
Volume 4, No. 3, March 2013 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 271 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

Security Systems: A concept through Encrypting File System
Shruti Jain

M.Tech Scholar, Singhania University,
Junjhunu, Rajasthan

jainshruti1988@gmail.com1

Chintal Kumar Patel
M.Tech Scholar, Singhania University,

Junjhunu, Rajasthan
smilingchintal@gmail.com2

Abstract: The need for data security emerges from the widespread deployment of shared file systems, greater mobility of computers
and the rapid miniaturization of storage devices. It is increasingly obvious that the value of data is much more than the value of
underlying devices. The theft of a personal laptop or a thumb drive leaves the victim vulnerable to the risk of identity of theft in
addition to the loss of personal or financial data and intellectual property. An encrypting file system employs secure and efficient
mechanisms to encrypt or decrypt data on-the-fly as it is being written to or read from the underlying disk, to provide a level of data
privacy that goes beyond simple access control. Also, issues, such as trust models, backups and data recovery must be resolved. An
encrypting file system must also be tightly integrated with the operating system for ease of use and flexibility. Although the design of
such system is a well-researched problem, existing implementations still lack the security and usability features that must be present in
a truly scalable system that can be successfully deployed in enterprises. This paper includes study of existing system. It also
represents the conceptualization, design and implementation of a kernel-space encrypting file system that incorporates an
advance key management scheme to provide a high grade of security while remaining transparency and usability.

Keywords: Encrypted File System, Virtual File System (VFS), Access Control List (ACL), File System Key (FSK).

I. INTRODUCTION

Security of the stored data on disk is largely neglected
area, the theft of the stored data may cause loss of
personal information. The theft of stored data can be
done through coping data from the system via any
thumb devices. To ensure security from such kind of
theft, the obvious solution through restricting users to
use any thumb device especially pen drives. But such
kind of restriction causes many problems because now a
day use of thumb devices is a must for working
properly, there is a huge amount of data transfer
regularly on such device. This paper is based on the
study for encrypting a file system so that without
restricting users, purpose of data security must be
ensured. For such purpose Linux operating system's file
system is the selected file system.
The Paper starts with the Scope of the research, then it
depicts the introduction of the Linux file system,
leading forward towards the design issues in converting
a file system into an encrypted one, then at the end it
represent the proposed implementation of such
encrypted file system.

II. SCOPE OF ENCRYPTING A FILE
SYSTEM

Although the design of the encrypting file system is a
well - researched problem, all existing solution still
lack the necessary security and usability features that
are desired from a truly enterprise ready system. The
first and foremost solution for resolving the theft
problem via thumb devices, is to block access from
such device so we have to disable all the USB devices.
In Linux this task will be done through following
procedures:

Process 1: Step1: Login as root.
Step 2: Open /etc/modprobe.d/no-usb for edit. (create
this file if not exist)
Step 3: Append this line to the no-usb file and save it.

install usb - storage /bin/true
Step 4: Reboot server to enforce changes just made.
Alternative process
Process 2: Append "blacklist usb_storage" to the
module
 vim /etc/modprobe.d/blacklist

Through these procedures we can disable all the USB
devices (Pendrives, USB harddisk etc) so that no-one
copies the data from the system disk. But this solution
is not feasible because now a days, the use of USB
devices becomes so common that restricting USB
devices leads us into a trouble pool.
By introducing a Encrypting File System the whole
purpose of securing the data from the theft is being
done in a secure and transparent way. The Encrypting
File System, encrypts and decrypts the data on-the-fly
i.e. whenever the data is being read from the disk, it
encrypts the data through the encrypting key and
whenever this data is being written on any other disk
via any USB device, is being decrypt by the file system
automatically. Therefore in any case, if the designated
file system doesn't have the decrypting key the data
will be useless for data system thus protected from the
theft. This whole task is being done in such a
transparent way, that if the thief doesn't knows about
the encryption and decryption key, the data he had
being theft is of no use and even he doesn't recognizes
about the changes in file done through the encryption.

