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Abstract: Traffic classification provides security to the network systems and provides basics for trusted network management. Network traffic 
classification is extensively required mainly for many network management tasks such as traffic policing and flow prioritization. To overcome the 
inaccuracy of prior protocol based traffic classification method payload based method is introduced which uses signatures for traffic classification. 
Signatures are generated by the session and application information of the packet. Various techniques have been developed to produce accurate and 
reliable signatures for traffic classification. This survey paper looks at those techniques of payload based signature generation and compares their 
accuracy with other schemes. Issues related to signature generation technique also discussed. 
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I. INTRODUCTION 

Network traffic classification provides basic security for 
network systems A wide range of issues related to trusted 
network management depends on network traffic 
classification and application identification, which shows 
the process to discover what kind of applications are run by 
the users in a particular network flows. Based on the 
classified result of the network traffic, Quality of Service 
(QoS) can be deployed by the Internet service providers 
(ISPs). Through which network administrators can get the 
precise mappings on the application in the network traffic, 
in which trusted services will get higher priority and other 
services will be restricted. Earlier, Traffic classification has 
been done using port-based method for identifying internet 
applications. It inspects the TCP or UDP port numbers and 
identifies the application protocols according to the Internet 
Assigned Port Numbers authority (IANA) list of well-
known ports and registered ports [1]. Due to violation of 
port number assignment by newly emerging applications 
this method is proved to be highly inaccurate. 

For the accurate traffic classification payload based 
method is most widely applied in industry. Payload based 
method [9] uses signature for traffic classification which 
utilize stateful reconstruction of session and application 
information from each packets content and it is reliable and 
consumes moderate computational power. However, deriving 
accurate and efficient protocol signatures for various 
applications is a challenging task. Various techniques have 
been used to generate automated application signature and 
worm signature for efficient network traffic classification 
using payload based method. In this survey we are discussing 
about various port based techniques that generates automated 
signatures. 

II. APPLICATION SIGNATURE GENERATION 

USING PROTOCOLS 

Network traffic associated with different P2P 
applications has the broad range of network operations in 
which port based classification is highly inaccurate for some 
P2P applications. An efficient approach has been developed 
for identifying the P2P application traffic through 
application level signatures [5]. Application level signatures 
have been developed for number of popular P2P 
applications by designing a real-time classification system 
which operates on individual packets in the middle of the 
network. Signatures are identified by packet level traces and 
some available documentation. The generated application 
signatures can track the P2P traffic even on high speed 
network links. 

Various P2P protocols such as Gnutella, eDonkey, 
BitTorrent, Kazaa which allow a random host to act as both 
a client and server to its peers from which HTTP response 
headers are downloaded. In the signature implementation 
the downloaded headers undergoes fixed and variable offset 
match with the payload of the P2P traffic [10]. To evaluate 
the signature based P2P classification Gigascope framework 
monitor is used which can perform variety of traffic 
measurement by automatically breaking the complex 
computation into multiple tasks for identifying byte count 
and number of packets in each direction. The experimental 
setup would be made by tracing the data sets using the 
Gigascope monitor and the data sets will be traced based on 
internet access and VPN. The generated traces will be 
allowing the classifier to be evaluated for its accuracy, 
robustness and scalability.  

This signature generation method classifies the traffic 
three times as much traffic when compared to the port based 
method which have been used earlier and this scheme 
exhibits low false positive and false negative. Though this 
method produce accurate signature using protocol knowledge 
later, as more and more new applications use proprietary 
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protocols, this method will also  become difficult to produce 
signature of high accuracy and reliability and thus the 
signature produced will be manually extracted by the 
network administrator thus time consuming and error prone. 

III. AUTOMATED APPLICATION SIGNATURE 

GENERATION USING LASER 

The approach that uses the protocol analysis for 
generating signatures are limited to identifying the security 
threatening traffic only and it will not consider the innocuous 
traffic. Signatures generated have been manually extracted so 
that such process cause a slow response time. A systematic 
LASER algorithm [2] has been proposed to generate 
automated application level signature for traffic 
classification. LASER is the LCS based Application 
Signature ExtRaction algorithm which automatically 
determine the pattern using the packet payload without any 
prior knowledge of protocol. This method evaluates the 
closeness of the signature with the pre-discovered signatures. 

