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Abstract: As the applications of systems are increasing in various aspects of our daily life, it enhances the complexity of systems in 
Software design (Program response according to environment) and hardware components (caches, branch predicting pipelines).Within 
the past couple of years the Test Engineers have developed a new testing procedure for testing the correctness of systems: namely the 
evolutionary test. The test is interpreted as a problem of optimization, and employs evolutionary computation to find the test data with 
extreme execution times. Evolutionary testing denotes the use of evolutionary algorithms, e.g., Genetic Algorithms (GAs), to support 
various test automation tasks. Since evolutionary algorithms are heuristics, their performance and output efficiency can vary across 
multiple runs, there is  strong need a environment that can be handle these complexities, Now a day’s MATLAB is widely used for this 
purpose.  This paper explore potential power of Genetic Algorithm for optimization by using new MATLAB based implementation of 
Rastrigin’s function, throughout the paper we use this function as optimization problem to explain  some key definitions of genetic 
transformation like selection crossover and   mutation.  
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I. INTRODUCTION 

Genetic algorithms are an approach to optimization and 
learning based loosely on principles of biological 
evolution, these are simple to construct, and its 
implementation does not require a large amount of 
storage, making them a sufficient choice for an 
optimization problems. Optimal scheduling is a 
nonlinear problem that cannot be solved easily yet, a 
GA could serve to find a decent solution in a limited 
amount of time Genetic algorithms are inspired by the 
Darwin’s theory about the evolution “survival of 
fittest”, it search the solution space of a function 
through the use of simulated evolution  (survival of the 
fittest) strategy. Generally the fittest individuals of any 
population have greater chance  to reproduce and 
survive, to the next generation thus it contribute to 
improving successive generations However inferior 
individuals can by chance survive and also reproduce, 
Genetic algorithms have been shown to solve linear and 
nonlinear problems by exploring all regions of the state 
space and exponentially exploiting promising areas 
through the application of mutation, crossover and 
selection operations to individuals in the population.The 
development of new software technology and the new 
software environments (e.g. MATLAB) provide the 
platform to solving difficult problems in real time. It 
integrates numerical analysis, matrix computation and 
graphics in an easy to use environment. 
MATLAB functions are simple text files of interpreted 
instructions Therefore; these functions can be re-
implemented from one hardware architecture to another 
without even a recompilation step. MATLAB (Matrix 
Laboratory), a product of Mathworks, it is a scientific 
software package developed to provide an integrated 
environment for numeric computation and graphics 
visualization in high-level programming language. 
Originally it was written by Dr Cleve Moler, Chief 

scientist at MathWorks, Inc., to provide easy access to 
matrix software developed in the LINPACK and 
EISPACK projects [2]. MATLAB has a wide collection 
of functions useful to the genetic algorithm practitioner 
and those wishing to experiment with the genetic 
algorithm for the first time. 
In MATLAB’s high-level language, problems can be 
coded in   m-files in a fraction of the time that it would 
take to create C or FORTRAN programs for the same 
purpose. It also provide advanced data analysis, 
visualization tools and special purpose application 
domain toolboxes. This paper is organized into three 
parts: Part I describes the usefulness of GA and features 
of new software MATLAB. Part II    discusses the 
implementation issues of GA in various available 
languages, tools and software. Finally GAs is 
implemented using MATLAB for the Rastrigin’s 
function as case study for optimization. The Part III 
concludes the objectives of paper. 

