
Volume 4, No. 3, March 2013 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 155

“Advance Computing and Creating Entrepreneurs (ACCE2013)”
On 19-20 Feb 2013

Organized by
2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,

IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

Genetic Algorithm for optimization using MATLAB
Mr. Manish Saraswat

Research Scholar,
Banasthali University, Banasthali (Rajasthan), India

manishsaraswat24@gmail.com

Mr. Ajay Kumar Sharma
Research Scholar,

Mewar University, Chittorgarh (Rajasthan), India
profsharmaak@gmail.com

Abstract: As the applications of systems are increasing in various aspects of our daily life, it enhances the complexity of systems in
Software design (Program response according to environment) and hardware components (caches, branch predicting pipelines).Within
the past couple of years the Test Engineers have developed a new testing procedure for testing the correctness of systems: namely the
evolutionary test. The test is interpreted as a problem of optimization, and employs evolutionary computation to find the test data with
extreme execution times. Evolutionary testing denotes the use of evolutionary algorithms, e.g., Genetic Algorithms (GAs), to support
various test automation tasks. Since evolutionary algorithms are heuristics, their performance and output efficiency can vary across
multiple runs, there is strong need a environment that can be handle these complexities, Now a day’s MATLAB is widely used for this
purpose. This paper explore potential power of Genetic Algorithm for optimization by using new MATLAB based implementation of
Rastrigin’s function, throughout the paper we use this function as optimization problem to explain some key definitions of genetic
transformation like selection crossover and mutation.

Keywords: Rastrigin’s function, Evolutionary Testing, Genetic Algorithm (GA) , MatLab & Fitness.

I. INTRODUCTION

Genetic algorithms are an approach to optimization and
learning based loosely on principles of biological
evolution, these are simple to construct, and its
implementation does not require a large amount of
storage, making them a sufficient choice for an
optimization problems. Optimal scheduling is a
nonlinear problem that cannot be solved easily yet, a
GA could serve to find a decent solution in a limited
amount of time Genetic algorithms are inspired by the
Darwin’s theory about the evolution “survival of
fittest”, it search the solution space of a function
through the use of simulated evolution (survival of the
fittest) strategy. Generally the fittest individuals of any
population have greater chance to reproduce and
survive, to the next generation thus it contribute to
improving successive generations However inferior
individuals can by chance survive and also reproduce,
Genetic algorithms have been shown to solve linear and
nonlinear problems by exploring all regions of the state
space and exponentially exploiting promising areas
through the application of mutation, crossover and
selection operations to individuals in the population.The
development of new software technology and the new
software environments (e.g. MATLAB) provide the
platform to solving difficult problems in real time. It
integrates numerical analysis, matrix computation and
graphics in an easy to use environment.
MATLAB functions are simple text files of interpreted
instructions Therefore; these functions can be re-
implemented from one hardware architecture to another
without even a recompilation step. MATLAB (Matrix
Laboratory), a product of Mathworks, it is a scientific
software package developed to provide an integrated
environment for numeric computation and graphics
visualization in high-level programming language.
Originally it was written by Dr Cleve Moler, Chief

scientist at MathWorks, Inc., to provide easy access to
matrix software developed in the LINPACK and
EISPACK projects [2]. MATLAB has a wide collection
of functions useful to the genetic algorithm practitioner
and those wishing to experiment with the genetic
algorithm for the first time.
In MATLAB’s high-level language, problems can be
coded in m-files in a fraction of the time that it would
take to create C or FORTRAN programs for the same
purpose. It also provide advanced data analysis,
visualization tools and special purpose application
domain toolboxes. This paper is organized into three
parts: Part I describes the usefulness of GA and features
of new software MATLAB. Part II discusses the
implementation issues of GA in various available
languages, tools and software. Finally GAs is
implemented using MATLAB for the Rastrigin’s
function as case study for optimization. The Part III
concludes the objectives of paper.