Signature generation process in this automated method 
consists of two parts: 

A. Sanitized packet collection: 

Raw packets from the network traffic have been dumped 
using Winpcap or Libpcap to collect the packet traces for 
every running process in the OS and the collected packets are 
divided according to each flow. The collected data set is a 
mixture of many different applications which produce too 
many garbage values and the uncertainty of the traffic can be 
removed before fed to the signature extraction algorithm. 

B. Signature extraction: 

For signature extraction LCS (Longest Common 
Subsequence) algorithm is used for finding common 
subsequences and then common substrings are extracted as 
signatures through LASER algorithm. LCS is normally used 
for DNA sequence matching. For finding subsequence in 
packets some constraints is modified in the LCS algorithm. 
LCS uses constraints like number of packets per flow, 
Minimum substring length and packet size comparison to 
find common strings from the packet trace. Signatures are 
refined by eliminating the trivial strings. 

Popular P2P applications like Limewire, BitTorrent and 
Fileguri validate this LASER algorithm and it shows the 
generated signatures were close to the signature generated 
by previous method. The accuracy evaluation metrics of the 
LASER algorithm uses the false positive, false negative and 
the overall accuracy of the traffic that helps in finding the 
misclassification ratio and signature accuracy. To measure 
the accuracy of data sets Traffic Measurement Agents 
(TMA) is deployed on the selected hosts in the network to 
obtain the absolute ground truth traffic and its information 
about applications. TMA monitors the host’s network 
interface and finds which process is responsible for 
transmission of traffic and generates traffic summary log for 
the interface which have been used later to measure the 
accuracy of LASER signatures. 

The signature generated exhibit low false positive and 
low false negative and the overall accuracy will be high. This 

method focus on the string or hex patterns of the traffic 
payload and the LASER algorithm generates reliable 
signature with a small training data set which minimizing 
human intervention. 

IV. AUTOMATED APPLICATION SIGNATURE 

GENERATION USING AUTOSIG 

While comparing with the traditional method which 
classifies traffic using predefined well known port numbers, 
the method using application signatures are more accurate.  
Unfortunately signatures generated are derived manually 
and increasing in new applications that use proprietary 
protocol makes difficult to maintain up to date signatures for 
applications. To solve this issue AutoSig [15] method is 
proposed which is an automatic application signature 
generation system. AutoSig extracts common substring 
sequence from the traffic flow as signature.  

AutoSig algorithm first divides content of flows into 
small fixed size blocks called shingles. 

A. Common shingle selection: 

AutoSig algorithm first divides content of flows into 
small fixed size blocks called shingles. The length of each 
shingle is K bytes. The i-th shingle corresponds to the 
content block containing payload bytes from offset i to 
offset i+K-1. For a byte sequence with n bytes, n-K+1 
shingles are generated. But common substrings of 
applications are usually very short, so K should be small in 
application signature generation. It is easy to generate noise 
shingles with small K. To filter the noises, shingles are 
divided into different groups according to their offsets in 
AutoSig. The windows are overlapped and with fixed width 
2W. The i-th window covers the payload which ranges from 
byte i*W to byte (i+2)*W, so the size of overlapping area 
between two windows is size W. A shingle appearing in the 
same window frequently is selected as the common shingle. 

B. Shingle merging: 

Extracted common shingles are redundant. A common 
substring can produce a lot of common shingles. These 
redundant common shingles can be further merged into 
common substrings. Merging can be done by simple greedy 
merging algorithm. If two common shingles are overlapped 
or adjacent, they are merged into one substring. Substrings 
can be further merged with other shingles or substrings. The 
merge process is iterated until there are no common shingles 
which can be merged left. For each flow, merged substrings 
are generated. After merging all the samples, the substrings 
appearing in more than R*N flows are selected as the 
common substrings.  

