
Volume 4, No. 4, March-April 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 324

ISSN No. 0976-5697

Coevolution Evolutionary Algorithm: A Survey

Jeniefer Kavetha. M
Department of Computer Science

Pondicherry University Pondicherry
 jenikavi.mtech@gmail.com

Abstract: Evolutionary Computing techniques have become one of the most powerful tools for solving optimization problems and is
based on the mechanisms of natural selection and genetics. In Evolutionary Algorithm, Co-evolution is a natural choice for learning in problem
domains where one agent’s behaviour is directly related to the behaviour of other agents. Co-evolution provides a framework to implement
search heuristics that are more elaborate than those driving the exploration of the state space in canonical evolutionary systems. This paper
presents the concept of Co-evolutionary learning and explains a search procedure which successfully addresses the underlying impediments in
Co-evolutionary search. Co-evolution employs evolutionary algorithms to solve a high-dimensional search problem by decomposing it into low-
dimensional subcomponents. The objective of this survey is to discuss about the various existing Co-evolutionary algorithm and their successful
implementation in real world optimization problem. Hence the outcome of the study is to bring out the various research opportunities in
implementing the concept of Co-evolution for many optimization problems in different application

Keywords: Evolutionary Computation, Evolutionary Algorithm, Co-evolution Computation and Co-evolutionary Algorithm.

I. INTRODUCTION

Optimization problem is the problem of finding
the best solution from all feasible solutions. Nature inspired
algorithms are meta-heuristics that imitate the nature for
solving optimization problems. Nature is the perfect example
for optimization because each and every feature or
phenomenon in nature always finds the optimal strategy, like
balancing the ecosystem, maintaining diversity, adaptation in
migrating environment etc [1]. Evolutionary computation is a
process which gradually evolves a population of solutions, in
a manner resembling the Darwin’s Theory of survival of the
fittest. Each solution is evaluated individually for finding its
fitness. Based on the fitness, a selection strategy decides
which solutions should survive and move to the next
generation.

Evolutionary algorithms (EAs) have been applied to a
variety of problems, from static optimization to job-shop
scheduling. EAs frequently have an advantage over many
traditional local search heuristic methods where search
spaces are highly modal, discontinuous, or highly
constrained. In 1960s, EAs were the most well known,
classical and established algorithms among nature inspired
algorithms [2]. EAs employ a powerful design philosophy to
find solutions to hard problems. EAs are non-deterministic
algorithms or cost based optimization algorithms. Therefore
evolutionary algorithms (EAs) are often used as an
optimization tool for finding best optimal solution.

Since 1990, Co-evolutionary interactions have been
added to the standard evolutionary algorithm. Initially
introduced as a method of improving the ability of EAs to
optimize, Co-evolutionary algorithms also facilitate the
evolutionary modeling of biological inter-species
interactions. Its potential not only as a powerful problem-
solving tool capable of outperforming standard evolutionary
algorithms, but also (uniquely) as a tool for sophisticated
individual-based modeling of Co-evolutionary interactions,
Co-evolutionary algorithms are an exciting innovation.

Co-evolutionary algorithms are an extension of
evolutionary algorithms. The behaviour of a Co-evolutionary
algorithm depends on the interaction between individuals [4].
In this case, the individuals are evaluated not in terms of an
assumed and explicit fitness function, but rather by direct
interactions between individuals taken from the co-evolving
populations. Traditional evolutionary algorithms (EAs)
assess the fitness of an individual objectively, that is,
independent of the population context in which the individual
is placed. Co-evolutionary algorithms (CEAs) operate much
like traditional EAs except that fitness assessment is not
objective, but subjective: an individual is evaluated through
its interaction with other individuals in the evolutionary
system [2]. Since fitness is subjective in CEAs, it is not clear
under what conditions a CEA would be expected to optimize
in a fashion like a traditional EA would in solving a static
problem [1]. In this paper, the existing algorithms in Co-
evolution are briefly explained.

