
Volume 4, No. 4, March-April 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 34

ISSN No. 0976-5697

A Survey on Signature Generation Methods for Network Traffic Classification

Vinoth George C
Department of Computer Science and Engineering

Karunya University Coimbatore, India
vinothgeorge@karunya.edu.in

Vinodh Ewards
Department of Computer Science and Engineering

Karunya University Coimbatore, India
ewards@karunya.edu

Abstract: Traffic classification provides security to the network systems and provides basics for trusted network management. Network traffic
classification is extensively required mainly for many network management tasks such as traffic policing and flow prioritization. To overcome the
inaccuracy of prior protocol based traffic classification method payload based method is introduced which uses signatures for traffic classification.
Signatures are generated by the session and application information of the packet. Various techniques have been developed to produce accurate and
reliable signatures for traffic classification. This survey paper looks at those techniques of payload based signature generation and compares their
accuracy with other schemes. Issues related to signature generation technique also discussed.

Keywords: traffic classification; signature; payload based method; application traffic; network

I. INTRODUCTION

Network traffic classification provides basic security for
network systems A wide range of issues related to trusted
network management depends on network traffic
classification and application identification, which shows
the process to discover what kind of applications are run by
the users in a particular network flows. Based on the
classified result of the network traffic, Quality of Service
(QoS) can be deployed by the Internet service providers
(ISPs). Through which network administrators can get the
precise mappings on the application in the network traffic,
in which trusted services will get higher priority and other
services will be restricted. Earlier, Traffic classification has
been done using port-based method for identifying internet
applications. It inspects the TCP or UDP port numbers and
identifies the application protocols according to the Internet
Assigned Port Numbers authority (IANA) list of well-
known ports and registered ports [1]. Due to violation of
port number assignment by newly emerging applications
this method is proved to be highly inaccurate.

For the accurate traffic classification payload based
method is most widely applied in industry. Payload based
method [9] uses signature for traffic classification which
utilize stateful reconstruction of session and application
information from each packets content and it is reliable and
consumes moderate computational power. However, deriving
accurate and efficient protocol signatures for various
applications is a challenging task. Various techniques have
been used to generate automated application signature and
worm signature for efficient network traffic classification
using payload based method. In this survey we are discussing
about various port based techniques that generates automated
signatures.

II. APPLICATION SIGNATURE GENERATION

USING PROTOCOLS

Network traffic associated with different P2P
applications has the broad range of network operations in
which port based classification is highly inaccurate for some
P2P applications. An efficient approach has been developed
for identifying the P2P application traffic through
application level signatures [5]. Application level signatures
have been developed for number of popular P2P
applications by designing a real-time classification system
which operates on individual packets in the middle of the
network. Signatures are identified by packet level traces and
some available documentation. The generated application
signatures can track the P2P traffic even on high speed
network links.

Various P2P protocols such as Gnutella, eDonkey,
BitTorrent, Kazaa which allow a random host to act as both
a client and server to its peers from which HTTP response
headers are downloaded. In the signature implementation
the downloaded headers undergoes fixed and variable offset
match with the payload of the P2P traffic [10]. To evaluate
the signature based P2P classification Gigascope framework
monitor is used which can perform variety of traffic
measurement by automatically breaking the complex
computation into multiple tasks for identifying byte count
and number of packets in each direction. The experimental
setup would be made by tracing the data sets using the
Gigascope monitor and the data sets will be traced based on
internet access and VPN. The generated traces will be
allowing the classifier to be evaluated for its accuracy,
robustness and scalability.

This signature generation method classifies the traffic
three times as much traffic when compared to the port based
method which have been used earlier and this scheme
exhibits low false positive and false negative. Though this
method produce accurate signature using protocol knowledge
later, as more and more new applications use proprietary

Vinoth George C et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,34-39

© 2010, IJARCS All Rights Reserved 35

protocols, this method will also become difficult to produce
signature of high accuracy and reliability and thus the
signature produced will be manually extracted by the
network administrator thus time consuming and error prone.

