
Volume 4, No. 4, March-April 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 351

ISSN No. 0976-5697

Constructive Review of Transaction Models in Database Systems

S.Meenakshi*
Associate Professor of Computer Science

Gobi Arts & Science College, Gobichettipalayam
Tamilnadu, India

smgasc@gmail.com

Dr.V.Thiagarasu
Associate Professor of Computer Science

Gobi Arts & Science College, Gobichettipalayam
Tamilnadu, India

profdravt@gmail.com

Abstract: Transaction processing provides mechanisms that can solve many of the problems incurred by concurrent access to shared objects in large
databases. The use of transactions to provide reliable and secure information processing and data management has increasingly gained the attention
of advanced database applications. Transactions adhering to the ACID properties are guaranteed to be atomic and serializable that is suitable for
database applications characterized by short duration transactions and competitive access to shared data. The emergence of advanced applications
characterized by long duration with cooperative transactions requires the need for advanced transaction models. Advanced transaction models focus
on maintaining data consistency and have provided solutions to many problems such as correctness, consistency and reliability in transaction
processing and database management environments. This research paper reviews the various transaction models proposed in the literature that had a
considerable impact on the field of transaction processing in database systems. Also this paper identifies that an Event-Condition-Action (ECA) rule
paradigm has been a flexible mechanism for supporting the requirements of advanced applications.

Keywords: database; transaction processing; transaction models; ECA rules; database applications

I. INTRODUCTION

Database management systems (DBMS) are at the heart
of current information system technology. They provide
reliable and effective mechanisms for storing and managing
large volumes of information in a multiuser environment. In
a multiuser DBMS concurrent execution of transactions is an
important aspect of transaction management since it
improves the overall system performance by increasing
system throughput (the average number of transactions
completed in a given time) and response time (the average
time taken to complete a transaction). Transactions provide a
mechanism for organizing and synchronizing database
operations. A transaction is an atomic unit of work that is
either completed entirely or not.

A transaction should possess four basic properties called
as ACID properties: (i) Atomicity (ii) Consistency (iii)
Isolation (iv) Durability and are enforced by the concurrency
and recovery mechanisms of the DBMS [32]. In general
transactions have been classified based on duration and
structure for the effective transaction processing in database
applications [30]. Based on duration a transaction may be
classified as short duration or long duration transactions.
Short duration transactions are characterized by very short
execution times in seconds and by competitive access to a
relatively small portion of the database. Long duration
transactions are characterized by longer execution times in
minutes or hours and cooperative access to a larger portion of
the database. The division of transactions into
subtransactions according to the semantic of applications is
called the structure of transactions.

II. CORRECTNESS CRITERIA BASED ON

SERIALIZABILITY

Transction processing is concerned with controlling the way
in which programs share a common database. When a database
is shared and updated by multiple transactions concurrently,
serializability is used as a correctness criterion for concurrency
control in database applications and it requires that the execution
of each transaction cannot be interrupted by other transactions
[1, 2, and 3]. Hence to maintain serializability based correctness,
the database system through a scheduler has to produce, a
schedule of concurrent execution of a set of transactions is
equivalent to a serial execution of a set of transactions
represented by a serial schedule.

While serializability has been successfully used in
applications that are characterized by short duration transactions
with competitive access to shared data, it is restrictive and hardly
applicable in applications characterized by long duration
transactions with cooperative access to shared data since it
prevents a transaction from seeing the intermediate results of
another transaction [1, 30, and 31]. This limitation has been
avoided by the introduction of various nonserializable
correctness criteria that extends traditional serializability. The
various flexible correctness criteria for concurrency control in
databases have been studied and requirements for advanced
transaction models are identified [33]. In order to support the
requirement of advanced applications, recent researches have
proposed the nonserializable correctness criteria with suitable
transaction models as a concurrency control mechanism for
processing concurrent transactions in databases [18].

