An Approach to Merging of connected network topologies for Improving Ultimate Connectivity in Grid Backdrop

P.Priyanga*, R.G.Gopeeka and S.Lakshmi Prabha
B.E Computer Science and Engineering
SNS College of Technology Coimbatore
priyapalani.bharad@gmail.com*, gopeerg@gmail.com andsruthiprabha480@gmail.com

Abstract

In this paper, we are merging the network topologies for maximum connectivity. Here, we are introducing a method for merging an mconnected network topology and an n-connected network topology, where, m is greater than n, into a single network topology of connectivity m, without disturbing the dwelling links and geographical locations of the nodes. The proposed method is a first of its kind in the area of research concerned with merging networks for ultimate connectivity. The suggested method is made clear in section 2 and illustrated in section 3.

Keywords: Network topology, linking number, interconnection network, ultimate connectivity

I. INTRODUCTION

Applications of computer communication networks are increasing in every field of human activity. Computer communication networks have many applications in the field of education, business, media, multi-player computer gaming, etc. All these applications demand the design of efficient fault tolerant survivable computer communication network topology with minimum transmission delay, response time and maximum throughput [1] [2]. The energy, memory, transmitting and computing power of the nodes is to be limited in the adhoc design network.

The topological structure of interconnection network can be modeled by a uncomplicated graph, whose vertices represent components of the network and whose edges epitomize physical communication links, where directed edges represents one way communication links and undirected edges represent two way communication links. The incidence function specifies a way that the components of the network are interconnected by links. Such a graph is called the topological structure of the interconnection network, or, in short, network topology. Conversely, any graph can also be considered as a topological structure of some interconnection network. Topologically, graphs and interconnection networks are identical. [3].

II. PROPOSED METHOD

This section presents the proposed method for merging an m-connected network topology and an n-connected network topology where m is greater than n, into a single network topology of connectivity m, without disturbing the existing links and geographical locations of the nodes. To start with, a network graph $G_{m}\left(V_{m}, E_{m}\right)$ of connectivity m and another network graph $G_{n}\left(V_{n}, E_{n}\right)$ of connectivity n are considered. The nodes of both the topologies are numbered by using decimal numbers [4].

Tables T_{m} and T_{n} are constructed for both the network graphs G_{m} and G_{n} with the fields- node, degree of the node and linking number. The linking number of all the nodes of G_{m} in table T_{m} is initialized to the corresponding degree of the nodes. The linking number of all the nodes of G_{n} in table T_{n} is initialized to zero. The counter Z is initialized to zero.

If connectivity of both the graph are contra distinct, then cut sets of all cardinalities C_{i} are constructed for the network graph G_{n}, where $n \leq \mathrm{C}_{\mathrm{i}}<m$, i.e $\mathrm{C}_{\mathrm{i}}=n, n+1, n+2, \ldots, m-1[5]$.

For each cutset, corresponding to the cardinality C_{i} the components S of G_{n} are constructed and the resultant components are arranged in an increasing order of the number of vertices. The counter Z is incremented by one, when the linking number of all the nodes in Table T_{n} is increased by one [6] [7]. The resultant network graph G so obtained will be the network graph with connectivity m.

Algorithm: Network Merging

Input:
(a). $\mathrm{G}_{\mathrm{m}}\left(\mathrm{V}_{\mathrm{m}}, \mathrm{E}_{\mathrm{m}}\right)$: network with connectivity m
(b). $\mathrm{G}_{\mathrm{n}}\left(\mathrm{V}_{\mathrm{n}}, \mathrm{E}_{\mathrm{n}}\right)$: network with connectivity n

Output: $\quad \mathrm{G}(\mathrm{V}, \mathrm{E})$: Merged network with connectivity $\max (m, n)$
Method: Initialize G to a disconnected network with two components G_{m} and G_{n}.
a. Number the nodes of network G_{m}
b. Number the nodes of network G_{n}
c. Construct table T_{m} for the network G_{m} with following field (Node, Degree of node, Updated degree of node)
d. Initialize updated degree of node of two degree of the corresponding nodes
e. Construct Table T_{n} for the network G_{n} with following field (Node, Degree of node, Updated degree of node)
f. Initialize updated degree of node of T_{n} to 0
g. \quad Set $Z=0$.
h. If $(m=n)$ then
(a). Select first m vertices from both G_{m} and G_{n} and establish links between selected vertices.