II. OVERVIEW OF COEVOLUTIONARY

COMPUTATION

A. Co-evolutionary mode:

The concept of co-evolution mode, which was first
proposed by Hillis in 1992, is to improve premature
convergence in traditional genetic algorithms via inter-
evolution between living creatures and environments, which
correspond to chromosomes and multi-criteria, respectively
[12]. The objective is constant improvement in chromosome
survival. The under-lying concept is that both chromosomes
and multi-criteria should evolve. In others words, co-
evolution is a scheme where living being (chromosome) and
environment (multiple criteria) interact and co-evolve. The
genes are improved continuously for survival and the
environment changes with the living being. For instance,
when an eagle hunts a rabbit, the rabbit must run fast to
survive, and the eagle must also fly fast to catch the rabbit
[15]. This means that both the chromosome and multiple
criteria constraint conditions must evolve. The evaluation

Jeniefer Kavetha. M, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,324-328

© 2010, IJARCS All Rights Reserved 325

criteria for next generation are selected and based on the
degree of fitness of criteria. In this way, search speed is
faster than traditional evolutionary algorithm. Thus, the near
optimum solution can be acquired rapidly and convergent
immaturity can be avoided.

Figure 1: Co-evolutionary Model

B. Coevolutionary algorithms:

A Co-evolutionary algorithm (CoEA) is an Evolutionary
Algorithm that is able to manage two or more populations
simultaneously. Co-evolution can be defined as the co-
existence of some interacting populations, evolving
simultaneously. In this manner, evolutionary biologist Price
defined “Co-evolution as reciprocally induced evolutionary
change between two or more species or populations” [4]. It
works by managing two or more populations (also called
species) simultaneously, allowing interactions among its
own individuals. This approach allows splitting the problem
into different parts, employing a population to handle each
one separately, but joining its own individuals to evaluate
the solutions obtained.

C. Evolutionary Algorithm Vs Co-evolutionary
Algorithm:

The difference between co-evolutionary algorithm and
the general evolutionary algorithm is that the traditional
approach only adopts a simplified function to evaluate
whether the chromosomes are good or bad. Restated,
whether the chromosomes are good or bad depends on the
values computed by single fitness function. Thus, their
weakness is their lack of capability to obtain the optimal
solution area by adaptively adjusting to environmental
change. Co-evolution concept is analogous to human
thinking patterns because it considers more criteria [22].
Through interactive evaluation between chromosomes and
criteria, the evaluation criteria change dynamically and
immediately. Thus the solution-seeking speed can be
expedited.

In evolutionary algorithm, a population is generated on a
random probability basis, then for each chromosome
evaluates the fitness using an appropriate fitness function
suitable for the problem. Based on this, the best
chromosomes are selected into the mating pool; where they
undergo genetic operator like cross over and mutation thus
produce new set of solution [14]. In Co-evolutionary, a
population is randomly generated and each chromosome is
evaluated using an appropriate fitness function with
corresponding criterion, then best chromosomes are selected

and they undergo genetic operator like cross over and
mutation thus produce new set of solution. Finally, selection
operation is used to select better chromosomes for the
evolution population in the next generation. Before the
termination condition is reached, the evolution continues
through reproduction operation and selection operation.
Fig.2 shows the working flow of co-evolutionary algorithm
and evolutionary algorithm.

Figure 2: Flow chart of Coevolutionary Algorithm and Evolutionary

algorithm

III. RELATED WORK

Indeed, with varied success, nature-inspired heuristic
EAs have been applied too many types of difficult problem
domains, such as parameter optimization and machine
learning. The inspiration for Co-evolutionary algorithms
(CoEAs) is the same as for traditional evolutionary
algorithms (EAs): attempt to harness the Darwinian notions
of heredity and survival of the fittest for problem-solving
purposes. In general, Co-evolutionary algorithms can be
divided into two ways: cooperative and competitive (or
antagonistic) Co-evolution. In co-evolutionary algorithms,
one or more populations co-evolve influencing each other,
cooperative co-evolution in which the populations work
together to accomplish the same task and competitive co-
evolution as predators and preys in nature [14].