C. Substring sequence generation: 

To generate signatures, reassembled common substrings 
are further organized as substring sequences by using a 
special data structure called substring tree.  

a. First a tree with only one root node is constructed. 
b. Second, the common substrings are sorted 

according to the flow numbers in descending order.  
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c. Third, the substrings are inserted into the tree one 
by one. 

Each path from a signature node to the root node 
corresponds to a substring sequence. Depth-first searching 
algorithm with a stack to record the path is used to generate 
substring sequences. After extracting substring sequences in 
the tree, each substring sequence is reordered according to 
the flow offset of each substring. Thus the signature 
generated by AutoSig is accurate which saves a lot of time 
on manual analysis and updates signatures in time. AutoSig 
can tolerate noises in samples and generate effective 
signatures for the applications which have complex protocol 
and exhibit high true positive and less false positive. 

V. APPLICATION SIGNATURE CONSTRUCTION 

FOR UNKNOWN TRAFFIC 

Identifying applications and classifying network traffic is 
based on some sort of priori knowledge, which means some 
intensive preprocessing would be done before identifying 
those applications and these methods cannot deal with 
previously unknown applications. A new approach has been 
proposed to fully automate the process of deriving 
signatures from unidentified traffic. This method integrates 
the statics based flow clustering with the payload based 
method to eliminate the requirement of pre-labeled data set 
[13].  

The proposed application system consists of two parts: 
an online classification module and an offline training 
module that comprises machine learning steps. 

Online classifier tries to identify the know application by 
predicting the class of all traffic flows by matching 
signatures of known applications and the unidentified traffic 
are marked as class others.  Samples in the others class are 
traced and used as an input for offline training. 

In offline training unknown flows of the new 
applications undergoes flow clustering [3]. For clustering 
we apply X- means algorithm, which is able to estimate 
number of clusters. Every generated cluster consists of flow 
instances that are dominated by single application and new 
signature s for each flow can be derived. The task for the 
administrator is to gain information about emerging 
application by analyzing the clustered traffic and the newly 
constructed signatures. This analysis process falls into 
payload based classification which also takes the advantage 
of statistical traffic characteristics. 

Before running clustering on the data set, feature 
selection is done by Chi-square Ranking algorithm (CHI) and 
two subset search algorithms CFS and CON are used. Top 
five ranked features are choose in CHI. And for CFS and 
CON the candidate subsets are generated from the original 
feature space using best first search. To measure the 
classification result various metrics such as true positive, 
false positive, false negative and true negative are used for 
calculating the overall flow accuracy. And the overall 
clustering accuracy is the number of correctly labeled flows 
in all clusters as a fraction of the total number of flows in the 
data set. The application signatures are automatically 
constructed offline and perform accurate classification online 

are supervised machine learning classifiers built on byte 
feature vectors that encode initial raw data of flow payload 
content. 

VI. AUTOMATIC SIGNATURE GENERATION FOR 

WORMS USING AUTOGRAPH 

To prevent the spreading of internet worms through the 
network traffic, worm signatures are required by the IDS. 
Initially network operators to generate worm signatures they 
study the packet traces manually. Autograph [6] is a method 
that automatically generates signature for novel Internet 
worms that propagate using TCP transport. Autograph 
method is extended to share port scan report among  
distributed monitor instances, and using trace driven 
simulation, demonstrate the value of this technique in 
speeding the generation of signature for novel worms. 

Autograph monitor uses the traffic crossing the edge 
network as input and it outputs a list of worm signatures. 
There are two main stages in Autograph monitor. 

A. Suspicious flow selection: 

This stage uses heuristics to classify inbound TCP flows 
as either suspicious or non-suspicious. Tattler has been used 
over the incoming traffic over the Autograph monitor. It 
shares suspicious source address among all monitors, 
towards the goal of accelerating the accumulation of worm 
payloads. After classification, packets for these inbound 
flow pools are stored on disk in a suspicious flow pool and 
non-suspicious flow pool, respectively. Autograph can adopt 
any anomaly detection technique that classifies worm flows 
as suspicious with high probability. Port scanning flow 
classifier is used to demonstrate that Autograph generates 
highly selective and specific signatures. Autograph Performs 
TCP flow reassembly for inbound payloads in the suspicious 
flow pool. The resulting reassembled suspicious packets are 
analyzed in the second stage. Packets held in the suspicious 
flow pool are dropped from storage after a configurable 
interval. 

