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Abstract: Evolutionary Computing techniques  have  become  one  of  the  most  powerful  tools  for  solving  optimization  problems and is 
based on the mechanisms of natural selection and genetics. In Evolutionary Algorithm, Co-evolution is a natural choice for learning in problem 
domains where one agent’s behaviour is directly related to the behaviour of other agents. Co-evolution provides a framework to implement 
search heuristics that are more elaborate than those driving the exploration of the state space in canonical evolutionary systems. This paper 
presents the concept of Co-evolutionary learning and explains a search procedure which successfully addresses the underlying impediments in 
Co-evolutionary search. Co-evolution employs evolutionary algorithms to solve a high-dimensional search problem by decomposing it into low-
dimensional subcomponents. The objective of this survey is to discuss about the various existing Co-evolutionary algorithm and their successful 
implementation in real world optimization problem. Hence the outcome of the study is to bring out the various research opportunities in 
implementing the concept of Co-evolution for many optimization problems in different application 
 
Keywords: Evolutionary Computation, Evolutionary Algorithm, Co-evolution Computation and Co-evolutionary Algorithm. 

I. INTRODUCTION 

Optimization problem is the problem of finding 
the best solution from all feasible solutions. Nature inspired 
algorithms are meta-heuristics that imitate the nature for 
solving optimization problems. Nature is the perfect example 
for optimization because each and every feature or 
phenomenon in nature always finds the optimal strategy, like 
balancing the ecosystem, maintaining diversity, adaptation in 
migrating environment etc [1]. Evolutionary computation is a 
process which gradually evolves a population of solutions, in 
a manner resembling the Darwin’s Theory of survival of the 
fittest. Each solution is evaluated individually for finding its 
fitness. Based on the fitness, a selection strategy decides 
which solutions should survive and move to the next 
generation. 

Evolutionary algorithms (EAs) have been applied to a 
variety of problems, from static optimization to job-shop 
scheduling. EAs frequently have an advantage over many 
traditional local search heuristic methods where search 
spaces are highly modal, discontinuous, or highly 
constrained. In 1960s, EAs were the most well known, 
classical and established algorithms among nature inspired 
algorithms [2]. EAs employ a powerful design philosophy to 
find solutions to hard problems. EAs are non-deterministic 
algorithms or cost based optimization algorithms. Therefore 
evolutionary algorithms (EAs) are often used as an 
optimization tool for finding best optimal solution.  

Since 1990, Co-evolutionary interactions have been 
added to the standard evolutionary algorithm. Initially 
introduced as a method of improving the ability of EAs to 
optimize, Co-evolutionary algorithms also facilitate the 
evolutionary modeling of biological inter-species 
interactions. Its potential not only as a powerful problem-
solving tool capable of outperforming standard evolutionary 
algorithms, but also (uniquely) as a tool for sophisticated 
individual-based modeling of Co-evolutionary interactions, 
Co-evolutionary algorithms are an exciting innovation. 

Co-evolutionary algorithms are an extension of 
evolutionary algorithms. The behaviour of a Co-evolutionary 
algorithm depends on the interaction between individuals [4]. 
In this case, the individuals are evaluated not in terms of an 
assumed and explicit fitness function, but rather by direct 
interactions between individuals taken from the co-evolving 
populations. Traditional evolutionary algorithms (EAs) 
assess the fitness of an individual objectively, that is, 
independent of the population context in which the individual 
is placed. Co-evolutionary algorithms (CEAs) operate much 
like traditional EAs except that fitness assessment is not 
objective, but subjective: an individual is evaluated through 
its interaction with other individuals in the evolutionary 
system [2]. Since fitness is subjective in CEAs, it is not clear 
under what conditions a CEA would be expected to optimize 
in a fashion like a traditional EA would in solving a static 
problem [1]. In this paper, the existing algorithms in Co-
evolution are briefly explained. 

