

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

Analysis of Enterprise Material Procurement Leadtime using Techniques of Data Mining

S. Hanumanth Sastry*and Prof. M. S. Prasada Babu Dept. of CS & SE Andhra University Visakhapatnam, India hanusistla@gmail.com*, msprasadbabu@yahoo.co.in

Abstract: Material procurement in a large enterprise depends on typical factors like Type of Material, the Departmental Hierarchy, the location where material is used, dealing officer, material group etc. Minimizing the material procurement Leadtime at different stages is a business requirement. The influencing factors on Leadtime can be grouped according to business criteria and same can be analyzed for specific trends & patterns. This paper examines the Data Mining techniques applied to uncover natural groupings among leading attributes of Leadtime like Material groups, Purchase groups and Dealing officers. Performance criteria of Data Mining algorithms are measured by accuracy, comprehensibility and interestingness. The analysis is carried out with an objective to improve predictive accuracy of different categories of Leadtime. Our study confirms that regression modeling gives better predictive accuracy when outliers in data are less significant and scales up well to match new dimensional attributes on model.

Keywords: Regression, Classification, APD, ARM, Purchase Order, Purchase Request, Prediction, BIW

I. INTRODUCTION

Leadtime Analysis is an important Management Tool to assess the performance of Purchase Groups and dealing officers. The breakup of Leadtime for our study is done as follows.

- a. Internal Leadtime Time difference between PR (Purchase Request) final release date and PO (Purchase Order) final release date. This also includes Department Leadtime, which is the Time difference between Indent date and approval by concerned authority at respective department
- b. External Leadtime Time difference between PR final release date and delivery date at Storehouse.
- c. TR(Technical Recommendation) Leadtime Time difference between TR sent date to department (for preparation of comparative statement) and TR received date at department
- d. Total Leadtime Time difference between PR final release date and the GR (Goods Receipt) document posting date. In ERP systems GR document is associated with a particular Movement Type and for our study it is 101 and 105.

To represent the relationship between above entities ERM (Entity Relationship Model) Diagram is drawn in consultation with business users. ERM represents the relationship between Characteristics and Key Figures (KF's) i.e. 1:n or n:m [1].Business Processes are well understood through ERM where Business Subjects that belong together are grouped around KF's. Business users were asked to identify required attributes for each characteristic. With required Characteristics, their attributes and Key Figures we designed Dimensions around the Key Figures. Data Mining is the non-trivial process of identifying valid, novel, potentially useful and ultimately understandable patterns in data and attempts to infer rules from these patterns. With these rules the user will be able to support, review and examine decisions in some related business area [2]. Data mining and knowledge discovery intend to extract

© 2010, IJARCS All Rights Reserved

previously unknown regularities in the database. This work aims to present Leadtime data for efficient decision making by using of Classification, Association Rule, Decision Tree techniques of Data Mining. The rest of the paper is organized as follows - Section 2 describes Dimensions & Attributes, Key Figures, Bubble Model, logical data Model, Section 3 describes Data Mining Models, Section 4 describes Algorithmic framework of models, Section 5 describes Implementation steps, Section 6 presents Results & Discussion and finally Conclusions are drawn in Section 7.

II. DESIGN OF DIMENSIONS, ATTRIBUTES AND KEY FIGURES

Below is the list of Dimensions, Attributes and Key Figures identified for Leadtime analysis. For characteristic attributes only those directly affecting Leadtime are considered.

SI. No	Dimensions/Characteristics	Metrics/Key Figures
1	AT No	Total Lead Time
2	AT Date	Department Lead Time
3	AT Value Group	Internal Lead Time
4	Department	External Lead Time
5	Store House	TR Lead Time
6	Section	AT Value
7	Dealing Officer	No of AT's
8	Section Incharge	Quantity
9	Division Incharge	
10	Supplier	
11	Material Group	
12	Material Subgroup	
13	Catalogue No	
14	Calendar Year/Quarter/Month/Day	

Table 1: Characterstics, Key Figures

Table 2: Attributes of each Dimension/Characteristic (Obtained from Master Data)

SI.	Dimension	Attributes	Remarks
No	s/Characte		
1	AT	1 AT No	Relevant part of
1	(Acceptanc	$\begin{array}{ccc} 1. & AT N0 \\ 2 & AT Date \end{array}$	AT Master
	e to	3 AT Value	Table data
	Tender)	4 Indent-Regn Date	ruoro uutu
		5. TR Sent Date	
		6. TR Received Date	
		7. Currency Code	
		8. Currency Code Conv.	
2	Department	1. Department Name	Department/Sec
-	- •p	2. Department Code	tion Data
		Store House Code	
		4. Section Code	
		Material Type	
		6. Authorize-Direct-	
		Indent	
3	Dealing	 Dealing officer Name 	Dealing
	Officer	Dealing officer Code	officer/Section
		3. Active-Status	Incharge details
		4. Controlling officer	
		Code	
	a l'	5. DGM Group	
4	Supplier	1. Supplier Name	Relevant part of
		2. Supplier Code	Supplier Master
		5. Supplier $Cotogory(10/11/06)$	Data
		A State/city	
5	Material	1 Mat Group	Relevant part of
5	Group	2 Mat Subgroup	Material Master
	Group	3. Catalog No	Data
		4. Material Type(E/M/O)	
		5. Unit Codes(Fraction	
		Indicator)	
6	Calendar	1. Year	Time
	Year	2. Quarter	Dimension for
		3. Month	each of above
		4. Day	attributes

With above information, we can draw Logical data Model (LDM), which is a Table with relationship details between Characteristics & Key Figures. In LDM, Business Subjects that belong together are grouped around KF's.