B. Signature generation: 

Worm signatures are generated by analyzing the content 
of payload from the suspicious flow pool. Payload will be 
divided into variable-length content blocks using Content-
based Payload Partitioning (COPP). Autograph divides 
payload into fixed-size, non-overlapping blocks and 
computes the prevalence of those blocks across all 
suspicious pool. Blocks generated by COPP might have 
little changes under byte insertion or deletion. COPP decides 
content block boundaries probabilistically, there may be 
case where COPP generate very short content blocks which 
are unspecific and and generate many false positives. Then 
Autograph measures the prevalence of each content block. 
Then the content block with greatest prevalence is chosen as 
the signature Autograph classifies an inbound SYN destined 
for an unpopulated IP address or port with no listening 
process as a port scan [12]. To identify TCP port scans from 
spoofed IP source addresses, an Autograph monitor could 
respond to such inbound SYNs with a SYN/ACK, provided 
the router and/or firewall on the monitored network can be 
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configured not to respond with an ICMP host or port 
unreachable. If the originator of the connection responds 
with an ACK with the appropriate sequence number, the 
source address on the SYN could not have been spoofed. 
Autograph is designed to produce signatures with that 
exhibit high sensitivity and high specificity. 

VII. AUTOMATIC SIGNATURE GENERATION FOR 

WORMS USING POLYGRAPH 

It is found that content-based intrusion detection systems 
are easily evaded by polymorphic worms. The previously 
used Autograph method fails to identify the polymorphic 
worms, which vary their payload on every infection attempt. 
Polygraph [8] is a method that generates signature that 
perfectly matches polymorphic worms [11]. Polygraph 
generates signatures that consist of multiple disjoint content 
substrings. In doing so, Polygraph leverages our insight that 
for a real-world exploit to function properly, multiple 
invariant substrings must often be present in all variants of a 
payload; these substrings typically correspond to protocol 
framing, return addresses, and in some cases, poorly 
obfuscated code. 

The polygraph monitor consists of flow classifier which 
collects the monitored traffic flows from the network and 
classifies the reassembled flows into contiguous byte flows, 
and classifies reassembled flows destined for the same IP 
protocol number and port into a suspicious flow pool and an 
innocuous flow pool. The labeled flow from the classifier is 
stored in the signature evaluator.  The flows at the pool were 
then passed into the polygraph signature generator that 
performs certain methods like token extraction and signature 
construction to generate the sequence of signature from the 
monitored traffic flows. Polygraph signature generator takes 
a suspicious flow pool and an innocuous flow pool as input, 
and produces a set of signatures as output, chosen to match 
the worms in the input suspicious flow pool, and to 
minimize false positives, based on the innocuous flow pool.  

The generated signature matches labeled flow data that 
stored in the signature evaluator. Signatures that generated 
are from the flow substrings or the tokens. It significantly 
improve signature quality and allow Polygraph to adapt to 
attacks that change over time. 

Evaluation of various algorithms on a range of 
polymorphic worms demonstrates that Polygraph produces 
signatures for polymorphic worms that exhibit low false 
negatives and false positives. 

VIII. AUTOMATIC SIGNATURE GENERATION FOR 

WORMS USING HAMSA 

Hamsa is a fast network based automated signature 
generation method for polymorphic worms. This method of 
signature generation will be considered as attack-resilient 
and noise-tolerant [7]. Hamsa uses the worm flow classifier 
which classifies the flows into suspicious and normal traffic 
pool. These flows will then pass into the Hamsa signature 
generator.  

These signature generator process consist of following 
procedures 

A. Token Extractor: 

This process extracts the token from the flow using 
suffix array based algorithm which finds all the byte 
sequences. The idea of the extraction process is that the 
worm flows will constitute at least some fraction of the pool 
so that number of tokens that extracted will be reduced. 