II. OVERVIEW OF COEVOLUTIONARY 

COMPUTATION 

A. Co-evolutionary mode: 

The concept of co-evolution mode, which was first 
proposed by Hillis in 1992, is to improve premature 
convergence in traditional genetic algorithms via inter-
evolution between living creatures and environments, which 
correspond to chromosomes and multi-criteria, respectively 
[12]. The objective is constant improvement in chromosome 
survival. The under-lying concept is that both chromosomes 
and multi-criteria should evolve. In others words, co-
evolution is a scheme where living being (chromosome) and 
environment (multiple criteria) interact and co-evolve. The 
genes are improved continuously for survival and the 
environment changes with the living being. For instance, 
when an eagle hunts a rabbit, the rabbit must run fast to 
survive, and the eagle must also fly fast to catch the rabbit 
[15]. This means that both the chromosome and multiple 
criteria constraint conditions must evolve. The evaluation 
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criteria for next generation are selected and based on the 
degree of fitness of criteria. In this way, search speed is 
faster than traditional evolutionary algorithm. Thus, the near 
optimum solution can be acquired rapidly and convergent 
immaturity can be avoided. 

 

 
Figure 1: Co-evolutionary Model 

B.  Coevolutionary algorithms: 

A Co-evolutionary algorithm (CoEA) is an Evolutionary 
Algorithm that is able to manage two or more populations 
simultaneously. Co-evolution can be defined as the co-
existence of some interacting populations, evolving 
simultaneously. In this manner, evolutionary biologist Price 
defined “Co-evolution as reciprocally induced evolutionary 
change between two or more species or populations” [4].  It 
works by managing two or more populations (also called 
species) simultaneously, allowing interactions among its 
own individuals. This approach allows splitting the problem 
into different parts, employing a population to handle each 
one separately, but joining its own individuals to evaluate 
the solutions obtained. 

C. Evolutionary Algorithm Vs Co-evolutionary 
Algorithm: 

The difference between co-evolutionary algorithm and 
the general evolutionary algorithm is that the traditional 
approach only adopts a simplified function to evaluate 
whether the chromosomes are good or bad. Restated, 
whether the chromosomes are good or bad depends on the 
values computed by single fitness function. Thus, their 
weakness is their lack of capability to obtain the optimal 
solution area by adaptively adjusting to environmental 
change. Co-evolution concept is analogous to human 
thinking patterns because it considers more criteria [22]. 
Through interactive evaluation between chromosomes and 
criteria, the evaluation criteria change dynamically and 
immediately. Thus the solution-seeking speed can be 
expedited. 

In evolutionary algorithm, a population is generated on a 
random probability basis, then for each chromosome 
evaluates the fitness using an appropriate fitness function 
suitable for the problem. Based on this, the best 
chromosomes are selected into the mating pool; where they 
undergo genetic operator like cross over and mutation thus 
produce new set of solution [14].  In Co-evolutionary, a 
population is randomly generated and each chromosome is 
evaluated using an appropriate fitness function with 
corresponding criterion, then best chromosomes are selected 

and they undergo genetic operator like cross over and 
mutation thus produce new set of solution. Finally, selection 
operation is used to select better chromosomes for the 
evolution population in the next generation. Before the 
termination condition is reached, the evolution continues 
through reproduction operation and selection operation. 
Fig.2 shows the working flow of co-evolutionary algorithm 
and evolutionary algorithm. 

 
Figure 2: Flow chart of Coevolutionary Algorithm    and Evolutionary 

algorithm 

III. RELATED WORK 

Indeed, with varied success, nature-inspired heuristic 
EAs have been applied too many types of difficult problem 
domains, such as parameter optimization and machine 
learning. The inspiration for Co-evolutionary algorithms 
(CoEAs) is the same as for traditional evolutionary 
algorithms (EAs): attempt to harness the Darwinian notions 
of heredity and survival of the fittest for problem-solving 
purposes. In general, Co-evolutionary algorithms can be 
divided into two ways: cooperative and competitive (or 
antagonistic) Co-evolution. In co-evolutionary algorithms, 
one or more populations co-evolve influencing each other, 
cooperative co-evolution in which the populations work 
together to accomplish the same task and competitive co-
evolution as predators and preys in nature [14]. 