Transactions that have strict ACID properties with no
internal structure are called flat transaction model and are
suitable for handling simple data and applications running with
short duration transactions [30, 32]. The flat transaction model is
very simple and secure; it lacks the ability to support

S.Meenakshi et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,351-356

© 2010, IJARCS All Rights Reserved 352

applications requiring long living and/or complex and
cooperative transactions because of its atomicity and
serializability properties since: (i) if a long duration
transaction holds a lock on an object, if any other long
duration transactions that must access the same object in a
conflicting mode must be blocked until the first transaction
complete and (ii) if a long transaction cannot complete, all
the work that has been done by the transaction must be
backed out [16]. The current solution to this problem has
been the proposal of extended or advanced transaction
models. Hence the focus of the paper is to review the various
transaction models that had a considerable impact on the
field of transaction processing in database applications.

The rest of the paper is organized as follows. Section 3
briefly reviews the concept of various transaction models
proposed in the literature for transaction processing. Section
4 outlines the need for flexible transaction processing due to
the requirement of modern applications and section 5
concludes the paper.

III. EXTENDED AND RELAXED TRANSACTION

MODELS

A. Nested transaction model:

This model has been designed to extend the flat
transaction model to provide the ability to define transactions
within other transactions by splitting a transaction into
hierarchies of subtransactions [6]. Nested transaction model
is a set of subtransactions that may recursively contain other
subtransactions forming the complete transaction tree or
hierarchy of transactions. The top level transaction can have
number of child transactions and each child transactions can
also have nested transactions. A child transaction may start
after its parent has started, and may commit locally. The
committed local result is released only when all of its parents
up to the root have successfully terminated. Transactions
have to commit from the bottom upwards and a transaction
abort at one level does not have to affect a transaction in
progress at a higher level. Hence this model is also termed
as closed nested transaction. This model is not appropriate
for systems that consist of long transactions and it does not
address cooperation since full local and global isolation is
required. However this model allows increased modularity,
finer granularity of failure handling and higher intra
transaction concurrency than the flat transaction model.

B. Open nested transaction model:

 This model has been proposed to improve the nested
transaction model, to relax the isolation requirements by
making the results of committed subtransactions visible to
other concurrently executing nested transactions [7]. To
avoid inconsistent use of the results of committed
subtransactions, only those subtransactions that commute
with the committed ones are allowed to use their results.
Two transactions are said to commute if their effects, their
output and final state of the database are the same regardless
of the order in which they were executed. This model also
relax the condition of commit process occur in a bottom up
fashion through the top level transaction as the semantics of

these transactions enforce atomicity at the top level. Hence this
model permits higher degree of concurrency and cooperation
than the nested transaction model and is suitable for systems that
consist of long running with cooperative transactions.

C. Multilevel transaction model:

Multilevel transactions are more generalized versions of
nested transactions [7]. Subtransactions of a multilevel
transaction can commit and release resources before the global
transaction successfully completes and commits. If a global
transaction aborts its failure atomicity may require that the
effects of already committed subtransactions be undone by
executing compensating subtransactions. A compensating
transaction T’ semantically undoes effects of a committed
subtransaction T, so that the state of the database before and
after executing a sequence TT’ is the same. However, an
inconsistency may occur if other transaction S observes the
effects of subtransactions that will be compensated later. Open
nested transactions use the commutative to solve this problem.

D. Sagas and Nested Sagas:

Sagas have been proposed as a transaction model for long -
lived activities [8, 9]. A saga consists of a set of ACID
transactions T1, T2,…,Tn with a predefined order of execution,
and a set of compensating subtransactions CT1,CT2,..,CTn-1,
corresponding to T1,T2…Tn-1. A saga completes successfully, if
the subtransactions have committed. If one of the
subtransactions, say Tk fails, then committed subtransacitons
T1,...Tk-1 are undone by executing compensating subtransactions
CTk-1,…CT1. Each subtransaction is allowed to commit
individually. A compensating transaction is then used to
explicitly undo its effect if the whole Saga transaction has to
abort. By allowing subtransactions to commit, thus revealing
their partial result(s), Saga relaxes the full isolation requirement
and increase inter-transaction concurrency. Hence some degree
of cooperation is permitted. This model has been further
extended as a model called Nested Sagas that provide useful
mechanisms to structure steps involved within long running
transaction into hierarchical transaction structures. This model
promotes a relaxed notion of atomicity whereby forward
recovery is used in the form of compensating transactions to
undo the effects of a failed transaction.