B. Core: 

This process uses the Greedy signature generation 
algorithm. This allow the attacker full flexibility to include 
any content in the polymorphic worms. It helps to extract 
the unique token that is used for generating signatures.  

C. Token Identification: 

This process tests the token specificity in the normal 
traffic pool. 

D. Signature Refiner: 

It finds the common tokens from the set of sequence 
tokens from the flows in the suspicious pool that matches 
the signature from the core. The signature generated will be 
low false positive without affecting its sensitivity. 

Signature generated by Hamsa can be deployed easily by 
IDSes such as Bro and Snort. This signature generation 
method outperforms Polygraph and Autograph interms of 
efficiency and accuracy. 

IX. AUTOMATIC SIGNATURE GENERATION USING 

SIMPLIFIED REGULAR EXPRESSION 

Deriving accurate and efficient application signatures for 
various applications is not a trivial task, however due to the 
rapid evolution of network applications, the signatures are 
also subject to change with time instead of staying fixed. 
Therefore the high cost signature generation process has to 
be repeated from time to time in order to keep the signatures 
up to date. To address this problem an approach that 
automatically learns signatures from data has been 
developed [14]. This method derives regular expression 
(regexp) signatures that not only provide sufficient 
flexibility and expressive power but also are widely 
supported by practical network intrusion detection systems 
(e.g., Snort and Bro) and traffic classification systems (e.g., 
l7-filter). 

The regular expression signature generation process 
involves following procedures. 

A. Pre-processing: 

It observes raw packets from a network tap or a trace 
file, which are then tracked into sessions according to 5-
tuple. Next is a TCP/IP normalizer that deals with IP 
fragmentation and TCP reconstruction. The last step is 
payload extraction. Each flow is represented by two byte 
sequences (i.e., initiator to responder and the other direction) 
whose lengths may vary. And we produce a signature for 
each direction. 

B. Advanced Tokenization: 

The tokens are developed based on the substrings, which 
are common to the input byte sequences of each application 
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class. K-common substring extraction can be done by using 
the suffix tree algorithm. The flow payload of some 
applications reveals position-specific information. On one 
hand, some of the tokens found in the last step always 
appear at the same offset in payload. In order to capture the 
position properties in the signatures, we transform each 
input flow sequence into a set of vectors, where the first 
element in each vector represents a token that occurs in the 
flow and the second element represents the position where 
the token occurs.  

C. Multiple sequence Aligment: 

To find the best common subsequence, multiple 
sequence alignment (MSA) technique is used which is 
widely studied and applied in bioinformatics for finding 
regions of similarity in biological sequences. The simplest 
case in computer science is the longest common 
subsequence (LCS) algorithm that computes the global 
similarity between two strings because it guarantees a 
maximum similarity in terms of the number of matched 
characters rather than consecutive matches, which is 

preferred for producing meaningful and low false-positive 
signatures. From the pair-wise alignment results, the 
similarity scores are converted to distances by normalizing 
and subtracting from one. Thus a distance matrix is 
obtained. In the next step, a tree used to guide the final 
multiple alignment process is calculated from the distance 
matrix using the Neighbor Joining method. 

D. Signature construction: 

The final stage of this approach is to transform the 
alignment results into regular expression signatures. It is 
done by changing the special symbols back to tokens, and 
replacing the variable length with‘‘.*’’ and the fixed length 
gaps with‘‘.{n}’’. 

The signatures are close to real life handcrafted 
signatures because they consist of the critical regexp 
features that are essential for identifying applications. The 
results show that with well-designed methods, the labor-
intensive signature deriving process can be automated. 