Else

i. Construct cut sets for network G_{n} of all cardinalities C_{i}, such that $n \mathrm{C}_{\mathrm{i}}<m$, where $\mathrm{i}=n, n+1, n+2, \ldots, m-1$
j. For each cardinality C_{i} do
(a). Construct the components S corresponding to the cutsets.
(b). Arrange the resultant components S in ascending order of nodes.
(c). For each $S_{j} S$
i. If updated degree of every vertex is Z, then select a node from S_{i} which has least degree. If there is a tie then select a node (X) with least node label index.
ii. Select a vertex from G_{m} with least update degree, if there is a tie, select a node with least degree, if there is a tie select a node (Y) with least node label index.
iii. Update the network G by establish a link between X and Y .
iv. Update the update degree corresponding to X and Y in Table 1 and Table 2 respectively.
For End.
If there exist any node (A) in G with degree less then $\mathrm{C}_{\mathrm{i}}+1$, then establish a link between (A) and a node (B) of G_{m} (selected as described in step 2), and subsequently update the update degrees corresponding to A and B in table 1 and table 2.

Increment Z by 1 when the updated degree of all the nodes of the network 2 is increased by at least 1 .

For end.
Algorithm end

III. ILLUSTRATION

In this section, the proposed method is illustrated by taking two network graphs G_{m} and G_{n}, where G_{m} is a 5connected and G_{n} is 1 -connected network. The merged graph G will be 5 -connected [8].A 5 -connected graph G_{m} and 1-connected network graph G_{n} are shown in Figure 1 and Figure. 2

Figure: 1 5-connected network graph

Figure: 2 1-connected network graph G_{n}
For the network graph G_{m} the Table1 is constructed with the fields- node, degree of the node, linking number. To start with, the linking number of every node of the graph G_{m} is same as the degree of the node [9][10].

Table: 1 Information table for network graph G_{m}

		Linking Number				
a	5	e	f	f	g	g
b	5	e	f	f	g	g
c	5	e	e	f	f	g
d	5	e	e	f	f	g
e	5	e	e	f	f	g
f	5	e	e	e	f	g
g	5	e	e	e	f	g
h	5	e	e	e	f	g

The main advantage of this method is that it is based on the concept of cut sets. For the network graph G_{n}, the Table is constructed with the fields- node, degree of the node, linking number. To start with, the linking number of every node of the graph G_{n} is initialized to zero. The component S_{1} is considered. This component has only one node, i.e node \boldsymbol{a}. The linking number of node \boldsymbol{a} equals 0 , which is less than or equal to Z. This node is selected. A node from G_{m} which has least degree is selected. If there is a tie, a node which has the smallest node number is selected. Since, all nodes of G_{m} have the same linking number and same degree, the node \boldsymbol{a} of G_{m} is selected as it has the least node index label. A link between node \boldsymbol{a} of G_{m} and node \boldsymbol{a} of G_{n} is established. Simultaneously, the linking number of both the nodes is increased by 1 [11].

The component S_{2} is considered. This component has two nodes namely node \boldsymbol{e} and node \boldsymbol{f}. The degrees of nodes \boldsymbol{e} and \boldsymbol{f} are the same. Therefore node number \boldsymbol{e} is selected from this component as \boldsymbol{e} is less than \boldsymbol{f}. In G_{1}, the linking numbers of nodes $\boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}$ are less than the linking number of node \boldsymbol{a}. Further, the degree of every node is the same. Since, node \boldsymbol{b} has the least node index number, it is selected. A link between node \boldsymbol{b} of G_{m} and node \boldsymbol{e} of G_{n} is established. Simultaneously, the linking number of both the nodes is increased by 1 .The component S_{3} is considered. Here, the linking number of all the nodes is not less than or equal to Z . Therefore, no node is selected from this component. For similar reasons, no node is selected from the component S_{4} [12].

The resultant graph G from the above iteration is a 2 Connected network graph and is as shown in Figure 3.

Figure: 3 2-connected merged network graph

The counter Z is not incremented as linking number of all the nodes are not increased by one.

The components corresponding to the cut-set of C_{2} are constructed and the components are arranged in the increasing order of their cardinality. The component $\mathrm{S}_{1}=\{\boldsymbol{a}\}$ is considered. Since, the linking number of the node \boldsymbol{a} in G_{n} equals 1 which is greater than Z, node \boldsymbol{a} is not selected. For similar reasons, node \boldsymbol{e} of S_{2} is not selected. The component $S_{3}=\{\boldsymbol{f}\}$ is considered. The linking number of node \boldsymbol{f} equals 0 which is less than or equal to Z . In G_{m}, the linking numbers of nodes $\boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}$ and \boldsymbol{h} are less than the linking number of node \boldsymbol{a} and \boldsymbol{b}. Further, the degree of every node is the same. Since node \boldsymbol{c} has the least node index number, it is selected. A link is established between node \boldsymbol{c} of G_{m} and node \boldsymbol{f} of G_{n}