Figure 1: ERM diagram for Leadtime Analysis

In the above ERM, AT Dimension doesn't have a specified hierarchy like Vendor, Department, Division Incharge, but should be modeled with attributes from master data as shown below.

Figure 2: Bubble Model for Attributes of AT Dimension

The above LDM & Bubble Models are converted into 'Extended Star Schema' based on relationship between Entities as – Dimensions, Characteristics of dimension and attributes [3]. The Key Figures are further classified as – Basic Key Figures & Calculated Key figures for 'Table Model' drawn as below for the above dimensions. Table Model is very popular in Modeling functional requirements and representing data granularity. 'X' in the box indicates relevance of each data element. The legends for Key Figures (KF) in Table Model are given in Table 4 below.

KF	Basic KF	Calculated KF	Granularity Time	A T	Department	Dealing Officer	Vendor	Material Group	Time
1		х	Day	х	Х	Х		Х	Х
2		х	Day	Х	Х	Х	Х	Х	Х
3		х	Day	Х	Х	Х		Х	Х
4		Х	Day	Х	Х	Х		Х	Х
5		х	Day	Х	Х	Х		Х	Х
6		х	Day	Х	Х	Х		Х	Х
7	Х		Day	Х	Х	Х	Х	Х	Х
8		х	Day	Х	Х	Х	Х	Х	Х
9	х		Day	х	Х	х	х	х	х

Table 3: Table Model for ERM Diagram at Figure 1

Table 4:	Key	Figures	Representation
----------	-----	---------	----------------

Key Figure (KF)	Meaning of Key Figure
1	Internal Leadtime
2	External Leadtime
3	Total Leadtime
4	Department Leadtime
5	TR Leadtime
6	Average Leadtime
7	AT Value (Price)
8	No of AT's
9	Material Quantity

A. Enterprise Data warehouse Server and Data Modeling:

In enterprise system architecture, Data generated in the transactional system is brought over to Data warehouse server through customized data extractors. For our work, SAP BI server is used to create data elements for analysis. BI server runs on HP-UX Operating System (ia64 Machine Type) with Database System Oracle 11.2 and SAP Netweaver 7.0 as middleware.

InfoCube Dimensions	Characteristics Tech Name	Characterstics Description	Key Figures
PRPOMATDOC	0OI_EBELP	Item No of Purchasing Document	ZINTLT - Internal Leadtime
	00I_EBELN	Purchasing document Number	ZGRLT - GR Leadtime
	0MOVETYPE	Movement Type	ZEXTLT – External
			Leadtime
	0MAT_ITEM	Material document item	ZTOTLT – Total Leadtime
	0MAT_DOC	Material Document	
	ZMJAHR	Material document Year	
	ZMBLNR5	No. of Material Document	
	ZEILE5	Item in Material Document	
	0BBP_REQ_ID	Purchase Requisition No	
	0BBP_RQITEM	Item No. in PR Document	
PurMatGroup	ZEKNAM	Desc. of Purchasing group	
	0PUR_GROUP	Purchasing Group	
	ZMATGRP	Purchase Material Group	
	0PURCH_ORG	Purchasing Organization	
	0COMP_CODE	Company Code	
	0MPN_MATNR	Manufacturer Part	
	0MATL_GROUP	Material Group	
	0EXTMATLGRP	External Material Group	
	0MATERIAL	Material	
	ZTELEXTNS	Telephone no Extension	
RFXNO	ZRFXNO	RFX No	
LTDATES	ZTODATE	Tender Opening Date	
	ZRFXPUBDT	Creation date of change doc.	
	ZBUDAT5	Posing date in the document	
	ZBUDAT	Posing date in the document	
	ZBLDAT105	Material Doc 105 Date	
	ZBLDAT103	Material Doc 103 Date	
	ZBADAT	Purchase Request Date	
	ZAUDAT	Document Date(Date Received/Sent)	
	ZAEDAT	Purchase Order Date	
	ZQDATE	Quotation Accepted Date	
	ZRFXCREDT	Posting Date for a Business Transaction	

Table 5: Data Model for InfoCube Dimensions, Characteristics and Key Figures

III. DATA MINING MODELS AND KDD

The area of Data Mining encompasses techniques facilitating the extraction of knowledge from large amounts of data. These techniques include topics such as pattern recognition, machine learning, statistics, database tools and on-line analytical processing (OLAP). Data mining is one part of a larger process referred to as Knowledge Discovery in Database (KDD). The KDD process is comprised of the following steps [3]:

- a. Data Cleaning
- b. Data Integration
- c. Data Selection
- d. Data Transformation
- e. Data Mining
- f. Pattern Evaluation
- g. Knowledge Presentation

The term *data mining* often is used in discussions to describe the whole KDD process, when the data preparation steps leading up to data mining are typically more involved

and time consuming than the actual mining steps, especially when the data is drawn from heterogeneous data sources.

As explained in previous sections, Leadtime Analysis is done on SAP BI server which provides APD (Analysis Process Designer) workbench for Data Mining tasks. In our analysis, the data is searched with no hypothesis in mind other than for the system to group the Leadtime information into different classes based on common Characteristics found. Also we have considered closed loop business analytics, where the results of analysis are fed back into transactional systems for effective decision making [4]. The Data Mining Techniques considered for analysis are Decision Trees (Classification), Association analysis, Regression Analysis (discussed in following sections). Data mining algorithms for prediction can be broadly classified as below.