A. Co-operative Co-evolution:

Co-operative Co-evolutionary algorithms are often used
in situations where a problem can be naturally decomposed
into sub-components. Individuals represent such sub-
components and are assessed in a series of collaborations

Coevolution

Co-operative Coevolution Competitive Coevolution

Jeniefer Kavetha. M, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,324-328

© 2010, IJARCS All Rights Reserved 326

with other individuals in order to form complete solutions,
for example consider an optimization problem with N
parameters (variables), a natural decomposition is chosen to
maintain N sub-populations. The fitness of a sub-population
is an estimate of how well it “cooperates” with other species
to produce good solutions [17]. Cooperative Co-
evolutionary algorithms have had success in a variety of
domains, for example, manufacturing scheduling, function
optimization, designing artificial neural networks and room
painting.

B. Competitive Co-evolution:

Competitive Co-evolution either occurs within one
population engaged in self-play, or between multiple
populations [18]. Competitive co-evolution has several
interactional species. In order to obtain the common
resources and space, they compete with each other. Single
population competitive Co-evolution has been successfully
applied to the Iterated Prisoner's Dilemma, pursuit and
evasion, and to finding robust game strategies in, for
example, Tic-T ac-Toe and backgammon game etc.

C. Cooperative versus Competitive CEAs

Most popularly competitive Co-evolution has been
applied to game playing strategies and additionally it
demonstrates the effectiveness of competition for evolving
better solutions by developing a concept of competitive
fitness to provide a more robust training environment than
independent fitness functions. Competition played a vital
part in attempts to coevolve complex agent behaviors.
Finally, competitive approaches have been applied to a
variety of machine learning problems.

In this [5], author opened the door for research on
cooperative CEAs by developing a relatively general
framework for such models and applying it, first, to static
function optimization and later to neural net-work learning.
In Potter’s model, each population contains individuals
representing a component of a larger solution, and evolution
of these populations occurs almost independently, in tandem
with one another, interacting only to obtain fitness.

In this [6], take a different, somewhat more adaptive
approach to cooperative co-evolution of neural networks. In
this case a parent population represents potential network
plans, while an offspring population is used to acquire node
information. Plans are evaluated based on how well they
solve a problem with their collaborating nodes, and the
nodes receive a share of this fitness. Thus a node is
rewarded for participating more with successful plans, and
thus receives fitness only indirectly.

Potter’s methods have also been used or extended by
other researchers. Eriksson and Olsson use a cooperative
Co-evolutionary algorithm for inventory control
optimization. Wiegand attempts to make the algorithm more
adaptively allocate resources by allowing migrations of
individuals from one population to another in a method
similar to the Schlierkamp-Voosen and Muhlenbein
competitive mechanisms.

The difference between two types is the individual in the
competitive co-evolution represents a completed solution,
but the cooperative co-evolution is not. In the case of
cooperative co-evolution, an individual in a population works
with other individuals to accomplish sane task. However, in
the case of competitive co-evolution, individuals in
population interact or compete with each other.

IV. CO-EVOLUTION IN VARIOUS APPLICATION

A. Co-operative Coevolution in various application:

The algorithms below are implemented in various
applications, which are based on co-operative Co-
evolutionary algorithm:

 IFS-CoCo
 CoCo MOPSO
 CoCo Genetic Programming

a. Instance and Feature selection based on the Co-
operative Coevolution (IFS- CoCo):