III. AUTOMATED APPLICATION SIGNATURE

GENERATION USING LASER

The approach that uses the protocol analysis for
generating signatures are limited to identifying the security
threatening traffic only and it will not consider the innocuous
traffic. Signatures generated have been manually extracted so
that such process cause a slow response time. A systematic
LASER algorithm [2] has been proposed to generate
automated application level signature for traffic
classification. LASER is the LCS based Application
Signature ExtRaction algorithm which automatically
determine the pattern using the packet payload without any
prior knowledge of protocol. This method evaluates the
closeness of the signature with the pre-discovered signatures.

Signature generation process in this automated method
consists of two parts:

A. Sanitized packet collection:

Raw packets from the network traffic have been dumped
using Winpcap or Libpcap to collect the packet traces for
every running process in the OS and the collected packets are
divided according to each flow. The collected data set is a
mixture of many different applications which produce too
many garbage values and the uncertainty of the traffic can be
removed before fed to the signature extraction algorithm.

B. Signature extraction:

For signature extraction LCS (Longest Common
Subsequence) algorithm is used for finding common
subsequences and then common substrings are extracted as
signatures through LASER algorithm. LCS is normally used
for DNA sequence matching. For finding subsequence in
packets some constraints is modified in the LCS algorithm.
LCS uses constraints like number of packets per flow,
Minimum substring length and packet size comparison to
find common strings from the packet trace. Signatures are
refined by eliminating the trivial strings.

Popular P2P applications like Limewire, BitTorrent and
Fileguri validate this LASER algorithm and it shows the
generated signatures were close to the signature generated
by previous method. The accuracy evaluation metrics of the
LASER algorithm uses the false positive, false negative and
the overall accuracy of the traffic that helps in finding the
misclassification ratio and signature accuracy. To measure
the accuracy of data sets Traffic Measurement Agents
(TMA) is deployed on the selected hosts in the network to
obtain the absolute ground truth traffic and its information
about applications. TMA monitors the host’s network
interface and finds which process is responsible for
transmission of traffic and generates traffic summary log for
the interface which have been used later to measure the
accuracy of LASER signatures.

The signature generated exhibit low false positive and
low false negative and the overall accuracy will be high. This

method focus on the string or hex patterns of the traffic
payload and the LASER algorithm generates reliable
signature with a small training data set which minimizing
human intervention.

IV. AUTOMATED APPLICATION SIGNATURE

GENERATION USING AUTOSIG

While comparing with the traditional method which
classifies traffic using predefined well known port numbers,
the method using application signatures are more accurate.
Unfortunately signatures generated are derived manually
and increasing in new applications that use proprietary
protocol makes difficult to maintain up to date signatures for
applications. To solve this issue AutoSig [15] method is
proposed which is an automatic application signature
generation system. AutoSig extracts common substring
sequence from the traffic flow as signature.

AutoSig algorithm first divides content of flows into
small fixed size blocks called shingles.

A. Common shingle selection:

AutoSig algorithm first divides content of flows into
small fixed size blocks called shingles. The length of each
shingle is K bytes. The i-th shingle corresponds to the
content block containing payload bytes from offset i to
offset i+K-1. For a byte sequence with n bytes, n-K+1
shingles are generated. But common substrings of
applications are usually very short, so K should be small in
application signature generation. It is easy to generate noise
shingles with small K. To filter the noises, shingles are
divided into different groups according to their offsets in
AutoSig. The windows are overlapped and with fixed width
2W. The i-th window covers the payload which ranges from
byte i*W to byte (i+2)*W, so the size of overlapping area
between two windows is size W. A shingle appearing in the
same window frequently is selected as the common shingle.