Figure 3: Data Mining Algorithms for Prediction

- A. Data mining algorithms are further classified into Supervised & Unsupervised methods.
- a. In Supervised Methods, both input data & valid output data is available for training process. The Model should match both Input & output patterns as defined in model's parameters. During the training phase for Predictive Models, algorithms try to determine what relationships exist in data to match the "Known" outcome. Using the rules established in the learning phase, they predict outcome for a new unknown set of data. Supervised learning requires known output data records. Examples for supervised Learning are Classification Trees, Bayesian Network, Regression (Linear, Non-Linear)
- **b.** Unsupervised Methods are informative methods and do not depend on output patterns to detect rules, correlations and associations. They can reveal quick information about data. Unsupervised learning does not need a target or known values. Data clustering denotes the process of grouping data into clusters or classes such that the data in each cluster share a high degree of similarity while being very dissimilar to data from other clusters. Homogenous groups can be clustered in a predictive way. Examples for unsupervised Learning are Clustering, Association Rules, Frequent set Mining, Constraint based data mining.

The selection criteria for choosing an appropriate Data Mining algorithm are given in Table 6.

Sl. No	Algorithm Selection Criteria	Explanation for Selection
1	Scalability	Need to scale well for larger datasets
2	Dimensionality Curse	Work well with high dimensionality data i.e. larger no of attributes
3	Reduce over fitting of data	Minimize Noise in data
4	Training Data	Easiness to train Model
5	Test data	Validation of Results
6	Deployment	Easiness of deploying Model

Table 6: Selection Criteria for choosing Data Mining Algorithm

IV. CLASSIFICATION ALGORITHMS

The classification method tries to categorize items to predefined target classes with the help of some algorithm. The building of classification model includes training data set with known, discrete target classes, which means that the classification results are always discrete. Classification targets vary from binary to multiclass attributes and the models try to predict which target class is correct with the help of descriptive relationships from the input attributes.

Data classification is a two phase process in which first step is the training phase where the classifier algorithm builds classifier with the training set of tuples and the second phase is classification phase where the model is used for classification and its performance is analyzed with the testing set of tuples [5]. Classification has numerous algorithms publicly available with varying application targets, from which some examples are Decision Tree, Bayesian networks, Support Vector Machines (SVM) and Rule Induction.

Decision Tree is a Classification scheme which generates a tree and a set of rules, representing the model of different classes, from a given data set. The set of records available for developing classification methods is generally divided into two disjoint subsets – Training set & Test set. The former is used for deriving the classifier, while the later is used to measure the accuracy of classifier. Also, the accuracy of the classifier is determined by the percentage of test examples that are correctly classified. Algorithmic framework for data mining models used in our analysis is discussed in next section.

A. Algorithmic Framework for Decision Trees:

The goal is to find the optimal decision Tree by minimizing the generalization error along with number of nodes and average depth. Top-down decision trees algorithms are ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), CART (Breiman et al., 1984). Some consist of two conceptual phases: growing and pruning (C4.5 and CART). Other inducers perform only the growing phase [5]. Figure 4 shows a typical algorithm for Decision Tree using growing and pruning. In each iteration, the algorithm considers the partition of the training set using the outcome of a discrete function of the input attributes. The selection of the most appropriate function is made according to some splitting measures. After the selection of an appropriate split, each node further subdivides the training set into smaller subsets, until no split gains sufficient splitting measure or a stopping criteria is satisfied [6].

Tree Growing (S,A,y)

Where:

S - Training Set

A - Input Feature Set

y - Target Feature

Create a new tree T with a single root node.

IF One of the Stopping Criteria is fulfilled THEN

Mark the root node in T as a leaf with the most

common value of y in S as a label.

ELSE

Find a discrete function f(A) of the input Attributes values such that splitting S

According to f(A)'s outcomes (v1,...,vn) gains The best splitting metric. IF best splitting metric > threshold THEN Label t with f(A) FOR each outcome vi of f(A): Set Subtreei = TreeGrowing $(\frac{3}{4}f(A)=viS,A,y)$. Connect the root node of tT to Subtreei with an edge that is labeled as vi END FOR ELSE Mark the root node in T as a leaf with the most common value of y in S as a label. END IF END IF RETURN T TreePruning (S,T,y) Where: S - Training Set y - Target Feature T - The tree to be pruned DO Select a node t in T such that pruning it Maximally improve some evaluation criteria IF t=Ø THEN T=pruned(T,t) UNTIL t=Ø RETURN T

Figure 4: Top-Down Algorithm Framework for Decision Trees Given a training set S, the probability vector of the target attribute y is defined as:

$$P_Y(S) = \left(\frac{|\sigma_{y=c1}S|}{|S|}, \dots, \frac{\sigma_{y=c_{|dom(y)|}}S}{|S|}\right)$$

The goodness-of-split due to discrete attribute a_i is defined as reduction in impurity of the target attribute after partitioning *S* according to the values $v_{i,i} \in dom(a_i)$:

$$\Delta \Phi(a_i S) = \emptyset \left(P_y(S) \right) \\ - \sum_{j=1}^{|dom(a_i)|} \frac{|\sigma_{a_i = v_{i,j}} S|}{|S|} \cdot \emptyset \left(P_y \left(\sigma_{a_i = v_{i,j}} S \right) \right)$$

Information Gain: a.

Information gain is an impurity-based criterion that uses the entropy measure as the impurity measure (Quinlan, 1987).

$$\begin{aligned} &InformationGain(a_i, S) \\ &= Entropy(y, S) \\ &- \sum_{\substack{v_{i,i} \in dom(a_i)}} \frac{\left|\sigma_{a_i = v_{i,j}}S\right|}{|S|}.Entropy\left(y, \sigma_{a_i = v_{i,j}}S\right) \end{aligned}$$

Where:

$$Entropy(y,S) = \sum_{c_j \in dom(y)} -\frac{|\sigma_{y=c_j}S|}{|S|} \cdot \log_2 \frac{|\sigma_{y=c_j}S|}{|S|}$$

b. Gini Index:

Gini index is an impurity-based criterion that measures the divergences between the probability distributions of the target attribute's values. The Gini index has been used in various works such as (Breiman et al., 1984) and (Gelfand et al., 1991) and it is defined as:

$$Gini(y,S) = 1 - \sum_{c_{j} \in dom(y)} \left(\frac{|\sigma_{y=c_{j}}S|}{|S|} \right)^{2}$$

The evaluation criteria for selecting the attribute a_i is defined as:

 $GiniGain(a_i, S) = Gini(y, S)$

$$-\sum_{\substack{v_{i,j} \in dom(a_i)}} \frac{|\sigma_{a_i = v_{i,j}}S|}{|S|}. Gini\left(y, \sigma_{a_i = v_{i,j}}S\right)$$

Algorithmic Framework for Association Rule **B**. Mining (ARM):

Association rule mining (ARM) is an important core data mining technique to discover patterns/rules among items in a large database of variable-length transactions. The goal of ARM is to identify groups of items that most often occur together. Most of the research focuses on the frequent itemset mining subproblem, i.e., finding all frequent itemsets each occurring at more than a minimum frequency (minsup) among all transactions [6]. Well-known sequential algorithms include Apriori [7], Eclat [8], FP-growth [9], and D-CLUB [10].

Formal definition of Association Rule:

Let I = $\{i_1, i_2, ..., i_m\}$ be a set of literals, called items. Let D be a set of transactions, where each transaction T is a set of items such that $T \subseteq I$ A transaction T contains X, a set of some items in I, if $X \subseteq T$

An association rule is an implication of the form $X \Rightarrow Y$, where $X \subset I, Y \subset I$, and $X \cap Y = \emptyset$

 $X \Rightarrow Y$ holds in the transaction set D with confidence c if c% of transactions in D that contain X also contain Y.

 $X \Rightarrow Y$ has support s in the transaction set D if s% of transactions in D contain X U Y

Algorithm Apriori (Candidate Generation, Pruning)

Initialize: $k \coloneqq 1$, $C_1 =$ all the 1-itemsets;

Read the database to the support of C_1 to determineL₁. $L_1 \coloneqq \{ frequent \ 1 - itemsets \} :$

$$L_1 \leftarrow \{\text{frequent } 1 = \text{itemsets}\}$$

 $K \coloneqq 2$; // k represents the pass number// While $(L_1 \neq \emptyset)$ do

Begin

 $C_k = \text{gen}_candiadte_itemsets$ with the given L_{k-1} Prune (C_k)

For all transactions $t \in T$ do

Increment the count of all candidates in C_k that are contained in t;

 $L_k \coloneqq All \ candidates \ in \ C_k$ with minimum support;

 $K \coloneqq k+1;$

 C_k

If

l2

End

Answer := $\cup_k L_k$

The idea behind the a priori candidate generation procedure is that if an itemset X has minimum support, so do all subsets of X.

The Candidate – generation method is given below:

$$C_k = \emptyset$$

For all itemsets $l_1 \in L_{k-1}$ do
For all itemsets $l_2 \in L_{k-1}$ do
If $l_1[1] = l_2[1] \land l_1[2] = l_2[2] \land ... \land l_1[k-1] < l_2[k-1]$

Then
$$c = l_1[1], l_1[2] \dots l_1[k-1], l_2[k-1]$$

 $C_k = C_k \cup \{c\}$

The pruning step eliminates the extensions of (k-1) itemsets which are not found to be frequent, from being considered for counting support.

 $Prune(C_k)$ For all $c \in C_k$ For all (k-1) subsets d of c do If $d \notin L_{k-1}$ Then $C_k = C_k \setminus \{c\}$

C. Algorithmic Framework for Regression:

A Regression model predicts the value of a numerical data field, this is the target field, in a given data record from the known values of other data fields of the same record. The known values of other data fields are called input data fields or explanatory data fields. They can be numerical or categorical. The predicted value might not be identical to any value contained in the data used to build the model. A regression model is created and trained based on known data sets of data records whose target field values are known. You can apply the trained model to known or to unknown data. In unknown data, the values of the input fields are known, however, the value of the target field is not known [11]. A simple case of linear regression, where the sum of squared errors is minimized when–

$$w = \sum \frac{x_i y_i}{\sum x_i^2}$$

The maximum likelihood model is out(x) = wx, which is used for prediction.

In Non-Regression Analysis, the Smoothing factor twists the line around the outliers for a better fit than the straight line. The Regression methods must be trained on historical data where the value to be predicted (on another set of data) is already known. During training, the function that defines the 'best fit of line 'through the data is generated. With the model trained, a new set of data can be executed and a predicted score generated [12].

V. IMPLEMENTATION STEPS

Since the value of each category of Leadtime needs to be predicted based on input data, we have focused on Predictive Models and accordingly supervised learning methods are chosen to predict outcome for a new unknown set of data [13]. Association Rule Mining (ARM) is also run on leading attributes of Leadtime to find support and confidence for group of items that occur most often together.

The Data Mining Models for Leadtime Analysis are designed and implemented in APD of SAP BI server. The

various steps associated with Model creation, ETL (Extract-Transform-Load) & data governance issues are outlined here [14]:

Step 1. Checked for data inconsistencies, if any, in the source data. We observed that data was found missing against many PR No's for Characterstics like Material document no, Purchasing Group, RFx No etc. The same is discussed with business team and appropriate values are entered.

Step 2. Loaded data from source system to target InfoCube with appropriate ETL work as shown in Figure 5. Many fields required Transformations from source structure, for which coding is done in ABAP programming language in BI workbench. This appears as Routines and Formulae in Transformation Map. Also required Calculated Key figures are developed during ETL load to target.

Step 3. The infocube created in previous step is the source for training data mining model. APD workbench is used to design Data Mining Models for training, testing and generating error matrix on data.