II. OVERVIEW OF PROGRAMMING 
LANGUAGES USED TO IMPLEMENTATION OF 

GA 

The implementation of genetic algorithm on high-
performance computers is a difficult and time-
consuming task. The implementing languages must be 
closely as possible to the mathematical description of 
the problem, simple and easy-to-use procedural 
language. The C/C++, FORTRAN are lower-level 
compiled programming languages (sometimes classified 
as a 3rd generation language) that is widely used in 
academia, industry, commerce and GA is also 
implemented by using these category of languages. The 
main advantage of compiled low-level languages is 
their execution speed and efficiency (for example 
embedded systems)but now a days  the MATLAB is 
often employed in research and industry and it  is an 
example of a high-level “scripting” or “4th generation” 
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language. The most prominent difference between 
compiled languages and interpreted languages is that 
the interpreter program reads the source code and 
translates it into machine instructions on the fly, i.e. no 
compilation is required. This decreases the execution 
speed but it make the programmer free from memory 
management, allows dynamic typing and interactive 
sessions.  
It is important to note that the programs written in 
scripting languages are usually significantly shorter [3] 
than equivalent programs written in compiled languages 
and also take significantly less time to code and debug. 
In short, there is a trade-off between the execution time 
(small for compiled languages) and the development 
time (small for interpreted languages). Another 
important feature of MATLAB (and other interpreted 
languages like Pythan) is the ability to have interactive 
sessions. The user can type one or several commands at 
the command prompt and after pressing return, these 
commands are executed immediately. By this it allows 
the programmer for interactive testing of small parts of 
the code (without any delay stemming from 
compilation) and encourages experimentation [9].  
The MATLAB package comes with sophisticated 
libraries for matrix operations, general numeric methods 
and plotting of data, therefore MATLAB become first 
choice of programmer to implement scientific, graphical 
and mathematical applications and for the GA 
implementation MATLAB is come with special tool 
that is GA-tool or Optimtool 

III. THINGS TO CONSIDER FOR GENETIC 
ALGORITHMS IMPLEMENTATION IN 

MATLAB 

The first thing must do in order to use a GA is to decide 
if it is possible to automatically build solutions on 
problem. For example, in the Traveling Salesman 
Problem, every route that passes through the cities in 
question is potentially a solution, although probably not 
the optimal one. It is must to do that because a GA 
requires an initial population P of solutions. 
Then must decide what "gene" representation will 
use   we have a few alternatives like binary, integer, 
double, permutation, etc. The binary and double being 
the most commonly used since they are the most 
flexible. After selecting the gene representation it must 
be decide:  
The method to select parents from the population P 
(Cost Roulette Wheel, Stochastic Universal Sampling, 
Rank Roulette Wheel, Tournament Selection, etc.), the 
way these parents will "mate" to create descendants, 
the mutation method (optional but useful), the method 
will use to populate the next generation and the 
algorithm's termination condition (number of 
generations, time limit, acceptable quality threshold). 
Now second thing is Processor and operating system 
that must be capable of running the program the 
algorithm is coded in MATLAB. Matlab provides an 
optimization toolbox that includes a GA-based solver. 
The toolbox can be start by typing optimtool in the 
Matlab's command line and pressing enter. As soon as 
the optimization window appears, we can select the 
solver ga – Genetic Algorithm and now matlab are 

ready to go. The user should program (by writing m 
files) any extended functionality required. 
We will implement Rastrigin’s Functions in the proper 
field and number of variable is 2 and population type is 
double vector       (figure 1). The equation of this 
function and Matlab (m-file) code is given as below  
     Ras(x) = 20+x1

2+x2
2-10(cos2πx1+cos2πx2) 

 

 
Figure:1 GAs in Matlab's Optimization Toolbox 

MATLAB Code: 
function y = rast(x) 
% the default value of n = 2. 
n = 2;  
s = 0; 
for j = 1:n 
s = s+(x(j)^2-10*cos(2*pi*x(j)));  
end 
y = 10*n+s; 
Now it is ready (the default settings in every-thing else 
is adequate). Press the Start button. The algorithm 
starts, the plots are pop-up and soon the results are 
displayed as in figure 2. 
The best fitness function value (the smallest one since 
we minimize) and the termination condition met are 
printed, together with the solution (Final Point – it is 
very close to (0, 0)). Since the method is stochastic, 
don't expect to be able to reproduce any result found in 
a different run. Now check the two plots on the left. It is 
obvious that the population converges, since the 
average distance between individuals (solutions) in term 
of the fitness value is reduced, as the generations pass. 
This is a measure of the diversity of a population. It is 
hard to avoid convergence but keeping it low or 
postponing its appearance is better. Having diversity in 
the population allows the GA to search better in the 
solution space. 
 