II. OVERVIEW OF PROGRAMMING
LANGUAGES USED TO IMPLEMENTATION OF

GA

The implementation of genetic algorithm on high-
performance computers is a difficult and time-
consuming task. The implementing languages must be
closely as possible to the mathematical description of
the problem, simple and easy-to-use procedural
language. The C/C++, FORTRAN are lower-level
compiled programming languages (sometimes classified
as a 3rd generation language) that is widely used in
academia, industry, commerce and GA is also
implemented by using these category of languages. The
main advantage of compiled low-level languages is
their execution speed and efficiency (for example
embedded systems)but now a days the MATLAB is
often employed in research and industry and it is an
example of a high-level “scripting” or “4th generation”

Manish Saraswat et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 155-159

© 2010, IJARCS All Rights Reserved 156 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

language. The most prominent difference between
compiled languages and interpreted languages is that
the interpreter program reads the source code and
translates it into machine instructions on the fly, i.e. no
compilation is required. This decreases the execution
speed but it make the programmer free from memory
management, allows dynamic typing and interactive
sessions.
It is important to note that the programs written in
scripting languages are usually significantly shorter [3]
than equivalent programs written in compiled languages
and also take significantly less time to code and debug.
In short, there is a trade-off between the execution time
(small for compiled languages) and the development
time (small for interpreted languages). Another
important feature of MATLAB (and other interpreted
languages like Pythan) is the ability to have interactive
sessions. The user can type one or several commands at
the command prompt and after pressing return, these
commands are executed immediately. By this it allows
the programmer for interactive testing of small parts of
the code (without any delay stemming from
compilation) and encourages experimentation [9].
The MATLAB package comes with sophisticated
libraries for matrix operations, general numeric methods
and plotting of data, therefore MATLAB become first
choice of programmer to implement scientific, graphical
and mathematical applications and for the GA
implementation MATLAB is come with special tool
that is GA-tool or Optimtool

III. THINGS TO CONSIDER FOR GENETIC
ALGORITHMS IMPLEMENTATION IN

MATLAB

The first thing must do in order to use a GA is to decide
if it is possible to automatically build solutions on
problem. For example, in the Traveling Salesman
Problem, every route that passes through the cities in
question is potentially a solution, although probably not
the optimal one. It is must to do that because a GA
requires an initial population P of solutions.
Then must decide what "gene" representation will
use we have a few alternatives like binary, integer,
double, permutation, etc. The binary and double being
the most commonly used since they are the most
flexible. After selecting the gene representation it must
be decide:
The method to select parents from the population P
(Cost Roulette Wheel, Stochastic Universal Sampling,
Rank Roulette Wheel, Tournament Selection, etc.), the
way these parents will "mate" to create descendants,
the mutation method (optional but useful), the method
will use to populate the next generation and the
algorithm's termination condition (number of
generations, time limit, acceptable quality threshold).
Now second thing is Processor and operating system
that must be capable of running the program the
algorithm is coded in MATLAB. Matlab provides an
optimization toolbox that includes a GA-based solver.
The toolbox can be start by typing optimtool in the
Matlab's command line and pressing enter. As soon as
the optimization window appears, we can select the
solver ga – Genetic Algorithm and now matlab are

ready to go. The user should program (by writing m
files) any extended functionality required.
We will implement Rastrigin’s Functions in the proper
field and number of variable is 2 and population type is
double vector (figure 1). The equation of this
function and Matlab (m-file) code is given as below
 Ras(x) = 20+x1

2+x2
2-10(cos2πx1+cos2πx2)

Figure:1 GAs in Matlab's Optimization Toolbox

MATLAB Code:
function y = rast(x)
% the default value of n = 2.
n = 2;
s = 0;
for j = 1:n
s = s+(x(j)^2-10*cos(2*pi*x(j)));
end
y = 10*n+s;
Now it is ready (the default settings in every-thing else
is adequate). Press the Start button. The algorithm
starts, the plots are pop-up and soon the results are
displayed as in figure 2.
The best fitness function value (the smallest one since
we minimize) and the termination condition met are
printed, together with the solution (Final Point – it is
very close to (0, 0)). Since the method is stochastic,
don't expect to be able to reproduce any result found in
a different run. Now check the two plots on the left. It is
obvious that the population converges, since the
average distance between individuals (solutions) in term
of the fitness value is reduced, as the generations pass.
This is a measure of the diversity of a population. It is
hard to avoid convergence but keeping it low or
postponing its appearance is better. Having diversity in
the population allows the GA to search better in the
solution space.

Figure 2: Rastrigin’s function optimization with default setting

Manish Saraswat et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 155-159

© 2010, IJARCS All Rights Reserved 157 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

It is seen from figure-2 the fitness value as it gradually
gets smaller. It is an indication that optimization takes
place since not only the fitness value of the best
individual was reduced, even the mean (average)
fitness of the population was also reduced (that is, in
terms of the fitness value, the whole population was
improved we have better solutions in the population, at
the end).
a. Population Diversity– size – range, fitness

scaling The performance of a GA is affected by
the diversity of the initial population. If the
average distance between individuals is large, it is
indication of high diversity; if the average
distance is small its represent low diversity in the
population.