Step 4: Decision Tree Model created. Here the model is trained and checked for accuracy and then model's prediction is used on unknown data. Decision Tree offers 3 outputs – Predicted value, Predicted by Node, Predicted Probability. Both predicted value and probability can be specified up to 3 ranks.

Step 5: Regression Model created, trained & predictive scores are checked against known data. Model predictions are applied to unknown data. With each algorithm, Prediction accuracy, Training Error are observed. The data sets are divided into Training & Testing sets. Same no of records are used for both algorithms, to minimizing the sample bias. New Characteristics are added to check accuracy and representativeness of input sample.

Step 6: Association Rule Model is developed and checked for large framesets with required support and confidence. These frequent itemsets are further explored to find patterns in leading attributes.

VI. RESULTS AND DISCUSSION

The leading attributes which have a greater influence on Leadtime are identified as – Material Group, Purchase Group, Purchase Material Group, External Material Group and Dealing officer based on priority using the ranking algorithm available within APD. The results of Decision Tree, Regression and Association Rule Algorithms for different categories of Leadtime are compared.

Table 7: Definition of Leadtime Types Predicted for Material Procurement (See Figure 5 for details)

Leadtime Type	Definition	Formula (No. of
		Days)
Internal Leadtime (ZINTLT)	Time difference between PR (Purchase Request) final release date and	(ZBADAT –
	PO (Purchase Order) final release date	ZAEDAT)
Tech. Recommendation Leadtime (ZTRLT)	Time difference between TR sent date and TR Received Date	(ZQDATE –
		ZAUDAT)
Goods Receipt Leadtime (ZGRLT)	Time difference between Material document No. 103 & 105	(ZBLDAT105 -
	Movement Types	BLDAT103)
External Leadtime (ZEXTLT)	Time difference between PR final release date and delivery date at	(ZBLDAT105 -
	Storehouse	ZAUDAT)
Total Leadtime (ZTOTLT)	Time difference between PR final release date and the GR (Goods	(ZBLDAT105 -
	Receipt) document posting date	ZAEDAT)

MMIeadtime zmmt02 for Lead Time Analysis (ZMMLTDS1)															
PosiKey	rield	ICO	Descript.												
1 2	ZBANFN		Purchase Req.												
2 2	ZBNFPO		Requisn Item		$\langle \rangle$										
3 ∠1	ZEBELN		Purchasing Doc.		11			Rule	e Group: Standa	rd Gro	oup		_		
4 ∠1	ZEBELP		Item		111			Ruk	Rule Name	Posi	Key	InfoObject	Icol	Descript.	Inte
5 🖉	ZMBLNR		Material Doc.		111.	$\langle \rangle$	-r		ZINTLT	1		ZINTLT	4	MM Internal Lead Time	
6 ∠}	ZEILE		Mat. Doc.ltem	h	111,	$\left(\right)$			ZEXTLT	2		ZEXTLT	4	MM External Lead Time	
7	ZMJAHR		Mat. Doc. Year		[] []	$\left(\right) $	J.	1	ZTOTLT	3		ZTOTLT	4	MM Total Lead Time	
8	ZLFBNR		Reference Doc.		1/1	$\langle 1 \rangle$	XIIr	1	ZGRLT	4		ZGRLT	â	MM GR Lead Time	
9	ZLFPOS		Ref. Doc. Item		11	X	XXXII		ZSPCAL1	5		ZSPCAL1	4	Calculation Field for MM Leadtime data	
10	ZMBLNR5		Material Doc.		ΛX	\mathcal{I}	X(K)→		OBBP_REQ_ID	6	Z	OBBP_REQ_ID		Purchase Requisition Number	
11	ZEILE5		Mat. Doc.ltem		N.	N	XXV→		OBBP_RQITEM	7	28	OBBP_RQITEM	Æ	ttem Number in Purchase Requisition Document	t
12	ZBLDAT5		Document Date	Н	N	X	MA - 4		00I_EBELN	8	2	00I_EBELN	Æ	Purchasing document number	
13	ZBUDAT5		Posting Date		111	M	$\chi \to$		00I_EBELP	9	2	00I_EBELP		Item number of purchasing document	
14	ZMATNR		Material			X	184		OMAT_DOC	10	28	OMAT_DOC		Material Document	
15	ZEKORG		Purchasing Org.		11/1	IN	XY		ZMJAHR	11	2	ZMJAHR		Material Document Year	
16	ZEKGRP		Purch. Group		NN V	₩1	14		ZEILE5	12	2	ZEILE5		ttem in Material Document	
17	ZMATGRP		Pur Mat grp	7	HH.	81			OMOVETYPE	13	2	OMOVETYPE		Movement Type (Inventory Management)	
18	ZMATKL		Material Group			UK			OMATERIAL	14	1	OMATERIAL		Material	
19	ZBWART		Movement Type		T WA	aa	1-1		OMATL_GROUP	15	1	OMATL_GROUP		Material group	
20			REX NO			(X)	4		OMPN_MATNR	16	1	OMPN_MATNR		Manufacturer part	
21	ZUBJECT_ID		Disject ID		V X	(X)Y	1		0COMP_CODE	17	1	OCOMP_CODE	<u>A</u>	Company code	
22	ZTEL_EATING		Extension Ext. Metl.Oxeum		X 11	LA	tΓ,		OPURCH_ORG	18	2	OPURCH_ORG		Purchasing organization	
23	ZEATIVIO		Company Code		X	Ŵ.	184		OPUR_GROUP	19	1	OPUR_GROUP	Ā	Purchasing Group	
25	ZEKNAM		Description		1 181	X	11		ZMATGRP	20		ZMATGRP	Ā	Purchase Material Group	
26	7BADAT		Requise Date	\square	VI Y	W.	H		0EXTMATLGRP	21		0EXTMATLGRP		External Material Group	
27	ZREXCREDATE		Posting Date	\square	(IN	M	11		OMAT ITEM	22	20	OMAT ITEM		Material Document Item	
28	ZREXPUBDATE		Date		\mathbb{V}	N			ZMBLNR5	23	20 	ZMBLNR5		Number of Material Document	
29	ZTODATE		Technical RFx Respon		NN I		\mathcal{M}		7FKNAM	24	20 8	7FKNAM		Description of purchasing group	
30	ZQDATE		Quotation Accepted D		XNN		1AL		7TELEXTNS	25	28 9	ZTELEXTNS		Telephone no Extension	
31	ZUDATE		Fully vested on		KW		11		ZREXNO	26	⊻® 	ZREXNO		REX No	
32	ZAEDAT		Changed on	\dashv	(XX)	$\langle \rangle$			78LDAT103	27	⊻® .9	ZBLDAT103		Material Doc 103 Date	
33	ZBLDAT		Document Date	\perp	YX+	HT.	T.		78LDAT105	21	⊻∜ Ģ	78LDAT105	<u></u>	Material Doc 105 Date	
34	ZAGDAT		Quot. Deadline		N	()	TT		7BUDATS	20	⊻∜ Ģ	ZBUDATS	<u></u>	Posting Date in the Document	
35	ZEILDT		GR-B.Sett.from		$ \Lambda $	N	JL		7REVOREDT	20	⊻₿ Ģ	ZBODATS ZREVCREDT	<u></u>	Posting Date in the Document	
36	ZBUDAT		Posting Date	\vdash	[]	///	M			24	⊻‼ Ģ		<u></u>	Creation data of the change decument	
37	ZAUDAT		Document Date		N.	X	$\left \right $		ZTODATE	31	⊻₿ ©	ZTODATE	<u>_</u>	Tender Oregins Date	
38	ZINTLT		internal Lead Time		X	1	\sum		ZIODATE	32	⊻‼ ©		<u>_</u>	Oustation Accounted Date	
39	ZEXTLT		External Lead Time	۲			$1/\overline{.}$		ZQUATE	33	∠ľ ⊙	ZQDATE		Quotation Accepted Date	
40	ZGRLT		GR Lead Time			/	Y	믬	ZAEDAT	34	∠ľ	ZAEDAT	<u>_</u>	Purchase Order Date	
41	ZTRLT		TR Lead Time				14	딑	ZBUDAT	35	۷ľ	ZBUDAT		Posting Date in the Document	
42	ZPRLT		PR Lead Time				H	믬	ZAUDAT	36	۷V P	ZAUDAT		Document Date (Date Received/Sent)	
43	ZTOTLT		Total Lead Time				4		ZBADAT	37	Ľ۲	ZBADAT	₫	Purchase Request Date	
44	FLAG		FLAG INDICATOR FOR S												
45	ZSPCAL1		Calculation Field	P											
46	ZSPCAL2		Calculation Field												
47	ZSPCAL3		Calculation Field												