 
Figure 2: Rastrigin’s function optimization with default setting 
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It is seen from figure-2 the fitness value as it gradually 
gets smaller.  It is an indication that  optimization takes 
place since not only the fitness value of the best 
individual was reduced, even the   mean (average) 
fitness of the population was also reduced (that is, in 
terms of the fitness value, the whole population was 
improved we have better solutions in the population, at 
the end).  
a. Population Diversity– size – range, fitness 

scaling The performance of a GA is affected by 
the diversity of the initial population. If the 
average distance between individuals is large, it is 
indication of high diversity; if the average 
distance is small its represent low diversity in the 
population.  

If the diversity is too high or too low, the genetic 
algorithm might not perform well. We will explain this 
by the following: By default, the Optimization Tool 
creates a random initial population using a creation 
function. We can limit this by setting the Initial range 
field in Population options. Set it to (1; 1.1).   By this 
we actually make it harder for the GA to search equally 
well in all the solutions space. Leave the rest settings as 
previous (figure: 1) except Options-Stopping Criteria-
Stall Generations which should be set to 100. This will 
allow the algorithm run for 100 generation providing us 
with better results (and plots). Now click the Start 
button.The GA returns the best fitness function value of 
approximately 2 and displays the plots in as in figure 3.  
 

 
Figure 3: Rastrigin’s function optimization with default setting, 

except Stopping Criteria-Stall Generations set 100 and initial range 
set [1; 1.1] 

The upper plot, which displays the best fitness at each 
generation, show little progress in lowering the fitness 
value (black dots). The lower plot shows the average 
distance between individuals at each generation, which 
is a good measure of the diversity of a population. For 
this setting of initial range, there is too little diversity 
for the algorithm to make progress. The algorithm was 
trapped in a local minimum due to the initial range 
restriction. 
Next, set Initial range to [1; 100] and run the algorithm 
again. The GA returns the best fitness value of 
approximately 3.3 and displays the following plots as in 
figure: 4. this time, the genetic algorithm makes 
progress, but because the average distance between 
individuals is so large, the best individuals are far from 
the optimal solution. Note though that if we let the GA 
to run for more generations (by setting Generations and 
Stall 

 
Figure 4: Rastrigin’s function optimization with default setting, 

except Stopping Criteria-Stall Generations set 100 and initial range 
set [1; 100] 

Generations in Stopping Criteria to 200) it will 
eventually find a better solution. 
Set Initial range to [1; 2] and run the GA. This returns 
the best fitness value of approximately 0.012 and 
displays the plots that follow as in figure 5. 
 

 
Fig 5: Rastrigin’s function optimization with default setting, except 
Stopping Criteria-Stall Generations set 100 & initial range set [1; 2] 

The diversity in this case is better suited to the problem, 
so the genetic algorithm returns a much better result 
than in the previous two cases.  
In all the examples above, we had the Population Size 
(Options-Population) set to 20 (the default). This value 
determines the size of the population at each generation. 
Increasing the population size enables the genetic 
algorithm to search more points and thereby obtain a 
better result. However, the larger the population size, 
the longer the genetic algorithm takes to compute each 
generation.  
It is important to note that Population Size to be at least 
the value of Number of variables, so that the individuals 
in each population span the space being searched.  
Finally, another parameter that affects the diversity of 
the population is the Fitness Scaling. If the fitness 
values vary too widely Figure: 6, the individuals with 
the lowest values (recall that we minimize) reproduce 
too rapidly, taking over the population pool too quickly 
and preventing the GA from searching other areas of the 
solution space.  On the other hand, if the values vary 
only a little, all individuals have approximately the 
same chance of reproduction and the search will 
progress very slowly. 
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Figure 6: Raw fitness value lower 

 
Figure 7: Raw fitness value Higher 

It is clear from the Figure: 6 Raw fitness values (lower 
is better) vary too widely on the. Scaled values (figure: 
7) do not alter the selection advantage of the good 
individuals (except that now bigger is better). They just 
reduce the diversity we have on the above. This 
prevents the GA from converging too early. 
The Fitness Scaling adjusts the fitness values (scaled 
values) before the selection step of the GA. This is done 
without changing the ranking order, that is, the best 
individual based on the raw fitness value remains the 
best in the scaled rank, as well. Only the values are 
changed, and thus the probability of an individual to get 
selected for mating by the selection procedure. This 
prevents the GA from converging too fast which allows 
the algorithm to better search the solution space. We 
continue Rastrigin’s function implantation in 
MATLAB, Use the following settings leaving every-
thing else in its default value (Fitness function: 
@rastriginsfcn, Number of Variables: 2, Initial Range: 
[1; 20], Plots: Best Fitness, Distance).  
The Selection panel in Options controls the Selection 
Function, that is, how individuals are selected to 
become parents. Note that this mechanism works on the 
scaled values, as described previously.  
Most well-known methods are presented (uniform, 
roulette and tournament). An individual can be selected 
more than once as a parent, in which case it contributes 
its genes to more than one child. 