If the diversity is too high or too low, the genetic
algorithm might not perform well. We will explain this
by the following: By default, the Optimization Tool
creates a random initial population using a creation
function. We can limit this by setting the Initial range
field in Population options. Set it to (1; 1.1). By this
we actually make it harder for the GA to search equally
well in all the solutions space. Leave the rest settings as
previous (figure: 1) except Options-Stopping Criteria-
Stall Generations which should be set to 100. This will
allow the algorithm run for 100 generation providing us
with better results (and plots). Now click the Start
button.The GA returns the best fitness function value of
approximately 2 and displays the plots in as in figure 3.

Figure 3: Rastrigin’s function optimization with default setting,

except Stopping Criteria-Stall Generations set 100 and initial range
set [1; 1.1]

The upper plot, which displays the best fitness at each
generation, show little progress in lowering the fitness
value (black dots). The lower plot shows the average
distance between individuals at each generation, which
is a good measure of the diversity of a population. For
this setting of initial range, there is too little diversity
for the algorithm to make progress. The algorithm was
trapped in a local minimum due to the initial range
restriction.
Next, set Initial range to [1; 100] and run the algorithm
again. The GA returns the best fitness value of
approximately 3.3 and displays the following plots as in
figure: 4. this time, the genetic algorithm makes
progress, but because the average distance between
individuals is so large, the best individuals are far from
the optimal solution. Note though that if we let the GA
to run for more generations (by setting Generations and
Stall

Figure 4: Rastrigin’s function optimization with default setting,

except Stopping Criteria-Stall Generations set 100 and initial range
set [1; 100]

Generations in Stopping Criteria to 200) it will
eventually find a better solution.
Set Initial range to [1; 2] and run the GA. This returns
the best fitness value of approximately 0.012 and
displays the plots that follow as in figure 5.

Fig 5: Rastrigin’s function optimization with default setting, except
Stopping Criteria-Stall Generations set 100 & initial range set [1; 2]

The diversity in this case is better suited to the problem,
so the genetic algorithm returns a much better result
than in the previous two cases.
In all the examples above, we had the Population Size
(Options-Population) set to 20 (the default). This value
determines the size of the population at each generation.
Increasing the population size enables the genetic
algorithm to search more points and thereby obtain a
better result. However, the larger the population size,
the longer the genetic algorithm takes to compute each
generation.
It is important to note that Population Size to be at least
the value of Number of variables, so that the individuals
in each population span the space being searched.
Finally, another parameter that affects the diversity of
the population is the Fitness Scaling. If the fitness
values vary too widely Figure: 6, the individuals with
the lowest values (recall that we minimize) reproduce
too rapidly, taking over the population pool too quickly
and preventing the GA from searching other areas of the
solution space. On the other hand, if the values vary
only a little, all individuals have approximately the
same chance of reproduction and the search will
progress very slowly.

Manish Saraswat et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 155-159

© 2010, IJARCS All Rights Reserved 158 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

Figure 6: Raw fitness value lower

Figure 7: Raw fitness value Higher

It is clear from the Figure: 6 Raw fitness values (lower
is better) vary too widely on the. Scaled values (figure:
7) do not alter the selection advantage of the good
individuals (except that now bigger is better). They just
reduce the diversity we have on the above. This
prevents the GA from converging too early.
The Fitness Scaling adjusts the fitness values (scaled
values) before the selection step of the GA. This is done
without changing the ranking order, that is, the best
individual based on the raw fitness value remains the
best in the scaled rank, as well. Only the values are
changed, and thus the probability of an individual to get
selected for mating by the selection procedure. This
prevents the GA from converging too fast which allows
the algorithm to better search the solution space. We
continue Rastrigin’s function implantation in
MATLAB, Use the following settings leaving every-
thing else in its default value (Fitness function:
@rastriginsfcn, Number of Variables: 2, Initial Range:
[1; 20], Plots: Best Fitness, Distance).
The Selection panel in Options controls the Selection
Function, that is, how individuals are selected to
become parents. Note that this mechanism works on the
scaled values, as described previously.
Most well-known methods are presented (uniform,
roulette and tournament). An individual can be selected
more than once as a parent, in which case it contributes
its genes to more than one child.

Figure 8: Stochastic uniform selection method. For 6 parents we step

the selection line with steps equal to 15/6.