B. Shingle merging:

Extracted common shingles are redundant. A common
substring can produce a lot of common shingles. These
redundant common shingles can be further merged into
common substrings. Merging can be done by simple greedy
merging algorithm. If two common shingles are overlapped
or adjacent, they are merged into one substring. Substrings
can be further merged with other shingles or substrings. The
merge process is iterated until there are no common shingles
which can be merged left. For each flow, merged substrings
are generated. After merging all the samples, the substrings
appearing in more than R*N flows are selected as the
common substrings.

C. Substring sequence generation:

To generate signatures, reassembled common substrings
are further organized as substring sequences by using a
special data structure called substring tree.

a. First a tree with only one root node is constructed.
b. Second, the common substrings are sorted

according to the flow numbers in descending order.

Vinoth George C et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,34-39

© 2010, IJARCS All Rights Reserved 36

c. Third, the substrings are inserted into the tree one
by one.

Each path from a signature node to the root node
corresponds to a substring sequence. Depth-first searching
algorithm with a stack to record the path is used to generate
substring sequences. After extracting substring sequences in
the tree, each substring sequence is reordered according to
the flow offset of each substring. Thus the signature
generated by AutoSig is accurate which saves a lot of time
on manual analysis and updates signatures in time. AutoSig
can tolerate noises in samples and generate effective
signatures for the applications which have complex protocol
and exhibit high true positive and less false positive.

V. APPLICATION SIGNATURE CONSTRUCTION

FOR UNKNOWN TRAFFIC

Identifying applications and classifying network traffic is
based on some sort of priori knowledge, which means some
intensive preprocessing would be done before identifying
those applications and these methods cannot deal with
previously unknown applications. A new approach has been
proposed to fully automate the process of deriving
signatures from unidentified traffic. This method integrates
the statics based flow clustering with the payload based
method to eliminate the requirement of pre-labeled data set
[13].

The proposed application system consists of two parts:
an online classification module and an offline training
module that comprises machine learning steps.

Online classifier tries to identify the know application by
predicting the class of all traffic flows by matching
signatures of known applications and the unidentified traffic
are marked as class others. Samples in the others class are
traced and used as an input for offline training.

In offline training unknown flows of the new
applications undergoes flow clustering [3]. For clustering
we apply X- means algorithm, which is able to estimate
number of clusters. Every generated cluster consists of flow
instances that are dominated by single application and new
signature s for each flow can be derived. The task for the
administrator is to gain information about emerging
application by analyzing the clustered traffic and the newly
constructed signatures. This analysis process falls into
payload based classification which also takes the advantage
of statistical traffic characteristics.

Before running clustering on the data set, feature
selection is done by Chi-square Ranking algorithm (CHI) and
two subset search algorithms CFS and CON are used. Top
five ranked features are choose in CHI. And for CFS and
CON the candidate subsets are generated from the original
feature space using best first search. To measure the
classification result various metrics such as true positive,
false positive, false negative and true negative are used for
calculating the overall flow accuracy. And the overall
clustering accuracy is the number of correctly labeled flows
in all clusters as a fraction of the total number of flows in the
data set. The application signatures are automatically
constructed offline and perform accurate classification online

are supervised machine learning classifiers built on byte
feature vectors that encode initial raw data of flow payload
content.

VI. AUTOMATIC SIGNATURE GENERATION FOR

WORMS USING AUTOGRAPH

To prevent the spreading of internet worms through the
network traffic, worm signatures are required by the IDS.
Initially network operators to generate worm signatures they
study the packet traces manually. Autograph [6] is a method
that automatically generates signature for novel Internet
worms that propagate using TCP transport. Autograph
method is extended to share port scan report among
distributed monitor instances, and using trace driven
simulation, demonstrate the value of this technique in
speeding the generation of signature for novel worms.

Autograph monitor uses the traffic crossing the edge
network as input and it outputs a list of worm signatures.
There are two main stages in Autograph monitor.