The component S_{6} is considered. Here, the linking number of all the nodes is not less than or equal to Z . Therefore, no node is selected from this component. For similar reasons, no node is selected from the component S_{6}, S_{7} and S_{8}. The component $\mathrm{S}_{5}=\{\boldsymbol{b}, \boldsymbol{c}\}$ is considered. Here, the linking numbers of both the nodes are equal to zero, which is less than or equal to counter Z . Therefore, a node from S_{5} with least degree is selected. Hence, node \boldsymbol{c} is selected. In G_{m}, the linking numbers of nodes $\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}$ and \boldsymbol{h} are less than the linking number of node $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}. Further, the degree of every node is the same. Since node \boldsymbol{d} has the least node index number, it is selected [13]. A link is established between node \boldsymbol{d} of G_{m} and node \boldsymbol{c} of G_{n}.

Since, the degree of every node in the resultant graph should be greater than or equal to 3 after this iteration, it is observed that the degree of the node \boldsymbol{a} of G_{n} is 2 . Hence, the node \boldsymbol{a} of G_{n} is selected, in G_{n}. The linking numbers of nodes $\boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}$ and \boldsymbol{h} are less than the linking number of node $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and \boldsymbol{d}. Further, the degree of every node is the same. Since node \boldsymbol{e} has the least node index number, it is selected. A link is established between node \boldsymbol{e} of G_{m} and node \boldsymbol{a} of G_{n}. The counter Z is not incremented as linking number of all the nodes are not increased by one. The components corresponding to the cut-set of C_{3} are constructed and the components are arranged in an increasing order of their cardinality. The component $S_{1}=\{a\}$ is considered. Since, the linking number of the node \boldsymbol{a} in G_{n} equals b which is greater than Z, node \boldsymbol{a} is not selected. For similar reasons, node \boldsymbol{e} of S_{3} and node \boldsymbol{f} of S_{4} is not selected.

The component $\mathrm{S}_{2}=\{\mathrm{b}\}$ is considered. The linking number of node \boldsymbol{b} equals 0 which is less than or equal to Z . In G_{m}, the linking numbers of nodes $\boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}$ and \boldsymbol{h} are less than the linking number of node \boldsymbol{a} and \boldsymbol{b}. Further, the degree of every node is the same. Since node \boldsymbol{c} has the least node index number, it is selected. A link is established between node \boldsymbol{c} of G_{m} and node \boldsymbol{d} of G_{n}. Simultaneously, are updated the corresponding tables.

The component S_{5} is considered. Here, the linking number of all the nodes is not less than or equal to Z . Therefore, no node is selected from this component. For similar reasons, no node is selected from the component S_{6}, $\mathrm{S}_{7}, \mathrm{~S}_{8}, \mathrm{~S}_{9}$ and $\mathrm{S}_{10}[14]$.

Since the degree of every node in the resultant graph should be greater than or equal to 4 after this iteration, it is observed that the degree of the nodes $\boldsymbol{a}, \boldsymbol{c}, \boldsymbol{e}$ and \boldsymbol{f} does not satisfy this condition. Hence, the nodes $\boldsymbol{a}, \boldsymbol{c}, \boldsymbol{e}$ and \boldsymbol{f} of G_{n}, are selected, in G_{m}. The linking numbers of nodes \boldsymbol{g} and \boldsymbol{h} are less than the linking number of node $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}$ and \boldsymbol{f}.

Further, the degree of every node is the same. Since, node \boldsymbol{g} has the least node index number, it is selected. A link is established between node \boldsymbol{g} of G_{m} and node \boldsymbol{a} of G_{n}. Similarly, links are established between node \boldsymbol{h} of G_{m} and node \boldsymbol{c} of G_{n}, node \boldsymbol{a} of G_{m} and node \boldsymbol{e} of G_{n} and node \boldsymbol{b} of G_{m} and node f of G_{n}. The corresponding tables are updated. The resulting network graph is shown in Figure 4

Figure: 4 4-connected merged network graph
The counter Z is not incremented as linking number of all the nodes are not increased by one. The components corresponding to the cut-set of C_{3} are constructed and the components are arranged in an increasing order of their cardinality. The component $S_{1}=\{a\}$ is considered. Since, the linking number of the node \boldsymbol{a} in G_{n} equals 3 which is greater than Z , node \boldsymbol{a} is not selected. For similar reasons, node \boldsymbol{b} of S_{2}, node \boldsymbol{e} of S_{4} and node \boldsymbol{f} of S_{5} is not selected. The component $\mathrm{S}_{3}=\{\mathrm{d}\}$ is considered. The linking number of node \boldsymbol{d} equals 0 which is less than or equal to Z. In G_{m}, the linking numbers of nodes $\boldsymbol{f}, \boldsymbol{g}$ and \boldsymbol{h} are less than the linking number of node $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$ and \boldsymbol{e}. Further, the degree of every node is the same. Since, node \boldsymbol{f} has the least node index number, it is selected. A link is established between node \boldsymbol{f} of G_{1} and node \boldsymbol{b} of G_{2}. Simultaneously, the corresponding tables are updated.