III. ARCHITECTURE OF ENCRYPTED FILE
SYSTEM (LINUX)

The Architecture of the kernel is shown in the
following figure:

Shruti Jain et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 271-274

© 2010, IJARCS All Rights Reserved 272 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

Figure 1 Architecture of Linux Kernel

Linux is a monolithic kernel. Device drivers and kernel
extensions run in kernel space, with full access to the
hardware, although some exceptions run in user space.
Unlike standard monolithic kernels, device drivers are
easily configured as modules, and loaded or unloaded
while running the system. Also unlike standard
monolithic kernels, device drivers can be pre-empted
under certain conditions. This latter feature was added
to handle hardware interrupts correctly, and to improve
support for symmetric multiprocessing.
To convert such Kernel into a kernel that support the
encrypted file system, the changes made through
introducing an encrypted core instead of the core kernel.
we describe the software modules that need to be
implemented in the Linux kernel and allied user-space
support utilities. We need to change the core with the
encrypted core, also we need a super block to perform
the basic encryption and decryption operations. We
have introduced Crypto API and PKI support for the
storage of public as well as private keys, and we
required the authentication so we stored user certificates
and CA certificates. The Changes are illustrated in the
following figure:

Figure 2 Architecture of Encrypted Kernel

IV. CRYPTOGRAPHIC FILE SYSTEM:
DESIGN AND IMPLEMENTATION

A. Preconditions:

The following pre-requisite activities must first be
carried out when cryptographic file system is being
deployed in an enterprise environment:
a. A public and private key pair must be generated for

all users in the authentication domain who require
access to encrypted file systems.

b. The public keys must be signed by an appropriate
CA and the certificates made publicly accessible in
the certificate repository. The trusted certificates
store must be established for all computer systems
that mount encrypted volumes. Smart cards, if used,
must be issued to users.

c. The data recovery agent account must be
established in the authentication domain and its
certificate added to the repository. The
corresponding private key may be split into
multiple smart cards and issued to different
persons.

B. Encrypted File System Creation:

The on-disk superblock structure of the underlying file
system and the corresponding mkfs command are
suitably modified to take the following actions when
creating an encrypted volume:
a. The block cipher algorithm to be used for

symmetric key encryption, chaining mode, key
size (of FEKs and the file system key), IV
generation method, message authentication code
algorithm and the user’s choice regarding page
cache encryption are specified on the mkfs
command line. These parameters are
appropriately encoded and stored in the
superblock.

b. The file system key FSK is randomly generated
and encrypted using key material derived from a
passphrase (or an external trusted hardware to
avoid trusting the administrator). The result is
stored in the superblock.

c. The DRA is added as a named user with read
and execute permissions to the default and
access ACLs of the root directory of the
encrypted volume.

Additionally, the permissions for the others entry are
set to null. This recursively ensures that all further
subdirectories and files created in the encrypted file
system would automatically inherit these two entries in
their access control lists.
It is possible to associate a separate cryptographic
header with every encrypted file to enable per-file
choice of different ciphers, modes, key sizes, IV
methods and keyed hash algorithms. However,
we believe this is an overkill of flexibility that
decreases usability and necessitates the use of
complex policies and configuration files. Utilizing
common algorithm parameters for the entire volume
provides the same level of security while making the
system easy to use.

C. Mounting An Encrypted File System:

An encrypted file system is mounted by specifying the

Shruti Jain et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 271-274

© 2010, IJARCS All Rights Reserved 273 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

encrypt option. It is integrated with POSIX ACLs and
hence the ACL mount option must also be specified.
Also, the mechanism that is used to store private keys
(whether smart cards are being used or not, for
example) is specified as a mount option.
During mount, algorithm parameters are copied from
the on-disk superblock of the underlying file system to
the kernel’s in-core superblock structure. The
encrypted FSK is also read from the on-disk
superblock, decrypted using the same mechanism used
at the time of creation and copied into the in-core
superblock.
File creation and access operations are shown in the
following figures:

Figure 3: File operations: Creation

Figure 4: File operations: Access

The following actions are taken whenever a new file
(or directory) is created in an encrypted file system:
A file encryption key k is randomly generated. It is
put into the entry corresponding to this instance of
open (or create) in the VFS open file structure. Also,

the FSK is read from the kernel’s in-core super block
structure associated with the underlying volume. It is
used to encrypt the FEK using the specified algorithm
parameters.
a. The kernel determines the UID of the file’s owner

from the current process context. This is used to
access the owner’s certificate from the repository.
The certificate is verified and then its public key
is used to encrypt the result of the previous step.
The resulting token is copied into the
corresponding field of the owner’s ACL entry.

b. The above step is repeated for all the users
present in the default ACL inherited by the file
(or directory) from its parent directory.