A. Suspicious flow selection:

This stage uses heuristics to classify inbound TCP flows
as either suspicious or non-suspicious. Tattler has been used
over the incoming traffic over the Autograph monitor. It
shares suspicious source address among all monitors,
towards the goal of accelerating the accumulation of worm
payloads. After classification, packets for these inbound
flow pools are stored on disk in a suspicious flow pool and
non-suspicious flow pool, respectively. Autograph can adopt
any anomaly detection technique that classifies worm flows
as suspicious with high probability. Port scanning flow
classifier is used to demonstrate that Autograph generates
highly selective and specific signatures. Autograph Performs
TCP flow reassembly for inbound payloads in the suspicious
flow pool. The resulting reassembled suspicious packets are
analyzed in the second stage. Packets held in the suspicious
flow pool are dropped from storage after a configurable
interval.

B. Signature generation:

Worm signatures are generated by analyzing the content
of payload from the suspicious flow pool. Payload will be
divided into variable-length content blocks using Content-
based Payload Partitioning (COPP). Autograph divides
payload into fixed-size, non-overlapping blocks and
computes the prevalence of those blocks across all
suspicious pool. Blocks generated by COPP might have
little changes under byte insertion or deletion. COPP decides
content block boundaries probabilistically, there may be
case where COPP generate very short content blocks which
are unspecific and and generate many false positives. Then
Autograph measures the prevalence of each content block.
Then the content block with greatest prevalence is chosen as
the signature Autograph classifies an inbound SYN destined
for an unpopulated IP address or port with no listening
process as a port scan [12]. To identify TCP port scans from
spoofed IP source addresses, an Autograph monitor could
respond to such inbound SYNs with a SYN/ACK, provided
the router and/or firewall on the monitored network can be

Vinoth George C et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,34-39

© 2010, IJARCS All Rights Reserved 37

configured not to respond with an ICMP host or port
unreachable. If the originator of the connection responds
with an ACK with the appropriate sequence number, the
source address on the SYN could not have been spoofed.
Autograph is designed to produce signatures with that
exhibit high sensitivity and high specificity.

VII. AUTOMATIC SIGNATURE GENERATION FOR

WORMS USING POLYGRAPH

It is found that content-based intrusion detection systems
are easily evaded by polymorphic worms. The previously
used Autograph method fails to identify the polymorphic
worms, which vary their payload on every infection attempt.
Polygraph [8] is a method that generates signature that
perfectly matches polymorphic worms [11]. Polygraph
generates signatures that consist of multiple disjoint content
substrings. In doing so, Polygraph leverages our insight that
for a real-world exploit to function properly, multiple
invariant substrings must often be present in all variants of a
payload; these substrings typically correspond to protocol
framing, return addresses, and in some cases, poorly
obfuscated code.

The polygraph monitor consists of flow classifier which
collects the monitored traffic flows from the network and
classifies the reassembled flows into contiguous byte flows,
and classifies reassembled flows destined for the same IP
protocol number and port into a suspicious flow pool and an
innocuous flow pool. The labeled flow from the classifier is
stored in the signature evaluator. The flows at the pool were
then passed into the polygraph signature generator that
performs certain methods like token extraction and signature
construction to generate the sequence of signature from the
monitored traffic flows. Polygraph signature generator takes
a suspicious flow pool and an innocuous flow pool as input,
and produces a set of signatures as output, chosen to match
the worms in the input suspicious flow pool, and to
minimize false positives, based on the innocuous flow pool.

The generated signature matches labeled flow data that
stored in the signature evaluator. Signatures that generated
are from the flow substrings or the tokens. It significantly
improve signature quality and allow Polygraph to adapt to
attacks that change over time.

Evaluation of various algorithms on a range of
polymorphic worms demonstrates that Polygraph produces
signatures for polymorphic worms that exhibit low false
negatives and false positives.

VIII. AUTOMATIC SIGNATURE GENERATION FOR

WORMS USING HAMSA

Hamsa is a fast network based automated signature
generation method for polymorphic worms. This method of
signature generation will be considered as attack-resilient
and noise-tolerant [7]. Hamsa uses the worm flow classifier
which classifies the flows into suspicious and normal traffic
pool. These flows will then pass into the Hamsa signature
generator.