 
Figure 8: Stochastic uniform selection method. For 6 parents we step 

the selection line with steps equal to 15/6. 

The default selection option, Stochastic Uniform, lays 
out a line (Figure 8) in which each parent corresponds 
to a section of the line of length proportional to its 
scaled value. For example, assume a population of 4 
individuals with scaled values 7, 4, 3 and 1. The 
individual with the scaled value of 7 is the best and 
should contribute its genes more than the rest. We 
create a line of length 1+3+4+7=15. Now, let's say that 
we need to select 6 individuals for parents. We step 
over this line in steps of 15/6 and select the individual 
for crossover. 
The Reproduction panel in Options control how the GA 
creates the next generation. Here you specify the 
amount of elitism and the fraction of the population of 
the next generation that is generated through mating 
(the rest is generated by mutation). The options are: 
Elite Count: the number of individuals with the best 
fitness values in the current generation that are 
guaranteed to survive to the next generation. These 
individuals are called elite children. The default value 
of Elite count is 2. Try to solve the Rastrigin's problem 
by changing only this parameter. Try values of 10, 3 
and 1. we will get results like those depicted in Figure 
5. It is obvious that you should keep this value low. 1 or 
2 (depending on the population size). 
 

 
Figure 9: Elite count 10 



Manish Saraswat et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 155-159 

© 2010, IJARCS All Rights Reserved                                                                                                                                           159 CONFERENCE PAPER                                    II International Conference on 
“Advance Computing and Creating Entrepreneurs (ACCE2013)”  

On 19-20 Feb 2013 
Organized by 

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council , 
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India 

 
Figure 10: Elite count 3 

 
Figure 11: Elite count 1. 

From the figure 9, 10, 11 it clear that too much elitism 
results in early convergence which can make the search 
less effective.        
a. Crossover Fraction: is the fraction of individuals 

in the next generation, other than elite children, 
that are created by crossover (remaining is 
generated by mutation). A crossover fraction of ‘1’ 
indicates means that all children other than elite 
individuals are crossover children. A crossover 
fraction of ‘0’ indicates that all children are 
mutation children.  

b. Two-point crossover- two crossover points are 
selected, binary string from the beginning of the 
chromosome to the first crossover point is copied 
from the first parent, the part from the first to the 
second crossover point is copied from the other 
parent and the rest is copied from the first parent 
again  

c. Mutation- It is the Random change one or more 
digits in the string representing an individual. 

IV. CONCLUSION 

The main objective in this paper is to illustrate that how 
the new technology of MATLAB can be used in order 
to implement a genetic algorithm in optimization 
problems. It uses the power of genetic algorithms to 
generate fast and efficient solutions in real time. The 

experimental results show that GATool can improve 
fitness value by providing quickly a set of near 
optimum solutions. Concerning the effect of different 
GA parameter configurations, it found that an increase 
in population size can improve performance of the 
system. The parameter of crossover rate does not affect 
seriously the quality of the solution. Genetic Algorithms 
are easy to apply to a wide range of optimization 
problems, like the traveling salesperson problem, 
inductive concept learning, scheduling, and layout 
problems. The result shows that the proposed GAs with 
the specification can find solutions with better quality in 
shorter time. The developer uses this information to 
search, locate, and debug the faults that caused the 
failures. While each of these areas for future 
consideration could be further investigated with respect 
to applicability for software testing, because it  is also 
an optimization problem with the objective that the 
efforts consumed should be minimized and the number 
of faults detected should be maximized. Finally, it 
would be interesting for further research to test a series 
of different systems in order to see the correlation 
between genetic algorithm and system performances. 
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