 

 

Table 1. Comparison of methods used for generating application signatures 

Work Method Description Merits Demerits 
Karagiannis [5] Protocols Generates signature for 

popular P2P application 
based on the protocol 

Easy to generate signature since it is 
based on the protocol 

It is manual and time consuming 
Difficult to produce signatures for 

new applications 
Byung-Chul [2] LASER algorithm 

 
Automated method for 
generating application 
signature using LCS 

algorithm 

This approach generates accurate 
signature and does not need any prior 

knowledge of protocols 
 

Lack of publicly available 
documentation 

 

Ye [15] AutoSig Automated method for 
generating application 

signature 

Signature generated by AutoSig is 
accurate which saves a lot of time on 

manual analysis and updates signatures 
in time 

It fails to generate signature for 
worms 

Wang Y  
[13] 

Integrating 
Clustering and 
Payload based 

method 

Automated method for 
generating signatures for 

unidentified traffic 

This method generates signatures of 
higher accuracy 

It does not need any priori knowledge 
before generating signatures 

Signatures are difficult to learn 
and any knowledge about the 

unknown application is tedious 

Kim [6] Autograph 
 

Automatically generates 
signature for internet worms 

 

Signatures generated with high true 
positive and low false positives 

 

It focused on single substring 
patterns and failed to match 

polymorphic worms 
 

Newsome  
[8] 

Polygraph 
 

Produces signature that 
matches polymorphic 

worms 
 

Polygraph generates high-quality 
signatures for matching polymorphic 

worms 
 

It matches the flow only if all the 
elements in the set are found in its 

payload 
 

Li [7] Hamsa Fast and automatic signature 
generating method for 
polymorphic worms 

Does not need host information for 
generating signatures 

It generates signature of high accuracy 
and attack resilience 

It outperforms Polygraph in generating 
signatures for polymorphic worms 

Signature generation using Hamsa 
is considered to be expensive 

Wang Y 
[14] 

Simplified Regular 
Expression 

Automatically generates 
signature based on the 

traffic payloads 

Signatures of high quality are produced 
and exhibit low false negatives and false 

positives. 
It is most widely used techniques for 

generating signatures for traffic 
classification 

 

Sequence alignment algorithm 
which is used for generating 
signatures are less efficient 
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Table 2. Application signature generated by various methods 

Method Application Signature 
Protocol Analysis LimeWire ‘GET’ or ‘HTTP’ followed “User-Agent: Limewire” or “UserAgent: Limewire” or “Server: Limewire” 

LASER LimeWire “LimeWire” “Content-Type:” “Content-Length:” “X-Gnutella- Content-URN” “run:sha:1” “XAlt” “X-
Falt” “X-Create-Time:” “X-Features:” “X-Thex-URI” 

AutoSig HTTP [HTTP/1.]; [GET\0x20/][HTTP/1.]; 
Polygraph Apache-Knacker GET .* HTTP/1.1\r\n.*: .* \r\nHost: .* \r\n.*: .*\r\nHost: .*\xFF\xBF.*\r\n 

Hamsa Apache-Knacker {'\xff\xbf': 1, 'GET ': 1, ': ': 4, '\r\n': 5, ' HTTP/1.1\r\n': 1, '\r\nHost: ': 2} 
Simplified Regular 

Expression 
HTTP ‘‘http/(0\.9|1\.0|1\.1) [1-5][0-9][0-9][\x09-\x0d -_]*(connection:|content-type:|content-length:|date:)| post 

[\x09-\x0d -_]* http/[01]\.[019]’’ 

X. CONCLUSION 

This paper surveys significant works in the field of 
application signature generation based traffic classification. It 
examines various payload based technique and their merits 
and demerits of those application signature generation 
methods are shown in Table I. It shows how the application 
signatures for each application are generated and how it 
outperforms the previously used methods. Since payload 
based method is used in real time it is necessary to consider 
the best signature scheme that exhibit low false positive and 
low false negative. Table II shows the different application 
signatures generated by various methods. In this survey paper, 
we have outlined a number of critical operational requirements 
for real-time classifiers and qualitatively critiqued the 
reviewed works against these requirements. There is still a lot 
of room for further research in the field. Machine learning 
techniques along with payload based method gets popularity 
[4]. While most of the approaches build their classification 
models based on sample data collected at certain points of the 
Internet, those models usability needs to be carefully 
evaluated. Payload based traffic classification can be still 
extended by generating signatures of higher accuracy and low 
cost. 
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