Figure 5: Leadtime	e ETL Map with A	BAP Routines &	c Formulae for	r Key Figures	(SAP BIW)
--------------------	------------------	----------------	----------------	---------------	-----------

Table 8: Most frequent values in leading Characterstic Attributes

External Material	Material Group	Purchasing Group	Purchase Material	Dealing Officer
Group			Group	
No of Records in %				
21.14	27.19	29.91	0.51	28.79
9.15	12.24	12.24	0.51	26.26
9.02	11.37	9.77	0.51	16.16
6.67	8.90	7.05	0.51	10.61
5.19	5.56	6.67	0.51	5.56
4.45	5.19	6.30	0.51	4.55
3.71	4.33	4.33	0.51	3.54
3.09	3.71	4.08	0.51	2.53
2.97	2.97	2.97	0.51	2.02
2.97	1.85	2.22	0.51	6.34
31.64	16.69	14.46	0.51	7.85

S.Hanumanth Sastry et al, International Journal of Advanced Research in Computer Science, 4 (4), March – April, 2013, 288-301

Internal Leadtime		External Leadt	ime	GR Leadtime		Total Leadtime		
Interval	No of Records in %	Interval	No of Records in %	Interval	No of Records in %	Interval	No of Records in %	
< 0	0.00	< 46	0.00	< 24	0.00	< 51	0.00	
0 - < 1.2	0.12	46 - < 48.5	5.07	24 - < 26.1	11.87	51 - < 53.9	2.35	
1.2 - < 2.4	0.49	48.5 - < 51	9.15	26.1 - < 28.2	10.01	53.9 - < 56.8	11.87	
2.4 - < 3.6	0.12	51-<53.5	8.16	28.2 - < 30.3	7.79	56.8 - < 59.7	8.16	
3.6 - < 4.8	0.62	53.5 - < 56	6.55	30.3 - < 32.4	3.96	59.7 - < 62.6	15.57	
4.8 - < 6	4.94	56-<58.5	13.35	32.4 - < 34.5	3.96	62.6 - < 65.5	7.29	
6-<7.2	73.92	58.5 - < 61	11.74	34.5 - < 36.6	3.83	65.5 - < 68.4	23.49	
7.2 - < 8.4	3.71	61-<63.5	22.37	36.6 - < 38.7	14.71	68.4 - < 71.3	11.50	
8.4 - < 9.6	16.07	63.5 - < 66	4.82	38.7 - < 40.8	25.09	71.3 - < 74.2	2.97	
9.6 - < 10.8	0.00	66 - < 68.5	9.02	40.8 - < 42.9	9.02	74.2 - < 77.1	7.05	
10.8 - < 12	0.00	68.5 - < 71	7.54	42.9 - < 45	7.54	77.1 - < 80	7.54	
≥ 12	0.00	≥ 71	2.22	\geq 45	2.22	≥ 80	2.22	