 
 
 
 
 
 
 
 

A.  Co-operative Co-evolution: 

Co-operative Co-evolutionary algorithms are often used 
in situations where a problem can be naturally decomposed 
into sub-components. Individuals represent such sub-
components and are assessed in a series of collaborations 

Coevolution 

Co-operative Coevolution Competitive Coevolution 
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with other individuals in order to form complete solutions, 
for example consider an optimization problem with N 
parameters (variables), a natural decomposition is chosen to 
maintain N sub-populations. The fitness of a sub-population 
is an estimate of how well it “cooperates” with other species 
to produce good solutions [17]. Cooperative Co-
evolutionary algorithms have had success in a variety of 
domains, for example, manufacturing scheduling, function 
optimization, designing artificial neural networks and room 
painting. 

B. Competitive Co-evolution: 

Competitive Co-evolution either occurs within one 
population engaged in self-play, or between multiple 
populations [18]. Competitive co-evolution has several 
interactional species. In order to obtain the common 
resources and space, they compete with each other. Single 
population competitive Co-evolution has been successfully 
applied to the Iterated Prisoner's Dilemma, pursuit and 
evasion, and to finding robust game strategies in, for 
example, Tic-T ac-Toe and backgammon game etc. 

C. Cooperative versus Competitive CEAs 

Most popularly competitive Co-evolution has been 
applied to game playing strategies and additionally it 
demonstrates the effectiveness of competition for evolving 
better solutions by developing a concept of competitive 
fitness to provide a more robust training environment than 
independent fitness functions. Competition played a vital 
part in attempts to coevolve complex agent behaviors. 
Finally, competitive approaches have been applied to a 
variety of machine learning problems. 

In this [5], author opened the door for research on 
cooperative CEAs by developing a relatively general 
framework for such models and applying it, first, to static 
function optimization and later to neural net-work learning. 
In Potter’s model, each population contains individuals 
representing a component of a larger solution, and evolution 
of these populations occurs almost independently, in tandem 
with one another, interacting only to obtain fitness.  

In this [6], take a different, somewhat more adaptive 
approach to cooperative co-evolution of neural networks. In 
this case a parent population represents potential network 
plans, while an offspring population is used to acquire node 
information. Plans are evaluated based on how well they 
solve a problem with their collaborating nodes, and the 
nodes receive a share of this fitness. Thus a node is 
rewarded for participating more with successful plans, and 
thus receives fitness only indirectly. 

Potter’s methods have also been used or extended by 
other researchers. Eriksson and Olsson use a cooperative 
Co-evolutionary algorithm for inventory control 
optimization. Wiegand attempts to make the algorithm more 
adaptively allocate resources by allowing migrations of 
individuals from one population to another in a method 
similar to the Schlierkamp-Voosen and Muhlenbein 
competitive mechanisms. 

The difference between two types is the individual in the 
competitive co-evolution represents a completed solution, 
but the cooperative co-evolution is not. In the case of 
cooperative co-evolution, an individual in a population works 
with other individuals to accomplish sane task. However, in 
the case of competitive co-evolution, individuals in 
population interact or compete with each other. 