Instance selection and feature selection are two
orthogonal methods for reducing the amount and complexity
of data. Feature selection aims at the reduction of redundant
features in a data set whereas instance selection aims at the
reduction of the number of instances. In this, instance and
feature selection based on the cooperative Co-evolution
(IFS-CoCo), both processes are applied simultaneously to
the initial data set, aiming to obtain a suitable training set to
perform the classification process. IFS-CoCo is composed
of three populations. The individuals of each one defines a
different type of baseline classifier, depending on each
population’s characteristics. Thus, each population is
focused on performing a basic data reduction task. The first
population performs an IS process, the second population
performs a FS process and the third population performs
simultaneously both IS and FS processes. With the
employment of Co-evolution, this approach is intended to
improve the results of data reduction techniques when
applied to classification tasks [12].

b. Cooperative Coevolutionary MOPSO (CoCo-
MOPSO):

The cooperative co-evolutionary PSO proposed by van
den Bergh and Engelbrecht [9], the problem is decomposed
in the search space and the decision variables are evolved by
different species, or called sub-swarms. The main difference
is that the assignment of decision variables to different sub-
swarms is adapted by the competitive mechanism.

At the start of the optimization process, sub-swarms are
randomly initialized and the ith variable is assigned to the
ith sub-swarm. In order to evaluate a particle in a sub-
swarm, the particle under evaluation is combined with the
representative of every other species to form a complete
solution. In this, the best particle in the sub-swarm is
defined as the representative of the sub-swarm. The archive
is updated after each particle evaluation. The sub-swarms
are evaluated in an iterative manner. Before proceeding to
the evaluation of the next sub-swarm, the representative of
previous sub-swarm will be updated. This updating process
is based on a partial order such that Pareto ranks will be
considered first followed by niche count in order to break
the tie of ranks. For any two particles, the particle with
lower rank is selected. In the case of a tie in rank, the
particle with lower niche count is selected. The rationale of
selecting a non-dominated representative with the lowest
niche count is to promote the diversity of the solutions [9].

c. Co-operative Coevolutionary Genetic Programming
(CoCo GP):

In Multi-robot path planning, the problem of multi-robot
motion planning deals with computation of paths of various

Jeniefer Kavetha. M, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,324-328

© 2010, IJARCS All Rights Reserved 327

robots such that each robot has an optimal or near optimal
path, but the overall path of all the robots combined is
optimal [8]. This is a more complex task as compared to a
single-robot motion planning, where the factor of
coordination among the various robots is not applicable, and
the single robot can use its own means to compute the path.

The basic working of the algorithm is a cooperative
genetic programming. This planner operates in two levels:
master and slave. The slave genetic programming is
basically a decentralized path planning for all the various
robots in the system. Using this level the system tries to
generate better and better paths for the individual motion of
the various robots. The second level is the master level.
Each robot in the slave has numerous genetic programming
individual over which it tries to carry forward the
optimization. The master is simply a genetic algorithm that
tries to select the best combination of paths for the various
robots, such that the overall path of all robots combined is
optimal. In simple terms it may be regarded as the slaves
optimize the individual robot paths, and the master
optimizes the network plan of all robots. However it needs
to be noted that the slaves are conscious of cooperation
amongst each other to generate collision free paths, and to
help each other to optimize [8].

B. Competitive Coevolution in various applications:

The algorithms below are implemented in various
applications which are based on co-operative Co-
evolutionary algorithm:

 CCQGA
 ComCo MPSO

a. Competitive Co-evolutionary Quantum Genetic
Algorithm (CCQGA):

Quantum-inspired evolutionary algorithm has been
introduced recently and gained much attention and wide
applications for both function and combinatorial problem.
The competitive co-evolutionary quantum genetic algorithm
(CCQGA) begins by randomly generate two initial
populations. With corresponding competitive co-
evolutionary strategy calculate the fitness values of two
populations, then calculate the competitive degree of
Population1 and Population2. Perform selection, crossover,
mutation and quantum rotation operation for population1
and population2 with corresponding
criteria until termination condition is satisfied, finally the
best scheduling result is produced [10].