E. ConTract model:

The ConTract model has been proposed to provide a
generalized control mechanism for long-lived activities and is
aimed at the problem domain of large distributed applications
[10]. The basic idea behind this model is to build large
applications from short ACID transactions and to provide an
application independent system service, which exercises
control over them. Also this model does not extend the ACID
transactions in structure but embeds them in the application
environment and provides reliable execution control over them.
In this model a unit of work is defined as a step which ensures
the ACID properties but preserves only local consistency. These
steps are executed according to a script, which is an explicit
control flow description. A reliable and correct execution of
the steps is called a ConTract. Hence this model provides
control mechanisms like semantic synchronization, context
management and compensation at the script level to provide

S.Meenakshi et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,351-356

© 2010, IJARCS All Rights Reserved 353

transaction support to a long-lived and complex application.

F. Split/Join transaction model:

This model has been designed to provide transactions
they have ability to share resources by allowing dynamic
reconstruction of running transactions [11]. It is suitable for
activities with uncertain duration, unpredictable
developments, and interaction with other activities. The basic
aim of this model is to split a running transaction into two or
more transactions and later join other transactions by merging
their resources. Also this model allows cooperation among
users by allowing transfer of resources from one transaction
to other transactions. Further, it uses an adaptive recovery
mechanism which allows part of the work done to be
recoverable, and since a committing transaction part may
release some of its resources, isolation may somehow be
reduced. The main drawback of this model is complex
merging mechanisms. Also the two resulting transactions
from the split command have to obey a serializability
criterion which implies that the two transactions must be
seen as two isolated transactions while running.

G. Flex transaction model:

This model has been proposed as a transaction model for
flexible transaction processing in multidatabase systems
[12]. A flex transaction is a set of tasks with a set of
functionally equivalent subtransactions for each and a set of
execution dependencies on the subtransactions including
failure dependencies, success dependencies and external
dependencies. Flex transaction model relaxes the atomicity
and isolation properties of transactions to provide users
increased flexibility in specifying their transactions. To
relax the isolation requirement, a flexible transaction uses
compensation and relaxes global atomicity requirement
allows the transaction designer to specify the acceptable
states for termination of the flexible transaction. However
scalability and access control are not addressed in flexible
transaction.

H. Cooperative transaction hierarchy:

This transaction model has been proposed for design
environments and it is a tree based approach similarly like
the nested transaction model [13]. The three restricted main
levels of this model are: a root, one or more transaction
groups and several cooperative transactions. The
cooperative transactions correspond to the leaf nodes,
which are grouped into transaction groups. They are
associated each with a designer in the environment and can,
within a transaction group, cooperate on some task.
Cooperative transactions are nonserializable and hence for
each transaction group, patterns, being a set of rules for how
operations can be interleaved, and conflicts, being a set of
rules that specify which operations are not allowed to run
concurrently, are used as correctness criteria. Although
cooperative transaction hierarchy addresses cooperation, its
main weakness is the need to define both patterns and
conflicts in advance. Hence this model is suitable for
applications with a well-defined work structure.

I. CoAct:

Cooperative Activity Model provides the transactional
properties applicable to cooperative scenarios. Each user in
CoAct works in an own workspace called private workspace
and they cooperate through the controlled information exchange
and synchronization of their private workspaces [14]. This
model works in the following way: a certain parameterized
CoAct is used to describe a particular activity and by
instantiating it user get a concrete activity. Each participant
of a cooperative activity has his/her own activity called user
activity and the final result is obtained by merging the result of
each user activity. This model is well suited for building
asynchronous cooperative applications. But because of the static
description of cooperative activity, this model is not flexible
enough for advanced cooperative applications.

J. COO:

This model has been developed based on the software
development processes requirements with relaxed atomicity and
relaxed isolation [15]. Relaxing the atomicity property allows
that long transactions may save their intermediate results, thus
minimizing losses in the case of crashes and relaxed isolation
allows several software processes to access the intermediate
results without violating the correctness criterion.

Intermediate results are managed by applying three different
object consistency levels such as stable, semi-stable, and
unstable. An object is stable when it is fully consistent i.e., a
result from a successfully committed transaction. Semi-stable
objects are the processes may generate as tentative data, and
can be seen as consistent enough, but may violate the
correctness criteria. That is, only processes that satisfy the
semantic rules and integrity constraints encoded in the software
process description are allowed to use semi-stable objects.
Unstable objects are those that do not satisfy the correctness
criterion at all, and are currently locked by the processes. This
object is inaccessible until it becomes stable or semi-stable
objects.