These signature generator process consist of following
procedures

A. Token Extractor:

This process extracts the token from the flow using
suffix array based algorithm which finds all the byte
sequences. The idea of the extraction process is that the
worm flows will constitute at least some fraction of the pool
so that number of tokens that extracted will be reduced.

B. Core:

This process uses the Greedy signature generation
algorithm. This allow the attacker full flexibility to include
any content in the polymorphic worms. It helps to extract
the unique token that is used for generating signatures.

C. Token Identification:

This process tests the token specificity in the normal
traffic pool.

D. Signature Refiner:

It finds the common tokens from the set of sequence
tokens from the flows in the suspicious pool that matches
the signature from the core. The signature generated will be
low false positive without affecting its sensitivity.

Signature generated by Hamsa can be deployed easily by
IDSes such as Bro and Snort. This signature generation
method outperforms Polygraph and Autograph interms of
efficiency and accuracy.

IX. AUTOMATIC SIGNATURE GENERATION USING

SIMPLIFIED REGULAR EXPRESSION

Deriving accurate and efficient application signatures for
various applications is not a trivial task, however due to the
rapid evolution of network applications, the signatures are
also subject to change with time instead of staying fixed.
Therefore the high cost signature generation process has to
be repeated from time to time in order to keep the signatures
up to date. To address this problem an approach that
automatically learns signatures from data has been
developed [14]. This method derives regular expression
(regexp) signatures that not only provide sufficient
flexibility and expressive power but also are widely
supported by practical network intrusion detection systems
(e.g., Snort and Bro) and traffic classification systems (e.g.,
l7-filter).

The regular expression signature generation process
involves following procedures.

A. Pre-processing:

It observes raw packets from a network tap or a trace
file, which are then tracked into sessions according to 5-
tuple. Next is a TCP/IP normalizer that deals with IP
fragmentation and TCP reconstruction. The last step is
payload extraction. Each flow is represented by two byte
sequences (i.e., initiator to responder and the other direction)
whose lengths may vary. And we produce a signature for
each direction.

B. Advanced Tokenization:

The tokens are developed based on the substrings, which
are common to the input byte sequences of each application

Vinoth George C et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,34-39

© 2010, IJARCS All Rights Reserved 38

class. K-common substring extraction can be done by using
the suffix tree algorithm. The flow payload of some
applications reveals position-specific information. On one
hand, some of the tokens found in the last step always
appear at the same offset in payload. In order to capture the
position properties in the signatures, we transform each
input flow sequence into a set of vectors, where the first
element in each vector represents a token that occurs in the
flow and the second element represents the position where
the token occurs.

C. Multiple sequence Aligment:

To find the best common subsequence, multiple
sequence alignment (MSA) technique is used which is
widely studied and applied in bioinformatics for finding
regions of similarity in biological sequences. The simplest
case in computer science is the longest common
subsequence (LCS) algorithm that computes the global
similarity between two strings because it guarantees a
maximum similarity in terms of the number of matched
characters rather than consecutive matches, which is

preferred for producing meaningful and low false-positive
signatures. From the pair-wise alignment results, the
similarity scores are converted to distances by normalizing
and subtracting from one. Thus a distance matrix is
obtained. In the next step, a tree used to guide the final
multiple alignment process is calculated from the distance
matrix using the Neighbor Joining method.

D. Signature construction:

The final stage of this approach is to transform the
alignment results into regular expression signatures. It is
done by changing the special symbols back to tokens, and
replacing the variable length with‘‘.*’’ and the fixed length
gaps with‘‘.{n}’’.

The signatures are close to real life handcrafted
signatures because they consist of the critical regexp
features that are essential for identifying applications. The
results show that with well-designed methods, the labor-
intensive signature deriving process can be automated.