Since, the degree of every node in the resultant graph should be greater than or equal to 5 after this iteration, it is observed that the degree of the nodes $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{e}$ and \boldsymbol{f} of G_{2} does not satisfy this condition. Hence, the nodes $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{e}$ and \boldsymbol{f} of G_{n} are selected, in G_{m}. The linking numbers of nodes $\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}$ and \boldsymbol{h} are less than the linking number of node $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}. Further, the degree of every node is the same. Since, node \boldsymbol{d} has the least node index number, it is selected. A link is established between node \boldsymbol{d} of G_{m} and node \boldsymbol{a} of G_{n}. Similarly, links are established between node \boldsymbol{e} of G_{m} and node \boldsymbol{b} of G_{n}, node \boldsymbol{f} of G_{m} and node \boldsymbol{c} of G_{n}, node \boldsymbol{g} of G_{m} and node \boldsymbol{e} of G_{n} and node \boldsymbol{h} of G_{m} and node \boldsymbol{f} of G_{n}. The corresponding tables are updated.

IV. CONCLUSIONS

The main advantage of this method is that it is based on the concept of cut sets. The connectivity of the merged graph increases by one after every iteration. Hence, we get all possible networks with connectivity between n and m. Thus far, methods have been proposed to construct m connected networks and to merge two or more networks into
a single network for maximum connectivity. Once a network is constructed, and a claim is made that the constructed network is m-connected, to verify the claim, the next chapter proposes a method to compute the connectivity of a network in a single iteration.

V. REFERENCES

[1]. A. Frank and E. Tardos, 1989, Vol. 114/115, pp. 329-348. 'An application of submodular flows', Linear Algebra and its Applications,
[2]. Fred Halsall, 2000, 'Multimedia Communications: Applications, Networks, Protocols and Standards', First Edition, Addison-Wesley.
[3]. Gaoxi Xiao, Yiu-Wing Leung and Kwok-Wak Hung, 2001, pp.1102-1115, 'Two-stage cut saturation algorithm for designing all-optical networks', IEEE Communications Society.
[4]. M. Gerla, H. Frank and J. Eckl, 1974, pp. 1074-1085, 'A cut saturation algorithm for topological design of packet switched communication networks', Proc. NTC.
[5]. GruiaCalinescu and Peng-Jun Wan 2006, Vol.11, No.2, pp.121-128, 'Range assignment for biconnectivity and kedge connectivity in wireless Ad Hoc networks', Springer Netherlands.
[6]. HananShpungin and Michael Segal, 2005, pp.89-9, 'kFault resistance in wireless Ad-Hoc networks', 2005 joint workshop on Foundations of mobile computing.
[7]. Harold N. Gabow and Suzanne Gallagher, 2008, pp. 550559 , 'Iterated rounding algorithms for the smallest k-edge connected spanning subgraph', Nineteenth annual ACMSIAM symposium on Discrete algorithms.
[8]. Harold N. Gabow, 2006, Vol.53, No.5, pp.800-844, 'Using expander graphs to find vertex connectivity', Journal of the ACM.
[9]. Heinrich Moser and Bernd Thallner, 2006, pp.35-44, 'Construction of a fault-tolerant wireless communication topology using distributed agreement', 2006 workshop on Dependability issues in wireless ad hoc networks and sensor networks.
[10]. Henri Koskinen, 2004, Vol. 26, pp. 321-338, 'A simulation- based method for predicting connectivity in wireless multihop networks', Telecommunication Systems.
[11]. M. Henzinger, S. Rao and H. Gabow, 2000, Vol. 34, pp 222-250, 'Computing vertex connectivity, new bounds from old techniques', Journal of Algorithms.
[12]. Huiqiang Wang, Guosheng Zhao and Jian Wang, 2008, 'Survivable network system: An immune approach', Proceedings of the 2008 Int. Conf. on Internet Computing in Science and Engineering ,IEEE Computer Society, pp. 329-331.
[13]. IzhakRubln, 1976, pp. 263-267, 'On reliable topologies for computer networks', 2nd International conference on Software Engineering.