K. Evaluation of transaction models:

The transaction models that are reviewed in this paper has
been evaluated based on the factors that include transaction
properties, transaction structure, intra transaction concurrency,
transaction support and the area of application and is shown in
Table 1. The presented transaction models are the various
extensions to flat transactions that relax the atomicity and
isolation properties with the extension of single level structure
(flat) to multi level structures. Also the reviewed models have
been classified based on the two dimensions such as
transaction structure and the structure of objects that they
operate on. According to transaction structure the reviewed
models use two strategies to achieve different structures inside
a transaction: (i) modularize a complex transaction with
hierarchies. i.e., a large transaction is divided into smaller
components, which can in turn be decomposed and this strategy
has been applied in nested transactions, flexible transactions,
and open nested transactions (ii) decomposing a long lasting
transaction into shorter subtransactions which include a
compensation mechanism and this strategy has been applied in
sagas, multi level transactions. Along the object structure

S.Meenakshi et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,351-356

© 2010, IJARCS All Rights Reserved 354

dimension the above reviewed transaction models operate
on simple objects.

IV. NEED FOR FLEXIBLE TRANSACTION

PROCESSING

Database management systems have undergone dramatic
changes as a result of the increasing requirements of modern
applications. Most of the recent research efforts have
addressed newer transaction models due to the transactional
requirements of new applications in databases and this rapid
growth of transaction models will increase the difficulty of
integrating the various models in a uniform manner in a
DBMS. Hence today’s modern database applications
requires a need for: (i) a DBMS to be enhanced with their
functionality, to accommodate the requirements of modern
database applications ii) a DBMS to be configured to
support a flexible transaction management mechanism as
needed by the application.

Currently, the choice of the transaction model to be
supported by a DBMS is made at the system implementation
time there by rendering it difficult to be changed. This is a
severe limitation since the support of only one specific
transaction model can only serve the requirements of small
class of applications. The various existing transaction
framework such as ACTA [16], ASSET [17] have been
proposed to support multiple transaction models that operate
on simple objects with formalized dependencies in
conventional database systems.

A. Approach using ECA paradigm:

In order to achieve the above need and the requirement
for supporting reactive behavior in database systems, this
research paper identifies an effective rule based database
paradigm called as active database systems (ADBS) that
extend conventional database systems by supporting
mechanisms to automatically monitor and react to events
that are taking place either inside or outside of the database

systems by using active rules [4]. An active rule consists of
three components such as an event, a condition, and an action
(ECA-rule). The ECA rule paradigm has been efficiently used
in advanced application areas such as distributed environments
[19, 20], ubiquitous web services [22], event driven computing
[23], healthcare system [27], business processes system [29] and
e-business applications [24]. The ECA rule paradigm can also
give the flexibility to choose transaction models at runtime by
activating or deactivating the appropriate rule sets for
supporting multiple transaction models. Events and rules can
also be reused across rule sets when defining related transaction
models [28].

Most of the research and development efforts on active
databases and commercial implementations have focused on
combining active capabilities in the context of both relational
and object oriented database systems [4, 25]. Object oriented
database systems provide greater opportunities to model, store
and manipulate complex objects with object oriented concepts
for complex applications [32]. It has been recognized that many
benefits can be gained by integrating active concepts with
object oriented database systems [4, 5, 21, and 26].

V. CONCLUSION

This paper has presented a constructive review of
transaction models to handle effective transaction processing in
database systems. The various transaction models reviewed in
this paper operate on simple objects in conventional database
systems. The limited support of specific transaction model in
conventional database systems and the growing list of today’s
modern database applications require a need for flexible
transaction mechanism to process transactions in advanced
databases. The ECA rule paradigm with active capability has
been identified as a flexible mechanism for supporting the
requirements of advanced applications.

Table: 1 Evaluation of transaction models

Sr.
No.