The default selection option, Stochastic Uniform, lays
out a line (Figure 8) in which each parent corresponds
to a section of the line of length proportional to its
scaled value. For example, assume a population of 4
individuals with scaled values 7, 4, 3 and 1. The
individual with the scaled value of 7 is the best and
should contribute its genes more than the rest. We
create a line of length 1+3+4+7=15. Now, let's say that
we need to select 6 individuals for parents. We step
over this line in steps of 15/6 and select the individual
for crossover.
The Reproduction panel in Options control how the GA
creates the next generation. Here you specify the
amount of elitism and the fraction of the population of
the next generation that is generated through mating
(the rest is generated by mutation). The options are:
Elite Count: the number of individuals with the best
fitness values in the current generation that are
guaranteed to survive to the next generation. These
individuals are called elite children. The default value
of Elite count is 2. Try to solve the Rastrigin's problem
by changing only this parameter. Try values of 10, 3
and 1. we will get results like those depicted in Figure
5. It is obvious that you should keep this value low. 1 or
2 (depending on the population size).

Figure 9: Elite count 10

Manish Saraswat et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 155-159

© 2010, IJARCS All Rights Reserved 159 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

Figure 10: Elite count 3

Figure 11: Elite count 1.

From the figure 9, 10, 11 it clear that too much elitism
results in early convergence which can make the search
less effective.
a. Crossover Fraction: is the fraction of individuals

in the next generation, other than elite children,
that are created by crossover (remaining is
generated by mutation). A crossover fraction of ‘1’
indicates means that all children other than elite
individuals are crossover children. A crossover
fraction of ‘0’ indicates that all children are
mutation children.

b. Two-point crossover- two crossover points are
selected, binary string from the beginning of the
chromosome to the first crossover point is copied
from the first parent, the part from the first to the
second crossover point is copied from the other
parent and the rest is copied from the first parent
again

c. Mutation- It is the Random change one or more
digits in the string representing an individual.

IV. CONCLUSION

The main objective in this paper is to illustrate that how
the new technology of MATLAB can be used in order
to implement a genetic algorithm in optimization
problems. It uses the power of genetic algorithms to
generate fast and efficient solutions in real time. The

experimental results show that GATool can improve
fitness value by providing quickly a set of near
optimum solutions. Concerning the effect of different
GA parameter configurations, it found that an increase
in population size can improve performance of the
system. The parameter of crossover rate does not affect
seriously the quality of the solution. Genetic Algorithms
are easy to apply to a wide range of optimization
problems, like the traveling salesperson problem,
inductive concept learning, scheduling, and layout
problems. The result shows that the proposed GAs with
the specification can find solutions with better quality in
shorter time. The developer uses this information to
search, locate, and debug the faults that caused the
failures. While each of these areas for future
consideration could be further investigated with respect
to applicability for software testing, because it is also
an optimization problem with the objective that the
efforts consumed should be minimized and the number
of faults detected should be maximized. Finally, it
would be interesting for further research to test a series
of different systems in order to see the correlation
between genetic algorithm and system performances.

V. REFERENCES

[1]. D.E. Goldberg, Genetic Learning in optimization,
search and machine learning. Addisson Wesley,
1994.

[2]. J.J. Grefenstette. Genetic algorithms for changing
environments. In R. Manner abd B. Manderick,
editor, Parallel Problem Solving from Nature 2,
pages 465-501. Elsevier Science Publishers.

[3]. Mathworks, The: Matlab - UserGuide. Natick,
Mass.: The Mathworks, Inc., 1994-1999.
http://www.mathworks.com

[4]. Henriksson, D., Cervin, A., Arzen, K.E.:
TrueTime: Real-time control system simulation
with MATLAB/Simulink. In: Proceedings of the
Nordic MATLAB Conference, Copenhagen,
Denmark (2005)

[5]. A.J. Chipperfield, P. J. Fleming and H. Pohlheim,
“A Genetic Algorithm Toolbox for MATLAB,”
Proc. International Conference on Systems
Engineering, Coventq, UK, 6-8 Sept 1998.

[6]. Papadamou, S. and Stephanides, G., A New
Matlab-Based Toolbox For Computer Aided
Dynamic Technical Trading,

[7]. K. Lakhotia, M. Harman, and P. McMinn. A
multi-objective approach to search-based test data
generation. In Proc. 9th Annual Conf. on Genetic
and Evolutionary Computation (GECCO’07),
pages 1098–1105, ACM, 2007.

[8]. Pohlheim, H.: Genetic and Evolutionary
Algorithm Toolbox for use with Matlab -
Documentation. Technical www.geatbx.com.

[9]. A Comparison of C, MATLAB, and Python as
Teaching Languages in Engineering Hans Fangohr
University of Southampton, Southampton SO17
1BJ, UK.