IV. CO-EVOLUTION IN VARIOUS APPLICATION 

A. Co-operative Coevolution in various application: 

The algorithms below are implemented in various 
applications, which are based on co-operative Co-
evolutionary algorithm: 

 IFS-CoCo 
 CoCo MOPSO 
 CoCo Genetic Programming  

a. Instance and Feature selection based on the Co-
operative Coevolution (IFS- CoCo): 

Instance selection and feature selection are two 
orthogonal methods for reducing the amount and complexity 
of data. Feature selection aims at the reduction of redundant 
features in a data set whereas instance selection aims at the 
reduction of the number of instances. In this, instance and 
feature selection based on the cooperative Co-evolution 
(IFS-CoCo), both processes are applied simultaneously to 
the initial data set, aiming to obtain a suitable training set to 
perform the classification process. IFS-CoCo is composed 
of three populations. The individuals of each one defines a 
different type of baseline classifier, depending on each 
population’s characteristics. Thus, each population is 
focused on performing a basic data reduction task. The first 
population performs an IS process, the second population 
performs a FS process and the third population performs 
simultaneously both IS and FS processes. With the 
employment of Co-evolution, this approach is intended to 
improve the results of data reduction techniques when 
applied to classification tasks [12]. 

b. Cooperative Coevolutionary MOPSO (CoCo-
MOPSO): 

The cooperative co-evolutionary PSO proposed by van 
den Bergh and Engelbrecht [9], the problem is decomposed 
in the search space and the decision variables are evolved by 
different species, or called sub-swarms. The main difference 
is that the assignment of decision variables to different sub-
swarms is adapted by the competitive mechanism. 

At the start of the optimization process, sub-swarms are 
randomly initialized and the ith variable is assigned to the 
ith sub-swarm. In order to evaluate a particle in a sub-
swarm, the particle under evaluation is combined with the 
representative of every other species to form a complete 
solution. In this, the best particle in the sub-swarm is 
defined as the representative of the sub-swarm. The archive 
is updated after each particle evaluation. The sub-swarms 
are evaluated in an iterative manner. Before proceeding to 
the evaluation of the next sub-swarm, the representative of 
previous sub-swarm will be updated. This updating process 
is based on a partial order such that Pareto ranks will be 
considered first followed by niche count in order to break 
the tie of ranks. For any two particles, the particle with 
lower rank is selected. In the case of a tie in rank, the 
particle with lower niche count is selected. The rationale of 
selecting a non-dominated representative with the lowest 
niche count is to promote the diversity of the solutions [9]. 

c. Co-operative Coevolutionary Genetic Programming 
(CoCo GP): 

In Multi-robot path planning, the problem of multi-robot 
motion planning deals with computation of paths of various 
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robots such that each robot has an optimal or near optimal 
path, but the overall path of all the robots combined is 
optimal [8]. This is a more complex task as compared to a 
single-robot motion planning, where the factor of 
coordination among the various robots is not applicable, and 
the single robot can use its own means to compute the path. 

The basic working of the algorithm is a cooperative 
genetic programming. This planner operates in two levels: 
master and slave. The slave genetic programming is 
basically a decentralized path planning for all the various 
robots in the system. Using this level the system tries to 
generate better and better paths for the individual motion of 
the various robots. The second level is the master level. 
Each robot in the slave has numerous genetic programming 
individual over which it tries to carry forward the 
optimization. The master is simply a genetic algorithm that 
tries to select the best combination of paths for the various 
robots, such that the overall path of all robots combined is 
optimal. In simple terms it may be regarded as the slaves 
optimize the individual robot paths, and the master 
optimizes the network plan of all robots. However it needs 
to be noted that the slaves are conscious of cooperation 
amongst each other to generate collision free paths, and to 
help each other to optimize [8]. 