Model Transaction
properties

Intra transaction
concurrency

Transaction structure Transaction support Application area

1 Flat ACID No No internal
structure

Short duration
transactions

Applications with competitive
access to shared data

2 Nesting ACID Yes Hierarchy of
subtransactions

Short duration
transactions

Applications with competitive
access to shared data

3 Open nesting and
Multilevel

ARCIRD Yes Hierarchy of
subtransactions

Short and long duration
transactions

Applications with
competitive and cooperative

access to shared data
4 Sagas and Nested

Sagas
ACIRD Yes Sequence of

subtransactions with
compensating
transactions

Long duration transactions Applications with cooperative
access to data

5 Contract ACID No Hierarchy of
subtransactions

Long duration and
complex transactions

Distributed applications

6 Split/Join ACIRD No Transactions with
dynamic reconstruction

Cooperative transactions Applications with uncertain
duration

7 Flex Yes subtransactions with
compensating
transactions

Cooperative transactions Multi database applications

8 Cooperative
transaction hierarchy

ARCIRD No Three level tree based
approach

Cooperative transactions Design applications

9 CoAct ACIRD No Transactions with
compensation, dynamic

Cooperative transactions Asynchronous cooperative
applications

S.Meenakshi et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,351-356

© 2010, IJARCS All Rights Reserved 355

reconstruction
10 Coo ARCIRD Yes Check in and checkout

model
Long and cooperative

transactions
Software development process

ar – relaxed atomicity ir – relaxed isolation

VI. REFERENCES

[1] W.S.Barghouti and G.E.Kaiser, Concurrency Control in
Advanced Database Applications, ACM computing surveys,
Vol.23, No.3, pp.270-317, 1991.

[2] A.Thomasian, Concurrency Control: Methods, Performance
and Analysis, ACM computing surveys, Vol.20, No.1, pp.71-
119, 1998.

[3] B. Bhargava, Concurrency Control in Database Systems,
IEEE Transactions on Knowledge and Data Engineering,
Vol.11, No. 1, pp.3-16, 1999.

[4] N.W. Paton, O. Diaz, Active database systems, ACM
Computing Surveys, Vol.31, No.1, pp.63-103, 1999.

[5] J. Campin, N.Paton and M.H.Williams, Specifying Active
Database Systems in an Object-Oriented Framework,
Software Engineering and Knowledge Engineering,
Vol.7,No.1,pp.101-123,1997.

[6] J.E.B. Moss, Nested Transactions: An Approach to Reliable
Distributed Computing, Massachusetts Institute of
Technology Press, Cambridge, 1985.

[7] G.Weikum and H.J. Schek, Concepts and applications of
multilevel transactions and open nested transactions, In
A.K.Elmagarmid, editor, Database Transaction Models for
Advanced Applications, pp.350-397,Morgan Kaufmann,
1992.

[8] H. Garcia-Molina and K. Salem, Sagas, In Proceedings of
the SIGMOD International Conference on Management of
Data, pp.249-259, 1987.

[9] H.Garcia-Molina, D. Gawlik, J. Klein, K.Kleissner and
K.Salem, Modeling Long-Running Activities as Nested
Sagas, IEEE Bulletin of the Technical Committee on Data
Engineering, Vol.14, No.1,pp.14-18,1991.

[10] H.Waechter, A.Reuter, The ConTract Model, In A.
Elmagarmid (Ed): Database Transaction Models for
Advanced Applications, Morgan Kaufmann Publishers, pp.
229-263, 1992.

[11] C. Pu, G.Kaiser and N. Hutchinson, Split transactions for
open-ended activities, In Proceedings of the 14th
International Conference on Very Large Data Bases, pp.26-
37,1988.

[12] A. K. Elmagarmid, Y. Leu, W. Litwin and M. Rusinkiewiczt,
A Multidatabase Transaction Model for InterBase, In
Proceedings of the 16th International conference on Very
Large Data Bases, pp.507-518, 1990.

[13] M.H.Nodine and S.B.Zdonik, Cooperative Transaction
Hierarchies: Transaction Support for Design
Applications, VLDB Journal, Vol.1, No.1, pp.41-80, 1992.

[14] M. Rusinkiewicz, W. Klas, T. Tesch, J. Wasch and P. Muth,
Towards A Cooperative Transaction Model-The Cooperative

Activity Model, In Proceedings of the 21st VLDB
Conference,pp.194-205,1995.

