook  that 
contains [1, 1, ..., 1] and preserves the metric between two 
arbitrary weight vectors, we can assume that a binary 
weightbook has the all-zero vector as a member without loss 
of generality. 

IV. SIMULATION RESULTS 

The numerical performance results are represented  for the 
Grassmannian beamforming weightbook  and the binary 
Grassmannian weightbook . BPSK modulation is used for 
the results. 

In Fig.4.1and Fig4.2., we show the bit error probability 

(BEP) vs. / 0 for t = 3,  = 1, 2, and r = 1, 2. For  = 
2, it is shown that the binary Grassmannian weightbook and 
the Grassmannian weightbook have the same performance. 

For  = 1, the binary Grassmannian weightbook gives up  
compared with the Grassmannian weightbook.  

In Fig. 4.3and Fig.4.4, we show the BEP vs. / 0 for t 

= 4 and r = 1, 2. For t = 3, 4 and  = 2, the BEP 
performance of the binary Grassmannian weightbook is the 
same as that of the Grassmannian weightbook. 
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V. CONCLUSION 

The performance of Grassmannian weightbooks similar to 
that of binary weight book design . But  the computational 
complexity for finding the optimum beamforming weight 
vector and the storage requirement for the weightbook for 
the Binary weightbook  can be reduced compared with that 
of Grassmannian weight book. 

                                 VI.   FUTHER WORK 

Binary weight design using higher modulation schemes 
such as the QPSK,QAM can give higher performance. With 
the  aid of the recent advances in the field of MIMO such as  
Neural Networks, a range other problem-solving methods 
have also emerged. 
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