The actions taken when opening an existing encrypted
file are as follows:
c. The kernel determines the UID of the current

process context and checks the user’s
permissions to open the file using the
appropriate ACL entry. If successfully verified,
the corresponding token is pulled out of the ACL
entry and decrypted using either the smart card or
the user’s private key acquired from the disk.

d. The file system key is read from the in-core super
block and used to decrypt the result of the
previous step.

e. If the user is genuine, we now have the original
FEK k used to encrypt the file.

f. It is copied into the file structure corresponding to
this call of open.

D. Reading And Writing File Data:

Other than read and write, file data may be accessed
using the mmap system call. The 2.6 series kernels
incorporate a unified page cache and bio infrastructure
that provide a common interface to the disk
regardless of the system calls used. Cryptographic
file system takes advantage of these unified interfaces
to hook in the encryption and decryption processes.
A file’s contents are accessed after it has been opened.
The FEK already present in the corresponding file
structure is used to do encryption or decryption
transparently.
Implementation issues such as locking and
synchronization determine the exact placement of the
encryption and decryption hooks in the kernel. The
implementation effort has proceeded in an exploratory
fashion and evolved towards the best alternative. A
preliminary version plugged encryption and decryption
at the page cache layer around the submit bh function.
This approach leads to individual bio requests being
submitted for every file system block, thus causing a
significant performance degradation of about 40%, as
determined experimentally. This preliminary
implementation approach is being discarded in favor of
a design that uses the work queue interface, thus
enabling the coalescing of multiple bio requests to
avoid the aforementioned overhead.
Separate per-CPU kernel threads created in advance
are executed in user process context. After encrypted
data is read from the disk, the callback function
executing in hard IRQ context merely enqueues the
actual decryption job in the corresponding kernel

Shruti Jain et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 271-274

© 2010, IJARCS All Rights Reserved 274 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

thread’s work queue. The implementation of dm-crypt
uses a similar design and integrating with it may be
explored in the future.

V. CONCLUSION

Data security has emerged as a critical need in both
personal and multi-user scenarios. The key challenge is
to provide a solution that is easy to use for individuals
as well as scalable for organizational environments.
Most existing encrypting file systems do not meet the
diverse requirements of security and usability, due to
the lack of flexible key management, fine-grained
access control and security against a wide range of
attacks.
Our Conceptual Encrypting file System, provides a
solution that is both secure and practically usable. We
assume an attacker has the capability to launch attacks
that are beyond the threat models of existing systems
and proposes solutions to such threats. We make a
crucial distinction between the kernel and user- space
from a security perspective. Employing a completely
kernel-space implementation enables us to avoid
trusting the super user account and protect against
various user-space attacks.

VI. ACKNOLEDGEMENT

This research paper is made possible through the help
and support from everyone, including: parents,

teachers, family, friends, and in essence, all sentient
beings. Especially, please allow me to dedicate my
acknowledgment of gratitude toward Dr. Tarun
Shrimali and Ms. Ridhima Khamesra for their valuable
advice and Guidance.

VII. REFERENCES

[1]. Matt Blaze, A Cryptographic File System for
UNIX. In Proceedings of the ACM Conference
on Computer and Communications Security,
pages 9–16, 1993

[2]. Jean-Luc Cooke and David Bryson. Strong
Cryptography in the Linux Kernel. In Proceedings
of the Linux Symposium, pages 139–144,
Ottawa, Canada, July 2003.

[3]. dm-crypt: a device-mapper crypto target for
linux. website http://www. saout.de/misc/dm-
crypt/.

[4]. Wolfgang Mauerer. Professional Linux Kernel
Architecture, page 4-18

[5]. SmartK: a samrt card framework for Linux
Kernel.
//smartk.dia.unisa.it/.

[6]. Michael Austin Halcrow. eCryptfs: An
Enterprise class Encrypted Filesystem for Linux.
In Proceedings of the Linux Symposium, pages
201–218, Ottawa, Canada, July 2005.