[15] C. Godart, Coo: A transaction model to support cooperating
software developer’s coordination, In 4th European Software
Engineering Conference, LNCS 717, pp.361-379, 1993.

[16] P. K. Chrysanthis and K. Ramamritham, Synthesis of
extended transaction models using ACTA,ACM Transactions
on Database Systems, Vol.19, No.3, pp.450-491, 1994.

[17] A.Billris, S.Dar, N.Gehani, H.V. Jagadish, K.Ramamritham,
ASSET: A System for Supporting Extended Transactions, In
Proceedings of the ACM SIGMOD International conference
on Management of Data, pp.44-54, 1994.

[18] A. Buchmann, M.T.Ozsu, M.Hornick, D. Georgakopoulos
and F.Manola, A Transaction Model for Active Distributed
Object Systems, In A.K.Elmagarmid(ed): Database
Transaction Models for Advanced Applications, pp.2-
31,1992.

[19] G.Vonbulltzingsloewen, A. Koschel, P.C. Lockemann, H.D.
Walter, ECA functionality in a distributed environment, In
N.W. Paton, editor, Active Rules in Database Systems,
Springer, pp. 147-175, 1999.

[20] S. Chakravarthy, and R. Le, ECA Rule Support for
Distributed Heterogeneous Environments, In Proceedings of
the 14th International Conference on Data Engineering, IEEE
Computer Society,Orlando,Florida,1998.

[21] S.Chakravarthy, V.Krishnaprasad, Z.Tamizuddin,
R.H.Badani, ECA Rule Integration into an OODBMS:
Architecture and Implementation, Technical Report UF-CIS-
TR-94-023, Department of Computer and Information
Sciences, University of Florida, Florida, May 1994.

[22] Jae-Yoon Jung, Jonghun Park, Seung-Kyun Han, Kangchan
Lee, An ECA-based framework for decentralized
coordination of ubiquitous web services, Information and
Software Technology,Elsevier, Vol.49, pp.1141-1161, 2007.

[23] K.M. Chandy, Event-driven applications: costs, benefits and
design approaches, Gartner Application Integration and Web
Services Summit, 2006.

[24] M.Cilia, A.Buchmann, An active functionality service for e-
business applications, ACM SIGMOD Record, Vol.31, No.1,
pp.24-30, 2002.

[25] E. Simon, A.K.Dittrich, Promises and Realities of Active
Database Systems, In Proceedings of the 21st VLDB
Conference, pp.642-653, Zurich, Switzerland, 1995.

[26] C.Beeri, T.Milo, A Model for Active Object Oriented
Database, In Proceedings of the 17th International Conference
on Very Large Data Bases,pp.337-349, Barcelona, 1991.

[27] K. Dube, B. Wu, and J. B. Grimson, Using ECA Rules in
Database Systems to Support Clinical Protocols, R. Cicchetti
et al. (Eds.): DEXA 2002, pp. 226-235, LNCS 2453,
Springer-Verlag, 2002.

S.Meenakshi et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,351-356

© 2010, IJARCS All Rights Reserved 356

[28] E.Anwar, S.Chakravarthy, V.Viveros, Realizing Transaction
Models: An Extensible Approach using ECA Rules,
Technical Report UF-CIS-TR-95-029, Computer and
Information Science and Engineering Department, University
of Florida, Florida, 1995.

[29] F.Bry, M. Eckert, P.L. Patranjan, and I.Romanenko,
Realizing Business Processes with ECA rules: Benefits,
Challenges, Limits, In Proceedings of the International
Workshop on Principles and Practice of Semantic Web, pp.
48-62, 2006.

[30] P.A.Bernstein, N.Eric, Principles of transaction processing,
second edition, Morgan Kaufmann Publishers, Elsevier,
2009.

[31] R.Elmasri, S.B. Navathe, Fundamentals of Database Systems,
5th edition, Pearson Education Ltd, 2009.

[32] T.M.Connolly, E.Begg, Database Systems: A practical
approach to Design, Implementation, and Management, Third
Edition, Pearson Education Ltd, 2004.

[33] S.Meenakshi, V.Thiagarasu, Correctness Criteria for
Transaction Processing: A Survey and Analysis, International
Journal of Applied Research & Studies, Vol. I, Issue. I, Mid-
116, ISSN 2278-9480, 2012.