Table 9: Frequency of values on Leadtime Metrics

Outliers in input data used for training are not much significant, except for Total Leadtime (up to 20%) as shown in Table 10. The Model generation is an iterative process with an objective to achieve required accuracy after a specified number of trails [15]. It is observed that the

selection of characteristics, attributes has a major role in achieving desired accuracy and avoiding over fitting of trained data. The Accuracy of Decision tree and Regression Training Models is presented in Tables 11-12

Table 1	0: Statistical	data on	Leadtime	Metrics	used for	Training	Data Min	ing Models

	.			
	Internal Leadtime	External Leadtime	GR Leadtime	Total Leadtime
Statistical figure	Value	Value	Value	Value
Minimum	1	46	24	51
Maximum	9	71	45	80
Mean	6.4981459	59.067985	35.227441	65.566131
Median	6	60	38	66
Quartile 1	6	55	29	61
Quartile 3	6	63	39	69
Standard deviation	1.2550256	6.4108666	6.0985065	7.2892484
Variation coefficient	0.193	0.109	0.173	0.111
Relative skewness	0.803	-0.150	-0.497	0.172
Number of outliers	238	0	0	0
Number of top outliers	187	0	0	0
Number of bottom outliers	51	0	0	0
Number of outliers in %	29.42	0.00	0.00	0.00
Number of top outliers in %	23.11	0.00	0.00	0.00
Number of bottom outliers in %	6.30	0.00	0.00	0.00

ruble in realistice rectance of beension rive rianning models	Table	11.	Predictive	Accuracy	of	Decision	Tree	Training	Models
---	-------	-----	------------	----------	----	----------	------	----------	--------

Model Type	Leadtime Category	Accuracy	No of	Pruning
		(%)	Trails	
Decision Tree	Internal Leadtime	97.596	2	Yes
Decision Tree	External Leadtime	96.389	2	Yes
Decision Tree	GR Leadtime	95.754	2	Yes
Decision Tree	Total Leadtime	95.276	2	Yes

Percentage distribution of Leadtime values in Input Data generated by Linear Regression Model upon training is given in figures 6-9. Horizontal Axis represents No of days (intervals) for each category of Leadtime in input training data. Also data series for some leading attributes is given in figures 10-11.

Table 12: Predictive Accuracy of Regression Training Models

Model Type	Leadtime Category	Prediction Accuracy	Regression Type
Regression	Internal Leadtime	96.165	Linear
Regression	External Leadtime	97.546	Linear
Regression	GR Leadtime	95.298	Linear
Regression	Total Leadtime	95.345	Linear

Figure 6: % distribution of Total Leadtime in Training Data generated by Linear Regression

Figure 7: % distribution of External Leadtime in Training Data generated by Linear Regression

Figure 8: Percentage distribution of Internal Leadtime in Training Data generated by Linear Regression

Figure 9: Percentage distribution of GR Leadtime in Training Data generated by Linear Regression

Figure 10: Statistics on Material Group Attribute in training data generated by Linear Regression

Material group

Figure 11: Statistics on Purchasing Group Attribute in training data generated by Regression

Prediction Accuracy of Test Data for Decision tree is given in Tables 13 - 15. It is observed that accuracy of Decision Tree is reduced when some attributes are dropped to avoid over fitting of data. The model is subsequently deployed to predict unknown data. The initial sampling size for Decision Tree Model is kept as 15% with a Maximum value of 75%. The stopping condition of Model is - Min.

Leaf Cases -10, Min. Leaf Node accuracy – 95%. This is the point at which node will not split further. Node accuracy is calculated as – Node Accuracy

 $= \frac{\text{(Total No. of cases at the node - No. of cases with majority class)}}{\text{Total No. of cases at the node}} \times 100$

Table 13: Node Accuracy of Decision	Tree Model for Test data of	Leadtime with leading attributes
-------------------------------------	-----------------------------	----------------------------------

Model Type	Leadtime Category	Accuracy (%)	No of Trails	No of Misclassifications	Pruning
Decision Tree	Internal Leadtime	99.670	2	2	Yes
Decision Tree	External Leadtime	96.389	2	15	Yes
Decision Tree	GR Leadtime	95.754	2	0	Yes
Decision Tree	Total Leadtime	95.276	2	23	Yes

The Rule set generated by APD has given following results with probabilities against each category of predicted value.

Figures 12-15 show prediction graphs with more no of dimensional attributes.

Table 14: Rule Sets	generated by Decision	Tree Model with more	e attributes on Materia	1 Dimension
raore r reare betb	generated of Deelston	Tree mouth mining	, attito atto on materia	

Total Leadtime		Internal Leadtime		External Leadti	me	GR Leadtime	
Predicted value	Probability	Predicted value	Probability	Predicted	Probability	Predicted value	Probability
				value			
51	0.53	3	0.47	46	1.0	24	1.0
54	1.0	4	0.52	48	1.0	26	1.0
56	0.9	5	0.76	50	0.90	27	0.75
57	0.75	6	1.0	51	0.75	28	1.0
58	1.0	7	0.39	52	1.0	29	1.0
66	0.53	8	0.32	61	0.51	30	0.43

Figure 12: Total Leadtime Prediction graph w.r.t. Actual Values

Figure 13: Internal Leadtime prediction Graph w.r.t Actual Values

Figure 14:External Leadtime prediction Graph w.r.t. Actual Values

Figure 15: GR Leadtime prediction Graph w.r.t Actual

- A. Prediction Results of Decision Tree Model: For all categories of Leadtime predicted values are lesser than actual values, especially when more attributes are added. Also when outliers are present in leading attributes the predicted values deviated further from actual values.
- **B.** Prediction accuracy using linear regression Model is above 95% for all categories of Leadtime which is shown graphically below. For Linear Regression Models, Regression is run for each value of discrete fields on the values tab (most frequent values are considered). Outliers are treated as separate instance. In Non-Linear Regression Models, the value of

Continuous Model fields is split into intervals. For Continuous values, outliers are marked for extrapolation (which means that they are not treated separately). In Regression Model, Prediction field must be continuous & there must be one another continuous field. Only Attributes with numeric content can be defined as continuous fields. Also it is observed that distance between values influences the result produced. It is also observed that Regression is more useful for continuous values whereas decision tree is suited for categorical attributes. Comparative chart of predicted scores and actual values in test data for different categories of Leadtime are shown in figures 20 – 24.