b. Competitive Coevolutionary MOPSO (ComCo
MPSO):

Ideally, all particles from the competing sub-swarms
should compete with all other particles from the other sub-
swarms in order to determine the extent of its suitability.
However, such an exhaustive approach requires extensive
computational effort and it is practically infeasible. In this,
each sub-swarm will be assigned a probability of
representing a particular variable and only two sub-swarms,
the current sub-swarm and competitor sub-swarm will
compete for the right to represent any variable at any one
time. The selection probability is initialized, so that all sub-
swarms have equal probability of being selected [9]. This

probability will be updated depending on outcome of the
competition process.

In the competitive co-evolutionary MOPSO, in first
cycle ith variable is assigned to the ith sub-swarm. In the
subsequent cycles, a competing sub-swarm is selected using
roulette wheel selection based on the selection probability to
compete against the current species for the right to represent
the, say, jth decision variable. During the competition
process, the representatives of the current and competitor
sub-swarms will combine with representatives of the other
sub-swarms to form two complete solutions. The sub-swarm
is providing the better solution is the winner and will
represent the jth decision variable in the next round of
cooperation. Therefore, the selection probability of a sub-
swarm will increase as it becomes increasingly adapted to
the decision variable. Vice versa, the probability of an
unsuitable sub-swarm will be reduced [9].

V. SIMPLE COEVOLUTIONARY ALGORITHMS

PROCEDURE

Simple Coevolutionary Algorithm is basically divided
into two based on population, that is single population
coevolutionary algorithm and multi population
coevolutionary algorithm. After all, biologists use the term
coevolution to refer to genetic influence of two species over
each other. Since a population refers to a collection of
members of a species, it seems that we must have two
populations to have coevolution.

In a single population CoEA (Algorithm 1), individuals
are evaluated by interacting with other individuals from that
population.
Algorithm 1: SINGLE POPULATION CoEA

a. Initialize population
b. Select evaluators from population
c. Evaluate individuals from population by interacting

with evaluators
d. while not done do

a) Select parents from population
b) Produce children from parents via

variation
c) Select evaluators from(children, parents)
d) Evaluate individuals from children by

interacting with evaluators
e) Select survivors for next generation

end while
e. return solution

In a multi-population CoEA (Algorithm 2), individuals
in one population interact with individuals in one or several
other populations.
Algorithm 2: MULTI-POPULATION CoEA

a. for each pop populations do
a) Initialize pop
b) Select evaluators from (populations − pop)
c) Evaluate individuals from pop by interacting with

evaluators
 end for

b. while not done do
c. for each pop populations do

a) Select parents from pop
b) Produce children from parents via

variation
c) Select evaluators from (populations −

pop)

Jeniefer Kavetha. M, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,324-328

© 2010, IJARCS All Rights Reserved 328

d) Evaluate individuals from children by
interacting with evaluators

e) Select survivors for next generation
 end for
 end while

d. return solution

VI. CONCLUSION

This observation is relatively new and unexplored, but
represents an exciting direction in coevolutionary algorithms
research. It offers the possibility that a coevolutionary
algorithm could not only find interesting or capable entities,
but do so faster than random search would. The introduction
to co-optimization and coevolutionary computation given in
this study lays a strong foundation for more research in
coevolutionary computation.

VII. REFERENCES

[1] Axlerod R, “The Evolution of Cooperation, Basic Books”.

[2] Baeck T,”Evolutionary Algorithms in Theory and
Practice”, Oxford University Press.

[3] Bull L & Fogarty T C, "Evolving Cooperative
Communicating Classifier Systems" A V Sebald & L J
Fogel, Proceedings of the Third Annual Conference on
Evolutionary Programming, World Scientific, pp308-315.

[4] Floreano D & Nolfi S (1997), "Adaptive Behaviour in
Competing Coevolving Species", in P Husbands & I
Harvey (eds.) Proceedings of the 4th European Conference
on Artificial LIfe, MIT Press, pp378-387.