B. Competitive Coevolution in various applications: 

The algorithms below are implemented in various 
applications which are based on co-operative Co-
evolutionary algorithm: 
 

 CCQGA 
 ComCo MPSO 

 

a. Competitive Co-evolutionary Quantum Genetic 
Algorithm (CCQGA): 

Quantum-inspired evolutionary algorithm has been 
introduced recently and gained much attention and wide 
applications for both function and combinatorial problem. 
The competitive co-evolutionary quantum genetic algorithm 
(CCQGA) begins by randomly generate two initial 
populations. With corresponding competitive co-
evolutionary strategy calculate the fitness values of two 
populations, then calculate the competitive degree of 
Population1 and Population2. Perform selection, crossover, 
mutation and quantum rotation operation for population1 
and population2 with corresponding 
criteria until termination condition is satisfied, finally the 
best scheduling result is produced [10]. 

b. Competitive Coevolutionary MOPSO (ComCo 
MPSO): 

Ideally, all particles from the competing sub-swarms 
should compete with all other particles from the other sub-
swarms in order to determine the extent of its suitability. 
However, such an exhaustive approach requires extensive 
computational effort and it is practically infeasible. In this, 
each sub-swarm will be assigned a probability of 
representing a particular variable and only two sub-swarms, 
the current sub-swarm and competitor sub-swarm will 
compete for the right to represent any variable at any one 
time. The selection probability is initialized, so that all sub-
swarms have equal probability of being selected [9]. This 

probability will be updated depending on outcome of the 
competition process. 

In the competitive co-evolutionary MOPSO, in first 
cycle ith variable is assigned to the ith sub-swarm. In the 
subsequent cycles, a competing sub-swarm is selected using 
roulette wheel selection based on the selection probability to 
compete against the current species for the right to represent 
the, say, jth decision variable. During the competition 
process, the representatives of the current and competitor 
sub-swarms will combine with representatives of the other 
sub-swarms to form two complete solutions. The sub-swarm 
is providing the better solution is the winner and will 
represent the jth decision variable in the next round of 
cooperation. Therefore, the selection probability of a sub-
swarm will increase as it becomes increasingly adapted to 
the decision variable. Vice versa, the probability of an 
unsuitable sub-swarm will be reduced [9]. 

V. SIMPLE COEVOLUTIONARY ALGORITHMS 

PROCEDURE  

Simple Coevolutionary Algorithm is basically divided 
into two based on population, that is single population 
coevolutionary algorithm and multi population 
coevolutionary algorithm. After all, biologists use the term 
coevolution to refer to genetic influence of two species over 
each other. Since a population refers to a collection of 
members of a species, it seems that we must have two 
populations to have coevolution.  

In a single population CoEA (Algorithm 1), individuals 
are evaluated by interacting with other individuals from that 
population. 
Algorithm 1:   SINGLE POPULATION CoEA 

a. Initialize population 
b. Select evaluators from population 
c. Evaluate individuals from population by interacting 

with evaluators 
d. while not done do 

a) Select parents from population 
b) Produce children from parents via 

variation 
c) Select evaluators from( children, parents) 
d) Evaluate individuals from children by 

interacting with evaluators 
e) Select survivors for next generation 

end while 
e. return solution 

In a multi-population CoEA (Algorithm 2), individuals 
in one population interact with individuals in one or several 
other populations. 
Algorithm 2: MULTI-POPULATION CoEA 

a. for each pop  populations do 
a) Initialize pop 
b) Select evaluators from ( populations − pop) 
c) Evaluate individuals from pop by interacting with 

evaluators 
             end for 

b. while not done do 
c. for each pop  populations do 

a) Select parents from pop 
b) Produce children from parents via 

variation 
c) Select evaluators from ( populations − 

pop) 



Jeniefer Kavetha. M, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,324-328 

© 2010, IJARCS All Rights Reserved                                                                                                                                                                                                  328 

d) Evaluate individuals from children by 
interacting with evaluators 

e) Select survivors for next generation 
          end for 
         end while 

d. return solution 

VI. CONCLUSION 

This observation is relatively new and unexplored, but 
represents an exciting direction in coevolutionary algorithms 
research. It offers the possibility that a coevolutionary 
algorithm could not only find interesting or capable entities, 
but do so faster than random search would. The introduction 
to co-optimization and coevolutionary computation given in 
this study lays a strong foundation for more research in 
coevolutionary computation. 
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