Table 1. Comparison of methods used for generating application signatures

Work Method Description Merits Demerits
Karagiannis [5] Protocols Generates signature for

popular P2P application
based on the protocol

Easy to generate signature since it is
based on the protocol

It is manual and time consuming
Difficult to produce signatures for

new applications
Byung-Chul [2] LASER algorithm

Automated method for
generating application
signature using LCS

algorithm

This approach generates accurate
signature and does not need any prior

knowledge of protocols

Lack of publicly available
documentation

Ye [15] AutoSig Automated method for
generating application

signature

Signature generated by AutoSig is
accurate which saves a lot of time on

manual analysis and updates signatures
in time

It fails to generate signature for
worms

Wang Y
[13]

Integrating
Clustering and
Payload based

method

Automated method for
generating signatures for

unidentified traffic

This method generates signatures of
higher accuracy

It does not need any priori knowledge
before generating signatures

Signatures are difficult to learn
and any knowledge about the

unknown application is tedious

Kim [6] Autograph

Automatically generates
signature for internet worms

Signatures generated with high true
positive and low false positives

It focused on single substring
patterns and failed to match

polymorphic worms

Newsome
[8]

Polygraph

Produces signature that
matches polymorphic

worms

Polygraph generates high-quality
signatures for matching polymorphic

worms

It matches the flow only if all the
elements in the set are found in its

payload

Li [7] Hamsa Fast and automatic signature
generating method for
polymorphic worms

Does not need host information for
generating signatures

It generates signature of high accuracy
and attack resilience

It outperforms Polygraph in generating
signatures for polymorphic worms

Signature generation using Hamsa
is considered to be expensive

Wang Y
[14]

Simplified Regular
Expression

Automatically generates
signature based on the

traffic payloads

Signatures of high quality are produced
and exhibit low false negatives and false

positives.
It is most widely used techniques for

generating signatures for traffic
classification

Sequence alignment algorithm
which is used for generating
signatures are less efficient

Vinoth George C et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,34-39

© 2010, IJARCS All Rights Reserved 39

Table 2. Application signature generated by various methods

Method Application Signature
Protocol Analysis LimeWire ‘GET’ or ‘HTTP’ followed “User-Agent: Limewire” or “UserAgent: Limewire” or “Server: Limewire”

LASER LimeWire “LimeWire” “Content-Type:” “Content-Length:” “X-Gnutella- Content-URN” “run:sha:1” “XAlt” “X-
Falt” “X-Create-Time:” “X-Features:” “X-Thex-URI”

AutoSig HTTP [HTTP/1.]; [GET\0x20/][HTTP/1.];
Polygraph Apache-Knacker GET .* HTTP/1.1\r\n.*: .* \r\nHost: .* \r\n.*: .*\r\nHost: .*\xFF\xBF.*\r\n

Hamsa Apache-Knacker {'\xff\xbf': 1, 'GET ': 1, ': ': 4, '\r\n': 5, ' HTTP/1.1\r\n': 1, '\r\nHost: ': 2}
Simplified Regular

Expression
HTTP ‘‘http/(0\.9|1\.0|1\.1) [1-5][0-9][0-9][\x09-\x0d -_]*(connection:|content-type:|content-length:|date:)| post

[\x09-\x0d -_]* http/[01]\.[019]’’

X. CONCLUSION

This paper surveys significant works in the field of
application signature generation based traffic classification. It
examines various payload based technique and their merits
and demerits of those application signature generation
methods are shown in Table I. It shows how the application
signatures for each application are generated and how it
outperforms the previously used methods. Since payload
based method is used in real time it is necessary to consider
the best signature scheme that exhibit low false positive and
low false negative. Table II shows the different application
signatures generated by various methods. In this survey paper,
we have outlined a number of critical operational requirements
for real-time classifiers and qualitatively critiqued the
reviewed works against these requirements. There is still a lot
of room for further research in the field. Machine learning
techniques along with payload based method gets popularity
[4]. While most of the approaches build their classification
models based on sample data collected at certain points of the
Internet, those models usability needs to be carefully
evaluated. Payload based traffic classification can be still
extended by generating signatures of higher accuracy and low
cost.