[5] Holland J H (1975)(ed.) Adaptation in Natural and
Artificial Systems, University of Michigan Press.

[6] Holland J H (1975)(ed.) Adaptation in Natural and
Artificial Systems, University of Michigan Press.

[7] Bull L & Fogarty T C (1996a), "Evolutionary Computing
in Cooperative Multi-Agent Systems", in S Sen (ed.)
Proceedings of the 1996 AAAI Symposia on Adaptation,
Coevolution and Learning in Multi-Agent Systems, AAAI,
pp22-27.

[8] Rahul Kala, "Multi-robot path planning using co-
evolutionary genetic programming”

[9] C.K. Goh, K.C. Tan, D.S. Liu, S.C. Chiam, “ A
competitive and cooperative co-evolutionary approach to
multi-objective particle swarm optimization algorithm
design”.

[10] Jinwei Gu, Manzhan Gu, CuiwenCao, Xingsheng Gu, “A
novel competitive co-evolutionary quantum genetic
algorithm for stochastic job shop scheduling problem”.

[11] Chang Ying-Hua* , “Adopting co-evolution and constraint-
satisfaction concept on genetic algorithms to solve supply
chain network design problems”.

[12] Joaquı´n Derrac, Salvador Garcı , Francisco Herrera, “IFS-
CoCo: Instance and feature selection based on cooperative
coevolution with nearest neighbor rule”

[13] Ying-Hua Chang , Tz-Ting Wu, “Dynamic multi-criteria
evaluation of co-evolution strategies for solving stock
trading problems”.

[14] W. D. Hillis, “Co-evolving parasites improve simulated
evolution as an optimization procedure,”Artif. Life II, vol.
X, pp. 313–324, 1992.

[15] S. G. Ficici, “Solution concepts in coevolutionary
algorithms,” in Comput. Sci.. Waltham, MA: Brandeis
Univ., 2004.S. G. Ficici, “Solution concepts in
coevolutionary algorithms,” in Comput. Sci.. Waltham,
MA: Brandeis Univ., 2004.

[16] S. G. Ficici and J. B. Pollack, “Pareto optimality in
coevolutionary learning,” in Proc. 6th Eur. Conf. Advances
in Artif. Life, 2001, pp. 316–325.

[17] M. A. Potter and K. A. D. Jong, “Cooperative coevolution:
An architecture for evolving coadapted
subcomponents,”Evol. Comput., vol. 8, pp. 1–29, 2000

[18] K. O. Stanley and R. Miikkulainen, “Competitive
coevolution through evolutionary complexification,” J.
Artif. Intell. Res., vol. 21, pp. 63–100, 2004

[19] A. Bucci and J. B. Pollack, “On identifying global optima
in cooperative coevolution,” inProc. Genetic and Evol.
Comput. Conf., Wash-ington, DC, 2005, pp. 539–544

[20] L. Pagie and P. Hogeweg, “Evolutionary consequences of
coevolving targets,”Evol. Comput., vol. 5, pp. 401–418,
1997

[21] R. A. Watson and J. B. Pollack, “Coevolutionary dynamics
in a minimal substrate,” inProc. Genetic Evol. Comput.
Conf., 2001, pp. 702–709

[22] B. Dolin, F. H. Bennett, III, and E. G. Rieffel, “Co-
evolving an effective fitness sample: Experiments in
symbolic regression and distributed robot control,” inProc.
2002 ACM Symp. Appl. Comput., Madrid, Spain, 2002,
pp. 553–559

[23] J. R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge,
MA: MIT Press, 1992

[24] C. D. Rosin, Coevolutionary Search Among Adversaries.
San Diego, CA: Univ. California, 1997

[25] E. D. D. Jong and J. B. Pollack, “Ideal evaluation from
coevolution,” Evol. Comput., vol. 12, pp. 159–192, 2004