Figure 16: % distribution of Total Leadtime Test Data generated by Linear Regression

Figure 17: % distribution of GR Leadtime Test Data generated by Linear Regression

Figure 18: % distribution of External Leadtime Test Data generated by Linear Regression

Figure 19: % distribution of Internal Leadtime Test Data generated by Linear Regression

Figure 20: Total Leadtime predicted vs. actual values (ZTOTLT is actual & sc_score002 is predicted)

Figure 21: External Leadtime predicted vs. actual values (ZEXTLT is actual & sc_score001 is predicted)

Figure 22: Internal Leadtime predicted vs. actual values (ZINTLT is actual & sc_score001 is predicted)

Figure 23: GR Leadtime predicted vs. actual values (ZGRLT is actual & sc score002 is predicted)

For Association rule mining (ARM) model, only leading attributes are considered as having more no of attributes is not producing any Association Rules with desired support and Confidence [16]. ARM Model could generate only 6-8 large Itemsets with support of 70 and confidence above 90, with chosen attributes. We have further lowered support & confidence values to garner more association rules from main Characterstics [17]. The results are given in tables 15. Last 2 fields indicate results for large Item sets.

able 15: ARM Mode	l (Leading &	Depending	Items only)
-------------------	--------------	-----------	-------------

Support	Confidence	Lift	Leading Depth (No of Leading Items)	Dependent Depth (No of depending items)	Support	Cardinality
12	90	35	5	5	5.41	1
15	80	35	7	7	54.05	1
18	85	25	4	7	2.70	1
23	70	25	5	5	5.41	1
25	70	25	5	5	10.81	1

VII. CONCLUSIONS

The suitability of different algorithms will be known only on testing them empirically with different datasets and domain knowledge helps in choosing the right one. The results produced by Decision Tree have high degree of prediction accuracy when main attributes in Leadtime test data are considered for modeling. As more dimensional attributes like material movement type, RFx creation and purchasing details are added to simulate unknown data, the predictive accuracy drifted below expected value. Linear Regression model scaled better when more dimensional attributes are added as seen from predicted vs. actual value graphs.

The results also showed that continuous attribute prediction with regression suffered if there were no approximately linear or Gaussian distributions with enough predictive independent attributes. Categorical attributes needed to have a limited number of values to make it possible to use them in classification as predictors and the lack of descriptive attributes implied problems with the attribute selection or collected source attributes in Leadtime data. ARM results indicate that Leadtime data is not suited for mining frequent itemsets with desired support and confidence. This is not giving any definite relationship from AR formulations & hence ARM results are ignored for analysis. From our study, it is clear that Classification & Regression Models of data mining would give better results for analyzing material procurement Leadtime data, with an objective to predict the class of records whose class label is not known. The criterion for scalability was fulfilled to the extent of available test material and the built-in functionality criterion was completely fulfilled.

VIII. REFERENCES

 Arun K Pujari., Data Warehousing and Data Mining Techniques PP. 43-45

- [2] J Miller, Jiawei Han., Chapman & Hall.,Geographic Data Mining and Knowledge Discovery by Harvey, CRC Press
- [3] Jiawei Han and Micheline Kamber (2006), Data Mining Concepts and Techniques, published by Morgan Kauffman, 2nd Edition
- [4] Closed loop BI http://www.microstrategy.com/software/businessintelligence/closed-loop-bi/
- [5] M. Tim Jones ., Artificial Intelligence, A systems Approach, Computer Science Series
- [6] Lior Rokach, Oded Maimon, Decision Trees, Department of Industrial Engineering, Tel-Aviv University
- [7] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items in Large Databases. In Proceedings of the 1993 International Conference on Management of Data (SIGMOD 93), ACM Press., pages 207-216, May 1993
- [8] R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules (1994) Proc. 20th Int. Conf. Very Large Data Bases, VLDB
- [9] Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. New algorithms for fast discovery of association rules.

- [10] Jianwei Li, Alok Choudhary, Nan Jiang, and Wei-keng Liao. Mining frequent patterns by differential refinement of clustered bitmaps. In Proc. of the SIAMInt'l Conf. on Data Mining, April 2006.
- [11] Padhraic Smyth, University of California, 'Lecture Notes on Data Mining Regression Algorithms'
- [12] Dr. Gary Parker, vol 7, 2004, Data Mining: Modules in emerging fields
- [13] Kurt Thearling, Lecture Notes on Data Mining Modeling, accessed at www.thearling.com
- [14] Galit Shmueli., Nitin R. Patel., Peter C. Bruce., Data Mining for Business Intelligence, October 26, 2010, John Wiley & Sons Inc New Jersey., PP 110-125.
- [15] Michael J Berry., Gordon S Linoff., Mastering Data Mining, Published by John Wiley & Sons, Inc, pp 183-195
- [16] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, March 2006., Addision-Wesley., Chapter 6 Association Analysis PP 330-340
- [17] Hand, D.et al., 2001., Principles of Data Mining., Cambridge MA., MIT Press, pp 176-225