XI. REFERENCES

[1] Bernaille L, Teixeira R, Akodkenou I, Soule A, Salamatian
K. Traffic classification on the fly. SIGCOMM Comput
Commun Rev 2006;36(2):23–6.

[2] Byung-Chul P, Won YJ, Myung-Sup K, Hong JW. Towards
automated application signature generation for traffic
identification. In: Proceedings of the Network Operations and
Management Symposium, 2008. NOMS 2008. IEEE; 2008, p.
160–7.

[3] Erman J, Arlitt M, Mahanti A. Traffic classification using
clustering algorithms. MineNet ’06: Proceedings of the 2006
SIGCOMM Workshop on Mining Network Data. ACM: New
York, NY, U.S.A., 2006; 281–286.

[4] Haffner P, Sen S, Spatscheck O, Wang D. ACAS: automated
construction of application signatures. In: Proceedings of the
2005 ACM SIGCOMM workshop on Mining network data,
Philadelphia, Pennsylvania, USA, ACM; 2005.

[5] Karagiannis T, Broido A, Brownlee N, Claffy KC, Faloutsos
M. Is P2P dying or just hiding? [P2P traffic measurement].
In: Proceedings of the Global Telecommu- nications

Conference, 2004. GLOBECOM ’04. IEEE, vol. 3; 2004, p.
1532–8.

[6] Kim H-A, Karp B. Autograph: toward automated, distributed
worm signature detection. In: Proceedings of the 13th
Conference on USENIX Security Symposium, vol. 13, San
Diego, CA, USENIX Association; 2004.

[7] Li Z, Sanghi M, Chen Y, Kao M-Y, Chavez B. Hamsa: fast
signature generation for zero-day polymorphicworms with
provable attack resilience. In: Proceedings of the 2006 IEEE
Symposium on Security and Privacy, IEEE Computer
Society; 2006.

[8] Newsome J, Karp B, Song D. Polygraph: automatically
generating signatures for polymorphic worms. In:
Proceedings of the 2005 IEEE Symposium on Security and
Privacy, IEEE Computer Society; 2005.

[9] Risso. F., Baldi. M., Morandi. O., Baldini. A. and Monclus.
P. (2008) “Lightweight, payload-based traffic classification:
an experimental evaluation.” In: Proceedings of the ICC ’08
IEEE International Conference on Communications; p. 5869–
75.

[10] Sen. S., Spatscheck. O. and Wang. D. (2004) “Accurate,
scalable in-network identification of p2p traffic using
application signatures.” In: Proceedings of the 13th
International Conference on World Wide Web, New York,
NY, USA, ACM.

[11] Tang. Y., Xiao. B. and Lu. X. (2009) “Using a bioinformatics
approach to generate accurate exploit- based signatures for
polymorphic worms.” Computer Security; 28(8):827–42.

[12] Wang. K, Cretu G , and S. J. Stolfo. Anomalous payload
based worm detection and signature generation. In Proc. Of
Recent Advances in Intrusion Detection (RAID), 2005.

[13] Wang Y, Xiang Y, Yu. SZ. An automatic application
signature construction system for unknown traffic.
Concurrency and Computation–Practice and Experience
2010;22(13):1927–44.

[14] Wang. Y., Xiang. Y., Zhou. W. and Yu. S. (2012)
“Generating regular expression signatures for network traffic
classification in trusted network management.” In:
Proceedings with Journal of Network and Computer
Applications Volume 35, Issue 3, Pages 992–1000.

[15] Ye MJ, XuK, WuJP, PoH. AutoSig—automatically
generating signatures for applications. In: Proceedings of the
Ninth IEEE International Conference on Computer and
Information Technology CIT’ 09; 2009,p.104–9.

